5,698
Views
28
CrossRef citations to date
0
Altmetric
Original Research

Small-molecule PD-L1 inhibitor BMS1166 abrogates the function of PD-L1 by blocking its ER export

, , &
Article: 1831153 | Received 03 Aug 2020, Accepted 29 Sep 2020, Published online: 14 Oct 2020

References

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–11. doi:10.1016/j.cell.2011.02.013.
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–264. doi:10.1038/nrc3239.
  • Wilky BA. Immune checkpoint inhibitors: the linchpins of modern immunotherapy. Immunol Rev. 2019;290(1):6–23. doi:10.1111/imr.12766.
  • Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 2016;375(18):1767–1778. doi:10.1056/NEJMra1514296.
  • Zak KM, Kitel R, Przetocka S, Golik P, Guzik K, Musielak B, Domling A, Dubin G, Holak TA. Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure. 2015;23(12):2341–2348. doi:10.1016/j.str.2015.09.010.
  • Wang X, Huang S, Zhang Y, Zhu L, Wu X. The application and mechanism of PD pathway blockade for cancer therapy. Postgrad Med J. 2018;94(1107):53–60. doi:10.1136/postgradmedj-2017-135187.
  • Akinleye A, Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol. 2019;12(1):92. doi:10.1186/s13045-019-0779-5.
  • Zhan MM, Hu XQ, Liu XX, Ruan BF, Xu J, Liao C. From monoclonal antibodies to small molecules: the development of inhibitors targeting the PD-1/PD-L1 pathway. Drug Discov Today. 2016;21(6):1027–1036. doi:10.1016/j.drudis.2016.04.011.
  • Yang J, Hu L. Immunomodulators targeting the PD-1/PD-L1 protein-protein interaction: from antibodies to small molecules. Med Res Rev. 2019;39:265–301.
  • Wu L, Xiao K, Yao. W. Heterocyclic compounds as immunomodulators. In. Edited by Incyte Corporation W, DE (US). US; 2020.
  • Aktoudianakis E, Cho A, Graupe M, Lad LT, Tello PAM, Medley JW, Metobo SE, Naduthambi D, Phillips BW, Simonovich. SP, et al. PD-1/PD-L1 inhibitors. In. Edited by Gilead Sciences I, Foster City, CA (US). US; 2020.
  • Sasikumar PGN, Ramachandra M, Naremaddepalli SSS. Cyclic substituted-1,3,4-oxadiazole and thiadiazole compounds as immunomodulators. In: Edited by Aurigene Discovery Technologies Limited BI. Bangalore (IN): US: Aurigene Discovery Technologies Limited; 2018.
  • Minghua W. Symmetric or semi-symmetric compounds useful as immunomodulators. In. Edited by Arising International LU; 2019.
  • Qi C, Konkol LC, Wu L, Lajkiewicz N, He C, Xiao K, Zhu W, Li Z, Mei S, Yao W. Bicyclic heteroaromatic compounds as immunomodulators. In. Edited by Incyte Corporation W, DE (US); 2018.
  • Wu L, Yu Z, Zhang F, Yao W. Pyridine derivatives as immunomodulators. In. Edited by Incyte Corporation W, DE (US); 2018.
  • Li K, Tian H. Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumour immunotherapy. J Drug Target. 2018;1–13.
  • Musielak B, Kocik J, Skalniak L, Magiera-Mularz K, Sala D, Czub M, Stec M, Siedlar M, Holak TA, Plewka J. CA-170 - a potent small-molecule PD-L1 inhibitor or not? Molecules. 2019;24(15):2804. doi:10.3390/molecules24152804.
  • Ganesan A, Ahmed M, Okoye I, Arutyunova E, Babu D, Turnbull WL, Kundu JK, Shields J, Agopsowicz KC, Xu L, et al. Comprehensive in vitro characterization of PD-L1 small molecule inhibitors. Sci Rep. 2019;9(1):12392. doi:10.1038/s41598-019-48826-6.
  • Blevins DJ, Hanley R, Bolduc T, Powell DA, Gignac M, Walker K, Carr MD, Hof F, JE W. In vitro assessment of putative PD-1/PD-L1 Inhibitors: suggestions of an alternative mode of action. ACS Med Chem Lett. 2019;10(8):1187–1192. doi:10.1021/acsmedchemlett.9b00221.
