1,169
Views
8
CrossRef citations to date
0
Altmetric
Commentary

How are necrotic cells recognized by their predators?

&
Article: e1120400 | Received 02 Nov 2015, Accepted 10 Nov 2015, Published online: 13 Jan 2016

References

  • Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 2007; 32:37–43; PMID:17141506; http://dx.doi.org/10.1016/j.tibs.2006.11.001
  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 2009; 16:3–11; PMID:18846107; http://dx.doi.org/10.1038/cdd.2008.150
  • Jacobson MD, Bergeron L. Cell death in the nervous system, in Apoptosis, the molecular biology of programmed cell death. MD Jacobson, N. McCarthy, Editors. 2002, Oxford University Press; 278–301.
  • Yamashima T. Ca2+-dependent proteases in ischemic neuronal death: a conserved 'calpain-cathepsin cascade' from nematodes to primates. Cell Calcium 2004; 36:285–93; PMID:15261484; http://dx.doi.org/10.1016/j.ceca.2004.03.001
  • Noch E, Khalili K. Molecular mechanisms of necrosis in glioblastoma: the role of glutamate excitotoxicity. Cancer Biol Ther 2009; 8:1791–7; PMID:19770591; http://dx.doi.org/10.4161/cbt.8.19.9762
  • Challa S, Chan FK. Going up in flames: necrotic cell injury and inflammatory diseases. Cell Mol Life Sci 2010; 67:3241–53; PMID:20532807; http://dx.doi.org/10.1007/s00018-010-0413-8
  • Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 2010; 72:19–44; PMID: 20148665; http://dx.doi.org/10.1146/annurev.physiol.010908.163111
  • McCall K. Genetic control of necrosis - another type of programmed cell death. Curr Opin Cell Biol 2010; 22:882–8; PMID:20889324; http://dx.doi.org/10.1016/j.ceb.2010.09.002
  • Moquin D, Chan FK. The molecular regulation of programmed necrotic cell injury. Trends Biochem Sci 2010; 35:434–41; PMID:20346680; http://dx.doi.org/10.1016/j.tibs.2010.03.001
  • Vlachos M, Tavernarakis N. Non-apoptotic cell death in Caenorhabditis elegans. Dev Dyn 2010; 239:1337–51; PMID:20108319; http://dx.doi.org/10.1002/dvdy.22230
  • Zhou W, Yuan J. Necroptosis in health and diseases. Semin Cell Dev Biol 2014; 35:14–23; PMID:25087983
  • Galluzzi L, Kepp O, Krautwald S, Kroemer G, Linkermann A. Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol 2014; 35:24–32; PMID:24582829
  • Hall DH, Gu G, Garcia-Anoveros J, Gong L, Chalfie M, Driscoll M. Neuropathology of degenerative cell death in Caenorhabditis elegans. J Neurosci 1997; 17:1033–45; PMID:8994058
  • Krysko DV, D'Herde K, Vandenabeele P. Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 2006; 11:1709–26; PMID:16951923; http://dx.doi.org/10.1007/s10495-006-9527-8
  • Poon IK, Hulett MD, Parish CR. Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death Differ 2010; 17:381–97; PMID:20019744; http://dx.doi.org/10.1038/cdd.2009.195
  • Metzstein MM, Stanfield GM, Horvitz HR. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 1998; 14:410–416; PMID:9820030; http://dx.doi.org/10.1016/S0168-9525(98)01573-X
  • Driscoll M, Gerstbrein B. Dying for a cause: invertebrate genetics takes on human neurodegeneration. Nat Rev Genet 2003; 4:181–94; PMID:12610523; http://dx.doi.org/10.1038/nrg1018
  • Chalfie M, Sulston J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol 1981; 82:358–70; PMID:7227647; http://dx.doi.org/10.1016/0012-1606(81)90459-0
  • Driscoll M, Chalfie M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 1991; 349:588–93; PMID:1672038; http://dx.doi.org/10.1038/349588a0
  • Treinin M, Chalfie M. A mutated acetylcholine receptor subunit causes neuronal degeneration in C. elegans. Neuron 1995; 14:871–7; PMID:7718248; http://dx.doi.org/10.1016/0896-6273(95)90231-7
  • Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986; 44:817–29; PMID:3955651; http://dx.doi.org/10.1016/0092-8674(86)90004-8
  • Bianchi L, Gerstbrein B, Frokjaer-Jensen C, Royal DC, Mukherjee G, Royal MA, Xue J, Schafer WR, Driscoll M. The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation. Nat Neurosci 2004; 7:1337–44; PMID:15543143; http://dx.doi.org/10.1038/nn1347
