1,358
Views
4
CrossRef citations to date
0
Altmetric
Commentary

Orchestrating A/P and D/V guidance - A Wnt/Netrin tale

Article: e1146857 | Received 09 Dec 2015, Accepted 19 Jan 2016, Published online: 22 Mar 2016

References

  • Ishii N, Wadsworth WG, Stern BD, Culotti JG, Hedgecock EM. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron (1992); 9:873-81; PMID:1329863; http://dx.doi.org/10.1016/0896-6273(92)90240-E
  • Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell (1999); 96:795-806; PMID:10102268; http://dx.doi.org/10.1016/S0092-8674(00)80590-5
  • Kidd T, Bland KS, Goodman CS. Slit is the midline repellent for the robo receptor in Drosophila. Cell (1999) 96:785-94; PMID:10102267; http://dx.doi.org/10.1016/S0092-8674(00)80589-9
  • Kennedy TE, Serafini T, de la Torre JR, Tessier-Lavigne M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell (1994) 78:425-35; PMID:8062385; http://dx.doi.org/10.1016/0092-8674(94)90421-9
  • Hao JC, Yu TW, Fujisawa K, Culotti JG, Gengyo-Ando K, Mitani S, Moulder G, Barstead R, Tessier-Lavigne M, Bargmann CI. C. elegans slit acts in midline, dorsal-ventral, and anterior-posterior guidance via the SAX-3/Robo receptor. Neuron (2001) 32:25-38; PMID:11604136; http://dx.doi.org/10.1016/S0896-6273(01)00448-2
  • Silhankova M, Korswagen HC. Migration of neuronal cells along the anterior-posterior body axis of C. elegans: Wnts are in control. Curr Opin Genet Dev (2007); 17:320-5; PMID:17644372; http://dx.doi.org/10.1016/j.gde.2007.05.007
  • Inoue T, Oz HS, Wiland D, Gharib S, Deshpande R, Hill RJ, Katz WS, Sternberg PW. C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt signaling. Cell (2004) 118:795-806; PMID:15369677; http://dx.doi.org/10.1016/j.cell.2004.09.001
  • Zinovyeva AY, Yamamoto Y, Sawa H, Forrester WC. Complex network of Wnt signaling regulates neuronal migrations during Caenorhabditis elegans development. Genetics (2008); 179:1357-71; PMID:18622031; http://dx.doi.org/10.1534/genetics.108.090290
  • Hilliard MA, Bargmann CI. Wnt signals and frizzled activity orient anterior-posterior axon outgrowth in C. elegans. Dev Cell (2006); 10:379-90; PMID:16516840; http://dx.doi.org/10.1016/j.devcel.2006.01.013
  • Pan C.-L, Howell JE, Clark SG, Hilliard M, Cordes S, Bargmann CI, Garriga G. Multiple Wnts and frizzled receptors regulate anteriorly directed cell and growth cone migrations in Caenorhabditis elegans. Dev Cell (2006); 10:367-77; PMID:16516839; http://dx.doi.org/10.1016/j.devcel.2006.02.010
  • Prasad BC, Clark SG. Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development (2006); 133:1757-66; PMID:16571624; http://dx.doi.org/10.1242/dev.02357
  • Rhiner C, Gysi S, Fröhli E, Hengartner MO, Hajnal A. Syndecan regulates cell migration and axon guidance in C. elegans. Development (2005); 132:4621-33; PMID:16176946; http://dx.doi.org/10.1242/dev.02042
  • Merz DC, Alves G, Kawano T, Zheng H, Culotti JG. UNC-52/Perlecan affects gonadal leader cell migrations in c. elegans hermaphrodites through alterations in growth factor signaling. Dev Biol (2003); 256:174-187; http://dx.doi.org/10.1016/S0012-1606(03)00014-9
  • Schwabiuk M, Coudiere L, Merz DC. SDN-1/syndecan regulates growth factor signaling in distal tip cell migrations in C. elegans. Dev Biol (2009); 334:235-42; PMID:19631636; http://dx.doi.org/10.1016/j.ydbio.2009.07.020
  • Hedgecock EM, Culotti JG, Hall DH. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron (1990); 4:61-85; PMID:2310575; http://dx.doi.org/10.1016/0896-6273(90)90444-K
  • Wadsworth WG, Bhatt H, Hedgecock EM. Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron (1996); 16:35-46; PMID:8562088; http://dx.doi.org/10.1016/S0896-6273(00)80021-5
  • Lai Wing Sun K, Correia JP, Kennedy TE. Netrins: versatile extracellular cues with diverse functions. Development (2011); 138:2153-69; PMID:21558366; http://dx.doi.org/10.1242/dev.044529
  • Honigberg L, Kenyon C. Establishment of left/right asymmetry in neuroblast migration by UNC-40/DCC, UNC-73/Trio and DPY-19 proteins in C. elegans. Development (2000); 127:4655-68; PMID:11023868
