1,329
Views
18
CrossRef citations to date
0
Altmetric
Mini-Review

Neural circuit rewiring: insights from DD synapse remodeling

&
Article: e1129486 | Received 28 Oct 2015, Accepted 04 Dec 2015, Published online: 22 Feb 2016

References

  • White JG, Southgate E, Thomson JN, Brenner S. The Structure of the Nervous System of the Nematode Caenorhabditis elegans. Philosophical Trans Royal Soc B: Biol Sci 1986; 314(1165):1-340; http://dx.doi.org/10.1098/rstb.1986.0056
  • White JG, Albertson DG, Anness MAR. Connectivity changes in a class of motorneurons during the development of a nematode. Nature 1978; 271:764-766; PMID:625347; http://dx.doi.org/10.1038/271764a0
  • Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983; 100:64-119; PMID:6684600; http://dx.doi.org/10.1016/0012-1606(83)90201-4
  • Hallam S, Jin Y. lin-14 regulates the timing of synaptic remodeling in Caenorhabditis elegans. Nature 1998; 395:644-647; http://dx.doi.org/10.1038/27091
  • Ambros V, Horvitz R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 1984; 226(4673):409-16; PMID:6494891; http://dx.doi.org/10.1126/science.6494891
  • Walthall WW, Plunkett JA. Genetic transformation of the synaptic pattern of a motoneuron class in Caenorhabditis elegans. J Neurosci 1995; 15:1035-1043
  • Zhou HM, Walthall WW. UNC-55, an orphan nuclear hormone receptor, orchestrates synaptic specificity among two classes of motor neurons in Caenorhabditis elegans. J Neurosci 1998; 18(24):10438-44
  • Shan G, Kim K, Li C, Walthall WW. Convergent genetic programs regulate similarities and differences between related motor neuron classes in Caenorhabditis elegans. Dev Biol 2005; 280(2):494-503; PMID:15882588; http://dx.doi.org/10.1016/j.ydbio.2005.01.032
  • Petersen SC, Watson JD, Richmond JE, Sarov M, Walthall WW, Miller DM. A transcriptional program promotes remodeling of GABAergic synapses in Caenorhabditis elegans. J Neurosci 2011; 31(43):15362-75; PMID:22031882; http://dx.doi.org/10.1523/JNEUROSCI.3181-11.2011
  • Thompson-Peer KL, Bai J, Hu Z, Kaplan, JM. HBL-1 Patterns Synaptic Remodeling in C. elegans. Neuron 2012; 73(3):453-465; PMID:22325199; http://dx.doi.org/10.1016/j.neuron.2011.11.025
  • Jin Y, Hoskins R, Horvitz HR. Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature 1994; 372:780-783; PMID:7997265; http://dx.doi.org/10.1038/372780a0
  • Eastman C, Horvitz HR, Jin Y. Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J Neurosci 1999; 19(15):6225-6234; PMID:10414952
  • Cinar H, Keles S, Jin Y. Expression profiling of GABAergic motor neurons in Caenorhabditis elegans. Curr Biol 2005; 15:340-346; PMID:15723795; http://dx.doi.org/10.1016/j.cub.2005.02.025
  • Howell K, White JG, Hobert O. Spatiotemporal control of a novel synaptic organizer molecule. Nature 2015; 523(7558):83-87; PMID:26083757; http://dx.doi.org/10.1038/nature14545
  • Jin Y, Jorgensen E, Hartwieg E, Horvitz HR. The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J Neurosci 1999; 19(2):539-548
  • Petrash HA, Philbrook A, Haburcak M, Barbagallo B, Francis MM. ACR-12 ionotropic acetylcholine receptor complexes regulate inhibitory motor neuron activity in Caenorhabditis elegans. J Neurosci 2013; 33(13):5524-5532; http://dx.doi.org/10.1523/JNEUROSCI.4384-12.2013
  • He S, Philbrook A, Mcwhirter R, Gabel CV, Taub DG, Carter MH, Hanna IM, Francis MM, Miller DM 3rd. Transcriptional control of synaptic remodeling hrough regulated expression of an Immunoglobulin superfamily protein. Curr Biol 2015; 25(19):2541-2548; PMID:26387713; http://dx.doi.org/10.1016/j.cub.2015.08.022
  • Gally C, Bessereau JL. GABA is dispensable for the formation of junctional GABA receptor clusters in Caenorhabditis elegans. J Neurosci 2003; 23(7);2591-2599