  • Chung S, Gumienny TL, Hengartner MO, Driscoll M. A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nat Cell Biol 2000; 2:931–7; PMID:11146658; http://dx.doi.org/10.1038/35046585
  • Krysko DV, Denecker G, Festjens N, Gabriels S, Parthoens E, D'Herde K, Vandenabeele P. Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells. Cell Death Differ 2006; 13:2011–22; PMID:16628234; http://dx.doi.org/10.1038/sj.cdd.4401900
  • Zhou Z, Hartwieg E, Horvitz HR. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 2001b; 104:43–56; PMID:11163239; http://dx.doi.org/10.1016/S0092-8674(01)00190-8
  • Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S. Identification of Tim4 as a phosphatidylserine receptor. Nature 2007; 450(7168):435–9; PMID:17960135
  • Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z, Klibanov AL, Mandell JW, Ravichandran KS. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 2007; 450(7168):430–4; PMID:17960134
  • Ravichandran KS. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med 2010; 207:1807–17; PMID:20805564; http://dx.doi.org/10.1084/jem.20101157
  • Tung TT, Nagaosa K, Fujita Y, Kita A, Mori H, Okada R, Nonaka S, Nakanishi Y. Phosphatidylserine recognition and induction of apoptotic cell clearance by Drosophila engulfment receptor Draper. J Biochem 2013; 153:483–91; PMID:23420848; http://dx.doi.org/10.1093/jb/mvt014
  • Balasubramanian K, Schroit AJ. Aminophospholipid asymmetry: A matter of life and death. Annu Rev Physiol 2003; 65:701–34; PMID:12471163; http://dx.doi.org/10.1146/annurev.physiol.65.092101.142459
  • Vance JE, Steenbergen R. Metabolism and functions of phosphatidylserine. Prog Lipid Res 2005; 44:207–34; PMID:15979148; http://dx.doi.org/10.1016/j.plipres.2005.05.001
  • Segawa K, Kurata S, Yanagihashi Y, Brummelkamp TR, Matsuda F, Nagata S. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science 2014; 344:1164–8; PMID:24904167; http://dx.doi.org/10.1126/science.1252809
  • Sims PJ, Wiedmer T. Unraveling the mysteries of phospholipid scrambling. Thromb Haemost 2001; 86:266–75; PMID:11487015
  • Chen YZ, Mapes J, Lee ES, Skeen-Gaar RR, Xue D. Caspase-mediated activation of Caenorhabditis elegans CED-8 promotes apoptosis and phosphatidylserine externalization. Nat Commun 2013; 4:2726; PMID:24225442
  • Suzuki J, Denning DP, Imanishi E, Horvitz HR, Nagata S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 2013; 341:403–6; PMID:23845944; http://dx.doi.org/10.1126/science.1236758
  • Suzuki J, Umeda M, Sims PJ, Nagata S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 2010; 468:834–8; PMID:21107324; http://dx.doi.org/10.1038/nature09583
  • Suzuki J, Fujii T, Imao T, Ishihara K, Kuba H, Nagata S. Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J Biol Chem 2013; 288:13305–16; PMID:23532839; http://dx.doi.org/10.1074/jbc.M113.457937
  • Hamon Y, Broccardo C, Chambenoit O, Luciani MF, Toti F, Chaslin S, Freyssinet JM, Devaux PF, McNeish J, Marguet D, et al. ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nat Cell Biol 2000; 2:399–406; PMID:10878804; http://dx.doi.org/10.1038/35017029
  • Alder-Baerens N, Muller P, Pohl A, Korte T, Hamon Y, Chimini G, Pomorski T, Herrmann A. Headgroup-specific exposure of phospholipids in ABCA1-expressing cells. J Biol Chem 2005; 280:26321–9; PMID:15905177; http://dx.doi.org/10.1074/jbc.M413993200
  • Williamson P, Halleck MS, Malowitz J, Ng S, Fan X, Krahling S, Remaley AT, Schlegel RA. Transbilayer phospholipid movements in ABCA1-deficient cells. PLoS One 2007; 2:e729; PMID:17710129; http://dx.doi.org/10.1371/journal.pone.0000729
  • Venegas V, Zhou Z. Two alternative mechanisms that regulate the presentation of apoptotic cell engulfment signal in Caenorhabditis elegans. Mol Biol Cell 2007; 18:3180–92; PMID:17567952; http://dx.doi.org/10.1091/mbc.E07-02-0138