  • S Dm CL, Martin Scotte W, Xiaofan Z, Piyasena H, Connolly Timothy P, Ningning X, Kap-sun Y, Juliang Z, Langley DR, Tenney DJ, et al. Compounds useful as immunomodulators. In. Edited by Squibb B-M. US; 2015.
  • Zak KM, Grudnik P, Guzik K, Zieba BJ, Musielak B, Dömling A, Dubin G, Holak TA. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget. 2016;7(21):30323–30335. doi:10.18632/oncotarget.8730.
  • Schwarz F, Aebi M. Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol. 2011;21(5):576–582. doi:10.1016/j.sbi.2011.08.005.
  • Li C-W, Lim S-O, Xia W, Lee -H-H, Chan L-C, Kuo C-W, Khoo K-H, Chang -S-S, Cha J-H, Kim. T, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7:12632. doi:10.1038/ncomms12632.
  • Lopez-Sambrooks C, Shrimal S, Khodier C, Flaherty DP, Rinis N, Charest JC, Gao N, Zhao P, Wells L, Lewis TA, et al. Oligosaccharyltransferase inhibition induces senescence in RTK-driven tumor cells. Nat Chem Biol. 2016;12(12):1023–1030. doi:10.1038/nchembio.2194.
  • Li CW, Lim SO, Chung EM, Kim YS, Park AH, Yao J, Cha JH, Xia W, Chan LC, Kim T, et al. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell. 2018;33(2):187–201e110. doi:10.1016/j.ccell.2018.01.009.
  • Kataoka K, Shiraishi Y, Takeda Y, Sakata S, Matsumoto M, Nagano S, Maeda T, Nagata Y, Kitanaka A, Mizuno S, et al. Aberrant PD-L1 expression through 3ʹ-UTR disruption in multiple cancers. Nature. 2016;534(7607):402–406.
  • Maher CM, Thomas JD, Haas DA, Longen CG, Oyer HM, Tong JY, Kim FJ. Small-molecule Sigma1 modulator induces autophagic degradation of PD-L1. Mole Cancer Res. 2018;16(2):243–255. doi:10.1158/1541-7786.MCR-17-0166.
  • Contessa JN, Bhojani MS, Freeze HH, Rehemtulla A, Lawrence TS. Inhibition of N-linked glycosylation disrupts receptor tyrosine kinase signaling in tumor cells. Cancer Res. 2008;68(10):3803–3809. doi:10.1158/0008-5472.CAN-07-6389.
  • Roth Z, Yehezkel G, Khalaila I. Identification and quantification of protein glycosylation. Int J Carbohydr Chem. 2012;2012:1–10. doi:10.1155/2012/640923.
  • Nakamura N. Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol. 1995;131(6):1715–1726. doi:10.1083/jcb.131.6.1715.
  • Chung CY, Majewska NI, Wang Q, Paul JT, Betenbaugh MJ. SnapShot: N-glycosylation processing pathways across kingdoms. Cell. 2017;171(1):258–258e251. doi:10.1016/j.cell.2017.09.014.
  • Benyair R, Ogen-Shtern N, Lederkremer GZ. Glycan regulation of ER-associated degradation through compartmentalization. Semin Cell Dev Biol. 2015;41:99–109. doi:10.1016/j.semcdb.2014.11.006.
  • Wang L, Yu C, Yang Y, Gao K, Wang J. Development of a robust reporter gene assay to measure the bioactivity of anti-PD-1/anti-PD-L1 therapeutic antibodies. J Pharm Biomed Anal. 2017;145:447–453. doi:10.1016/j.jpba.2017.05.011.
  • Macia F, Ga-Cz F, Im S-H, Horton HF, Byrne MC, Rao A. Transcriptional mechanisms underlying lymphocyte tolerance. Cell. 2002;109:719–731. doi:10.1016/S0092-8674(02)00767-5.
  • KMZ LS, Guzik K, Magiera K, Musielak B, Pachota M, Szelazek B, Kocik J, Grudnik P, Tomala M, Krzanik S, et al. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget. 2017;8(42):72167–72181. doi:10.18632/oncotarget.20050.