  • Han B, Bellemer A, Koelle MR. An evolutionarily conserved switch in response to GABA affects development and behavior of the locomotor circuit of Caenorhabditis elegans. Genetics 2015; 199:1159-1172; PMID:25644702; http://dx.doi.org/10.1534/genetics.114.173963
  • Hensch TK. Critical period regulation. Ann Rev Neurosci 2004; 27:549-79; PMID:15217343; http://dx.doi.org/10.1146/annurev.neuro.27.070203.144327
  • Baas PW, Lin S. Hooks and comets: The story of microtubule polarity orientation in the neuron. Dev Neurobiol 2011; 71(6):403-18; PMID:21557497; http://dx.doi.org/10.1002/dneu.20818
  • Kurup N, Yan D, Goncharov A, Jin Y. Dynamic microtubules drive circuit rewiring in the absence of neurite remodeling. Curr Biol 2015; 25(12):1594-1605; PMID:26051896; http://dx.doi.org/10.1016/j.cub.2015.04.061
  • Park M, Watanabe S, Poon VYN, Ou C-Y, Jorgensen EM, Shen K. CYY-1/cyclin Y and CDK-5 differentially regulate synapse elimination and formation for rewiring neural circuits. Neuron 2011; 70(4):742-57; PMID:21609829; http://dx.doi.org/10.1016/j.neuron.2011.04.002
  • Meng L, Mulcahy B, Cook SJ, Neubauer M, Wan A, Jin Y, Yan D. The cell death pathway regulates synapse elimination through cleavage of gelsolin in Caenorhabditis elegans neurons. Cell Rep 2015; 11(11):1737-1748; PMID:26074078; http://dx.doi.org/10.1016/j.celrep.2015.05.031
  • Baran R, Castelblanco L, Tang G, Shapiro I, Goncharov A, Jin Y. Motor neuron synapse and axon defects in a C. elegans alpha-tubulin mutant. PloS One 2010; 5:e9655; PMID:20300184; http://dx.doi.org/10.1371/journal.pone.0009655
  • Hristova M, Birse D, Hong Y, Ambros V. The caenorhabditis elegans heterochronic regulator LIN-14 Is a novel transcription factor that controls the developmental timing of transcription from the insulin / insulin-like growth factor gene ins-33 by direct DNA binding. Mol Cell Biol 2005; 25(24):11059-11072; PMID:16314527; http://dx.doi.org/10.1128/MCB.25.24.11059-11072.2005
  • Grun D, Kirchner M, Thierfelder N, Stoeckius M, Selbach M. Conservation of mRNA and protein expression during development of C. elegans. Cell Rep 2014; 6(3):565-577; PMID:24462290; http://dx.doi.org/10.1016/j.celrep.2014.01.001
  • Nakata K, Abrams B, Gril B, Goncharov A, Huang X, Chisholm AD, Jin Y. Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell 2005; 120(3):407-20; PMID:15707898; http://dx.doi.org/10.1016/j.cell.2004.12.017
  • Hammarlund M, Nix P, Hauth L, Jorgensen EM, BM. Axon Regeneration requires a conserved MAP Kinase Pathway. Science 2009; 323:802-806; PMID:19164707; http://dx.doi.org/10.1126/science.1165527
  • Ghosh-Roy A, Goncharov A, Jin Y, Chisholm AD. Kinesin-13 and tubulin posttranslational modifications regulate microtubule growth in axon regeneration. Dev Cell 2012; 23(4):716-28; PMID:23000142; http://dx.doi.org/10.1016/j.devcel.2012.08.010
  • Roll-mecak A, Mcnally FJ. Microtubule-severing enzymes. Curr Opin Cell Biol 2010; 22:96-103; PMID:19963362; http://dx.doi.org/10.1016/j.ceb.2009.11.001
  • Sanes JR, Yamagata M. Many paths to synaptic specificity. Annu Rev Cell Dev Biol 2009; 25:161-95; PMID:19575668; http://dx.doi.org/10.1146/annurev.cellbio.24.110707.175402
  • Hong YK, Park S, Litvina EY, Morales J, Sanes JR, Chen C. Refinement of the retinogeniculate synapse by bouton clustering. Neuron 2014; 84(2):332-339; PMID:25284005; http://dx.doi.org/10.1016/j.neuron.2014.08.059
  • Koffie RM, Hyman BT, Spires-Jones TL. Alzheimer's disease: synapses gone cold. Mol Neurodegeneration 2011; 6(1):63; PMID:21871088; http://dx.doi.org/10.1186/1750-1326-6-63
  • Milnerwood AJ, Raymond LA. Early synaptic pathophysiology in neurodegeneration. Trends Neurosci 2010; 33(11):513-523; PMID:20850189; http://dx.doi.org/10.1016/j.tins.2010.08.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.