  • Li Z, Venegas V, Nagaoka Y, Morino E, Raghavan P, Audhya A, Nakanishi Y, Zhou Z. Necrotic cells actively attract phagocytes through the collaborative action of two distinct PS-Exposure mechanisms. PLoS Genet 2015; 11:e1005285; PMID:26061275; http://dx.doi.org/10.1371/journal.pgen.1005285
  • Callebaut I, Mignotte V, Souchet M, Mornon JP. EMI domains are widespread and reveal the probable orthologs of the Caenorhabditis elegans CED-1 protein. Biochem Biophys Res Commun 2003; 300:619–23; PMID:12507493; http://dx.doi.org/10.1016/S0006-291X(02)02904-2
  • Wu HH, Bellmunt E, Scheib JL, Venegas V, Burkert C, Reichardt LF, Zhou Z, Farinas I, Carter BD. Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nat Neurosci 2009; 12:1534–41; PMID:19915564; http://dx.doi.org/10.1038/nn.2446
  • Kay JN, Chu MW, Sanes JR. MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons. Nature 2012; 483:465–9; PMID:22407321; http://dx.doi.org/10.1038/nature10877
  • Fullard JF, Kale A, Baker NE. Clearance of apoptotic corpses. Apoptosis 2009; 14:1029–37; PMID:19291407; http://dx.doi.org/10.1007/s10495-009-0335-9
  • Hamon Y, Trompier D, Ma Z, Venegas V, Pophillat M, Mignotte V, Zhou Z, Chimini G. Cooperation between engulfment receptors: the case of ABCA1 and MEGF10. PLoS One 2006; 1:e120; PMID:17205124; http://dx.doi.org/10.1371/journal.pone.0000120
  • Scheib JL, Sullivan CS, Carter BD. Jedi-1 and MEGF10 signal engulfment of apoptotic neurons through the tyrosine kinase Syk. J Neurosci 2012; 32:13022–31; PMID:22993420; http://dx.doi.org/10.1523/JNEUROSCI.6350-11.2012
  • Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S. Identification of a factor that links apoptotic cells to phagocytes. Nature 2002; 417:182–7; PMID:12000961; http://dx.doi.org/10.1038/417182a
  • Wang X, Li W, Zhao D, Liu B, Shi Y, Chen B, Yang H, Guo P, Geng X, Shang Z, et al. Caenorhabditis elegans transthyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor. Nat Cell Biol 2010; 12:655–64; PMID:20526330; http://dx.doi.org/10.1038/ncb2068
  • Denecker G, Vercammen D, Steemans M, Vanden Berghe T, Brouckaert G, Van Loo G, Zhivotovsky B, Fiers W, Grooten J, Declercq W, et al. Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. Cell Death Differ 2001; 8:829–40; PMID:11526436; http://dx.doi.org/10.1038/sj.cdd.4400883
  • Krysko DV, Brouckaert G, Kalai M, Vandenabeele P, D'Herde K. Mechanisms of internalization of apoptotic and necrotic L929 cells by a macrophage cell line studied by electron microscopy. J Morphol 2003; 258:336–45; PMID:14584035; http://dx.doi.org/10.1002/jmor.10161
  • Zong WX, Thompson CB. Necrotic death as a cell fate. Genes Dev 2006; 20:1–15; PMID:16391229; http://dx.doi.org/10.1101/gad.1376506
  • Hajos F, Garthwaite G, Garthwaite J. Reversible and irreversible neuronal damage caused by excitatory amino acid analogues in rat cerebellar slices. Neuroscience 1986; 18:417–36; PMID:3526173; http://dx.doi.org/10.1016/0306-4522(86)90163-6
  • Wu Y, Horvitz HR. The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell 1998a; 93:951–960; PMID:9635425; http://dx.doi.org/10.1016/S0092-8674(00)81201-5
  • Rigot V, Hamon Y, Chambenoit O, Alibert M, Duverger N, Chimini G. Distinct sites on ABCA1 control distinct steps required for cellular release of phospholipids. J Lipid Res 2002; 43:2077–86; PMID:12454269; http://dx.doi.org/10.1194/jlr.M200279-JLR200
  • Mapes J, Chen YZ, Kim A, Mitani S, Kang BH, Xue D. CED-1, CED-7, and TTR-52 regulate surface phosphatidylserine expression on apoptotic and phagocytic cells. Curr Biol 2012; 22: 1267–75; PMID:22727702; http://dx.doi.org/10.1016/j.cub.2012.05.052
  • Wang Y, Alam T, Hill-Harfe K, Lopez AJ, Leung CK, Iribarne D, Bruggeman B, Miyamoto MM, Harfe BD, Choe KP. Phylogenetic, expression, and functional analyses of anoctamin homologs in Caenorhabditis legans. Am J Physiol Regul Integr Comp Physiol 2013; 305: R1376–89; PMID:24049119; http://dx.doi.org/10.1152/ajpregu.00303.2012