  • Middelkoop TC, Williams L, Yang PT, Luchtenberg J, Betist MC, Ji N, van Oudenaarden A, Kenyon C, Korswagen HC. The thrombospondin repeat containing protein MIG-21 controls a left-right asymmetric Wnt signaling response in migrating C. elegans neuroblasts. Dev Biol (2012); 361:338-48; PMID:22074987; http://dx.doi.org/10.1016/j.ydbio.2011.10.029
  • Teichmann HM, Shen K. UNC-6 and UNC-40 promote dendritic growth through PAR-4 in Caenorhabditis elegans neurons. Nat Neurosci (2011); 14:165-72; PMID:21186357; http://dx.doi.org/10.1038/nn.2717
  • Levy-Strumpf N, Culotti JG. VAB-8, UNC-73 and MIG-2 regulate axon polarity and cell migration functions of UNC-40 in C. elegans. Nat Neurosci (2007); 10:161-8; PMID:17237777; http://dx.doi.org/10.1038/nn1835
  • Watari-Goshima N, Ogura K, Wolf FW, Goshima Y, Garriga GC. elegans VAB-8 and UNC-73 regulate the SAX-3 receptor to direct cell and growth-cone migrations. Nat Neurosci (2007); 10:169-76; PMID:17237778; http://dx.doi.org/10.1038/nn1834
  • Levy-Strumpf N, Culotti JG. Netrins and Wnts Function Redundantly to Regulate Antero-Posterior and Dorso-Ventral Guidance in C. elegans. PLoS Genet (2014); 10:e1004381; PMID:24901837; http://dx.doi.org/10.1371/journal.pgen.1004381
  • Wong M-C, Schwarzbauer JE. Gonad morphogenesis and distal tip cell migration in the Caenorhabditis elegans hermaphrodite. Wiley Interdiscip. Rev Dev Biol (2012); 1:519-531
  • Harterink M, Kim DH, Middelkoop TC, Doan TD, van Oudenaarden A, Korswagen HC. Neuroblast migration along the anteroposterior axis of C. elegans is controlled by opposing gradients of Wnts and a secreted Frizzled-related protein. Development (2011); 138:2915-24; PMID:21653614; http://dx.doi.org/10.1242/dev.064733
  • Su M, Merz DC, Killeen MT, Zhou Y, Zheng H, Kramer JM, Hedgecock EM, Culotti JG. Regulation of the UNC-5 netrin receptor initiates the first reorientation of migrating distal tip cells in Caenorhabditis elegans. Development (2000); 127:585-94; PMID:10631179
  • Nishiwaki K. Mutations affecting symmetrical migration of distal tip cells in Caenorhabditis elegans. Genetics (1999); 152:985-97; PMID:10388818
  • Cabello J, Neukomm LJ, Günesdogan U, Burkart K, Charette SJ, Lochnit G, Hengartner MO, Schnabel R. The Wnt pathway controls cell death engulfment, spindle orientation, and migration through CED-10/Rac. PLoS Biol (2010); 8:e1000297; PMID:20126385; http://dx.doi.org/10.1371/journal.pbio.1000297
  • Yang P-T, Lorenowicz MJ, Silhankova M, Coudreuse DY, Betist MC, Korswagen HC. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev Cell (2008); 14:140-7
  • Green JL, Inoue T, Sternberg PW. Opposing Wnt pathways orient cell polarity during organogenesis. Cell (2008); 134:646-56; PMID:18724937; http://dx.doi.org/10.1016/j.cell.2008.06.026
  • Levy-Strumpf N, Krizus M, Zheng H, Brown L, Culotti JG. The Wnt Frizzled Receptor MOM-5 Regulates the UNC-5 Netrin Receptor through Small GTPase-Dependent Signaling to Determine the Polarity of Migrating Cells. PLOS Genet (2015); 11:e1005446; PMID:26292279; http://dx.doi.org/10.1371/journal.pgen.1005446
  • Jaworski A, Tom I, Tong RK, Gildea HK, Koch AW, Gonzalez LC, Tessier-Lavigne M. Operational redundancy in axon guidance through the multifunctional receptor Robo3 and its ligand NELL2. Science (2015); 350:961-965; PMID:26586761; http://dx.doi.org/10.1126/science.aad2615
  • Kulkarni G, Xu Z, Mohamed AM, Li H, Tang X, Limerick G, Wadsworth WG. Experimental evidence for UNC-6 (netrin) axon guidance by stochastic fluctuations of intracellular UNC-40 (DCC) outgrowth activity. Biol Open 6 (2013); 2(12):1300-12
  • Hamelin M, Zhou Y, Su MW, Scott IM, Culotti JG. Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steer their axons dorsally. Nature (1993); 364:327-30; PMID:8332188; http://dx.doi.org/10.1038/364327a0
  • Leung-Hagesteijn C, Spence AM, Stern BD, Zhou Y, Su MW, Hedgecock EM, Culotti JG. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell (1992); 71:289-99; PMID:1384987; http://dx.doi.org/10.1016/0092-8674(92)90357-I
  • Sawa H, Korswagen HC. Wnt signaling in C. elegans. WormBook 1–30 (2013).