  • Tocheva AS, Lerrer S, Mor A. In vitro assays to study PD-1 biology in human T cells. Curr Protoc Immunol. 2020;130:e103.
  • Gary R, Voelkl S, Palmisano R, Ullrich E, Bosch JJ, Mackensen A. Antigen-specific transfer of functional programmed death ligand 1 from human APCs onto CD8+ T cells via trogocytosis. J Immunol. 2012;188(2):744–752. doi:10.4049/jimmunol.1101412.
  • Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW, Khoo KH, Chang SS, Cha JH, Kim T, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7(12632).
  • Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO, Li CW, Kim T, Chang SS, Lee HH, et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell. 2018;71(4):606–620e607. doi:10.1016/j.molcel.2018.07.030.
  • Sara Verdura EC, Cortada E, Brunet J, Lopez-Bonet E, Martin-Castillo B, Bosch-Barrera J, Encinar JA, Menendez JA. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity. Aging. 2020;12(1):8–34. doi:10.18632/aging.102646.
  • Kim B, Sun R, Oh W, Kim AMJ, Schwarz JR, Lim SO. Saccharide analog, 2-deoxy-d-glucose enhances 4-1BB-mediated antitumor immunity via PD-L1 deglycosylation. Mol Carcinog. 2020;59(7):691–700. doi:10.1002/mc.23170.
  • Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–499. doi:10.1038/nri3862.
  • Fang Wei SZ, Zhengyu M, Kong H, Medvec A, Rafi Ahmed GJ, Freeman MK, Riley JL. Strength of PD-1 signaling differentially affects T-cell effector functions. PNAS. 2013;110(27):E2480–E2489. doi:10.1073/pnas.1305394110.
  • Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492–499. doi:10.1038/ni.2035.
  • Chen F, Song Q, Yu Q. Axl inhibitor R428 induces apoptosis of cancer cells by blocking lysosomal acidification and recycling independent of Axl inhibition. Am J Cancer Res. 2018;8:1466–1482.
  • Hobo W, Maas F, Adisty N, de Witte T, Schaap N, van der Voort R, Dolstra H. siRNA silencing of PD-L1 and PD-L2 on dendritic cells augments expansion and function of minor histocompatibility antigen-specific CD8+ T cells. Blood. 2010;116(22):4501–4511. doi:10.1182/blood-2010-04-278739.
  • Rahman M, Nara H, Onoda T, Araki A, Li J, Hoshino T, Asao H. Cloning and characterization of an isoform of interleukin-21. FEBS Lett. 2007;581(21):4001–4009. doi:10.1016/j.febslet.2007.07.034.
  • Marischen L, Englert A, Schmitt AL, Einsele H, Loeffler J. Human NK cells adapt their immune response towards increasing multiplicities of infection of Aspergillus fumigatus. BMC Immunol. 2018;19(1):39. doi:10.1186/s12865-018-0276-6.
  • Liu JY, Li F, Wang LP, Chen XF, Wang D, Cao L, Ping Y, Zhao S, Li B, Thorne SH, et al. CTL- vs Treg lymphocyte-attracting chemokines, CCL4 and CCL20, are strong reciprocal predictive markers for survival of patients with oesophageal squamous cell carcinoma. Br J Cancer. 2015;113(5):747–755. doi:10.1038/bjc.2015.290.
  • Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF, Rydzewski R, Burgart LJ, Gores GJ. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology. 2004;40(1):185–194. doi:10.1002/hep.20283.
  • Bedi A, Chang X, Noonan K, Pham V, Bedi R, Fertig EJ, Considine M, Califano JA, Borrello I, Chung CH, et al. Inhibition of TGF-beta enhances the in vivo antitumor efficacy of EGF receptor-targeted therapy. Mol Cancer Ther. 2012;11(11):2429–2439. doi:10.1158/1535-7163.MCT-12-0101-T.
  • Guo H, Kuang S, Song QL, Liu M, Sun XX, Yu Q. Cucurbitacin I inhibits STAT3, but enhances STAT1 signaling in human cancer cells in vitro through disrupting actin filaments. Acta Pharmacol Sin. 2018;39(3):425–437. doi:10.1038/aps.2017.99.