  • Pedemonte N, Galietta LJ. Structure and function of TMEM16 proteins (anoctamins). Physiol Rev 2014; 94: 419–59; PMID:24692353; http://dx.doi.org/10.1152/physrev.00039.2011
  • Segawa K, Suzuki J, Nagata S. Constitutive exposure of phosphatidylserine on viable cells. Proc Natl Acad Sci U S A 2011; 108: 19246–51; PMID:22084121; http://dx.doi.org/10.1073/pnas.1114799108
  • Yang H, Kim A, David T, Palmer D, Jin T, Tien J, Huang F, Cheng T, Coughlin SR, Jan YN, et al. TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 2012; 151: 111–22; PMID:23021219; http://dx.doi.org/10.1016/j.cell.2012.07.036
  • Malvezzi M, Chalat M, Janjusevic R, Picollo A, Terashima H, Menon AK, Accardi A. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nat Commun 2013; 4:2367; PMID:23996062; http://dx.doi.org/10.1038/ncomms3367
  • Scudieri P, Caci E, Venturini A, Sondo E, Pianigiani G, Marchetti C, Ravazzolo R, Pagani F, Galietta LJ. Ion channel and lipid scramblase activity associated with expression of TMEM16F/ANO6 isoforms. J Physiol 2015; 593:3829–48; PMID:26108457; http://dx.doi.org/10.1113/JP270691
  • Yu K, Whitlock JM, Lee K, Ortlund EA, Cui YY, Hartzell HC. Identification of a lipid scrambling domain in ANO6/TMEM16F. Elife 2015; 4:e06901; PMID:26057829
  • Xu K, Tavernarakis N, Driscoll M. Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum. Neuron 2001; 31:957–71; PMID:11580896; http://dx.doi.org/10.1016/S0896-6273(01)00432-9
  • Wojda U, Salinska E, Kuznicki J. Calcium ions in neuronal degeneration. IUBMB Life 2008; 60:575–90; PMID:18478527; http://dx.doi.org/10.1002/iub.91
  • Mano I, Driscoll M. Caenorhabditis elegans glutamate transporter deletion induces AMPA-receptor/adenylyl cyclase 9-dependent excitotoxicity. J Neurochem 2009; 108:1373–84; PMID:19054279; http://dx.doi.org/10.1111/j.1471-4159.2008.05804.x
  • Paschen W. Dependence of vital cell function on endoplasmic reticulum calcium levels: implications for the mechanisms underlying neuronal cell injury in different pathological states. Cell Calcium 2001; 29:1–11; PMID:11133351; http://dx.doi.org/10.1054/ceca.2000.0162
  • Mattson MP. Calcium and neurodegeneration. Aging Cell 2007; 6:337–50; PMID:17328689; http://dx.doi.org/10.1111/j.1474-9726.2007.00275.x
  • Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2000; 23:222–9; PMID:10782128; http://dx.doi.org/10.1016/S0166-2236(00)01548-4
  • Verkhratsky A. Endoplasmic reticulum calcium signaling in nerve cells. Biol Res 2004; 37:693–9; PMID:15709699; http://dx.doi.org/10.4067/S0716-97602004000400027
  • Huang M, Chalfie M. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 1994; 367:467–70; PMID:7509039; http://dx.doi.org/10.1038/367467a0
  • Treinin M, Gillo B, Liebman L, Chalfie M. Two functionally dependent acetylcholine subunits are encoded in a single Caenorhabditis elegans operon. Proc Natl Acad Sci U S A 1998; 95:15492–5; PMID:9860996; http://dx.doi.org/10.1073/pnas.95.26.15492
  • Chalfie M, Wolinsky E. The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans. Nature 1990; 345:410–6; PMID:2342572; http://dx.doi.org/10.1038/345410a0
  • Tavernarakis N, Shreffler W, Wang S, Driscoll M. unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion. Neuron 1997; 18:107–19; PMID:9010209; http://dx.doi.org/10.1016/S0896-6273(01)80050-7
  • Korswagen HC, Park JH, Ohshima Y, Plasterk RH. An activating mutation in a Caenorhabditis elegans Gs protein induces neural degeneration. Genes Dev 1997; 11:1493–503; PMID:9203577; http://dx.doi.org/10.1101/gad.11.12.1493
  • Nikoletopoulou V, Tavernarakis N. Necrotic cell death in Caenorhabditis elegans. Methods Enzymol 2014; 545:127–55; PMID:25065889; http://dx.doi.org/10.1016/B978-0-12-801430-1.00006-8
  • Kourtis N, Nikoletopoulou V, Tavernarakis N. Small heat-shock proteins protect from heat-stroke-associated neurodegeneration. Nature 2012; 490:213–8; PMID:22972192; http://dx.doi.org/10.1038/nature11417