  • Mehlen P, Furne C. Netrin-1: when a neuronal guidance cue turns out to be a regulator of tumorigenesis. Cell Mol Life Sci (2005); 62:2599-616; PMID:16158190; http://dx.doi.org/10.1007/s00018-005-5191-3
  • Baker KA, Moore SW, Jarjour AA, Kennedy TE. When a diffusible axon guidance cue stops diffusing: roles for netrins in adhesion and morphogenesis. Curr Opin Neurobiol (2006); 16:529-34; PMID:16935486; http://dx.doi.org/10.1016/j.conb.2006.08.002
  • Cirulli V, Yebra M. Netrins: beyond the brain. Nat Rev Mol Cell Biol (2007); 8:296-306; PMID:17356579; http://dx.doi.org/10.1038/nrm2142
  • Poon VY, Klassen MP, Shen K. UNC-6/netrin and its receptor UNC-5 locally exclude presynaptic components from dendrites. Nature (2008); 455:669-73; PMID:18776887; http://dx.doi.org/10.1038/nature07291
  • Ziel J, Sherwood D. Roles for netrin signaling outside of axon guidance: a view from the worm. Dev Dyn (2010); 239:1296-1305; PMID:20108323
  • Ziel JJW, Hagedorn EEJ, Audhya A, Sherwood DDR. UNC-6 (netrin) orients the invasive membrane of the anchor cell in C. elegans. Nat Cell Biol (2009); 11:183-9; PMID:19098902; http://dx.doi.org/10.1038/ncb1825
  • Colón-Ramos DA, Margeta MA, Shen K. Glia promote local synaptogenesis through UNC-6 (netrin) signaling in C. elegans. Science (2007); 318:103-6; PMID:Can't; http://dx.doi.org/10.1126/science.1143762
  • Ciani L, Salinas PC. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci (2005); 6:351-62; PMID:15832199; http://dx.doi.org/10.1038/nrn1665
  • Fradkin LG, Garriga G, Salinas PC, Thomas JB, Yu X, Zou Y. Wnt signaling in neural circuit development. J Neurosci (2005); 25:10376-8; PMID:16280576; http://dx.doi.org/10.1523/JNEUROSCI.3429-05.2005
  • Park M, Shen K. WNTs in synapse formation and neuronal circuitry. EMBO J (2012); 31:2697-704; PMID:22617419; http://dx.doi.org/10.1038/emboj.2012.145
  • Herr P, Hausmann G, Basler K. WNT secretion and signalling in human disease. Trends Mol Med (2012); 18:483-93; PMID:22796206; http://dx.doi.org/10.1016/j.molmed.2012.06.008
  • Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol (2012); 4(5):4:pii: a008052; PMID:22438566; http://dx.doi.org/10.1101/cshperspect.a008052.
  • Bhat RA, Stauffer B, Komm BS, Bodine PVN. Structure-function analysis of secreted frizzled-related protein-1 for its Wnt antagonist function. J Cell Biochem (2007); 102:1519-28; PMID:17471511; http://dx.doi.org/10.1002/jcb.21372
  • Coudreuse DYM, Roël G, Betist MC, Destrée O, Korswagen HC. Wnt gradient formation requires retromer function in Wnt-producing cells. Science (2006); 312:921-4; PMID:16645052; http://dx.doi.org/10.1126/science.1124856