2,192
Views
8
CrossRef citations to date
0
Altmetric
Reviews

A dynamic state observer to control the energy consumption in aluminium production cells

&
Pages 307-319 | Received 23 Jan 2016, Accepted 15 Sep 2016, Published online: 13 Oct 2016

References

  • Barragán, A. J., Al-Hadithi, B. M., Jiménez, A., & Andújar, J. M. (2014). A general methodology for online TS fuzzy modeling by the extended Kalman filter. Applied Soft Computing, 18, 277–289. doi: 10.1016/j.asoc.2013.09.005
  • Bearne, G. P. (1999). The development of aluminum reduction cell process control. Journal of the Minerals, Metals & Materials Society, 51(5), 16–22. doi: 10.1007/s11837-999-0035-5
  • Bozic, S. M., & Chance, R. (1998). Digital filters and signal processing in electronic engineering: Theory, applications, architecture, code. Chichester: Elsevier.
  • Braga, C., Fonseca, J., Nagem, N., Farid, J., & Silva, F. (2008). Kalman filter for indirect measurement of electrolytic bath state variables: Tuning design and practical aspects. Sensors and Transducers Journal, 90, 139–149. Retrieved from http://www.sensorsportal.com/HTML/DIGEST
  • Burkin, A. (1987). Production of aluminium and alumina. Critical reports on applied chemistry (Vol. 20). Published on behalf of the Society of Chemical Industry by Wiley, Chichester. Retrieved from https://books.google.com/books?id=949TAAAAMAAJ
  • Castañeda, C. E., & Esquivel, P. (2012). Decentralized neural identifier and control for nonlinear systems based on extended kalman filter. Neural Networks, 31, 81–87. doi: 10.1016/j.neunet.2012.03.005
  • Cauvin, S., Goodnow, W., & Simard, J. (1974, May 21). Control of an aluminum reduction cell. Google Patents. Retrieved from https://www.google.com/patents/US3812024 (US Patent 3812024).
  • Chen, K., & Yu, J. (2014). Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach. Applied Energy, 113, 690–705. doi: 10.1016/j.apenergy.2013.08.025
  • de Jesús Rubio, J., & Yu, W. (2007). Nonlinear system identification with recurrent neural networks and dead-zone Kalman filter algorithm. Neurocomputing, 70(13), 2460–2466. doi: 10.1016/j.neucom.2006.09.004
  • Donaldson, D., & Raahauge, B. E. (2013). Essential readings in light metals. Volume 1, Hoboken, NJ: Wiley. Retrieved from http://public.eblib.com/choice/publicfullrecord.aspx?p=3058927http://public.eblib.com/choice/publicfullrecord.aspx?p=3058927.
  • Ferreira, C. C. T., & Luis, S. (2003). Alocacao de autoestrutura utilizando controle robusto LQG/LTR e computacao evolutiva (Master's thesis). Universidade Federal do Maranhao-UFMA, Brazil.
  • Fonseca, J. V., Oliveira, R. C., Abreu, J. A., Ferreira, E., & Machado, M. (2013). Kalman filter embedded in FPGA to improve tracking performance in ballistic rockets. Paper presented at Computer modelling and simulation (UKSim), 2013 UKSim 15th International Conference on (pp. 606–610).
  • Green, J. A. (2007). Aluminum recycling and processing for energy conservation and sustainability. Ohio: ASM International.
  • Hanusa, T. P. (2015). The lightest metals: Science and technology from Lithium to Calcium. Chichester, Wiley.
  • Haupin, W. (1992). The liquidus enigma. In G. Bearne, M. Dupuis, & G. Tarcy (Eds.), Essential readings in light metals: Aluminum reduction technology (Vol. 2, pp. 804–807). Hoboken, New Jersey: Wiley.
  • Hestetun, K., & Hovd, M. (2006). Detection of abnormal alumina feed rate in aluminium electrolysis cells using state and parameter estimation. Computer Aided Chemical Engineering, 21, 1557–1562. doi: 10.1016/S1570-7946(06)80269-5
  • Hsieh, M.-F., & Wang, J. (2011). Design and experimental validation of an extended Kalman filter-based NO concentration estimator in selective catalytic reduction system applications. Control Engineering Practice, 19(4), 346–353. doi: 10.1016/j.conengprac.2010.12.002
  • Hyland, M. (2015). Light metals. Hoboken, NJ: Wiley. Retrieved from https://books.google.com/books?id=FijWBgAAQBAJ.
  • Jin, D., & Lin, S. (2012). Advances in future computer and control systems (Vol. 1). New York: Springer.
  • Juang, C.-F., Lin, Y.-Y., & Tu, C.-C. (2010). A recurrent self-evolving fuzzy neural network with local feedbacks and its application to dynamic system processing. Fuzzy Sets and Systems, 161(19), 2552–2568. doi: 10.1016/j.fss.2010.04.006
  • Kandepu, R., Foss, B., & Imsland, L. (2008). Applying the unscented kalman filter for nonlinear state estimation. Journal of Process Control, 18(7), 753–768. doi: 10.1016/j.jprocont.2007.11.004
  • Kvande, H., & Drabløs, P. A. (2014). The aluminum smelting process and innovative alternative technologies. Journal of Occupational and Environmental Medicine, 56(5 Suppl.), S23–S32. doi: 10.1097/JOM.0000000000000062
  • LaViola Jr, J. J. (2003). An experiment comparing double exponential smoothing and Kalman filter-based predictive tracking algorithms. Paper presented at the VR (Vol. 3, p. 283). Brown University Technology Center for Advanced Scientific Computing and Visualization; Providence, RI, 02912, USA.
  • Luo, Z., & Soria, A. (2007). Prospective study of the world aluminium industry (JRC Scientific and Technical Reports. EUR 22951).
  • Majid, N. A. A., Taylor, M. P., Chen, J. J., & Young, B. R. (2011). Multivariate statistical monitoring of the aluminium smelting process. Computers & Chemical Engineering, 35(11), 2457–2468. doi: 10.1016/j.compchemeng.2011.03.001
  • McGraw, W., Christian, K., Hall, W., Miller, G., Seaman, C., & Kozarek, R. (1989, March 21). Estimation and control of alumina concentration in Hall cells. Google Patents. Retrieved from https://www.google.com/patents/US4814050 (US Patent 4,814,050).
  • Meau, Y. P., Ibrahim, F., Narainasamy, S. A., & Omar, R. (2006). Intelligent classification of electrocardiogram (ECG) signal using extended Kalman filter (EKF) based neuro fuzzy system. Computer Methods and Programs in Biomedicine, 82(2), 157–168. doi: 10.1016/j.cmpb.2006.03.003
  • Miloudi, A., & Draou, A. (2001). Neural controller design for speed control of an indirect field oriented induction machine drive. Paper presented at the The 27th annual conference of the IEEE Industrial electronics society, 2001. IECON'01. Vol. 2 (pp. 1225–1229).
  • Mouzinho, L., Neto, J. F., Luciano, B., Freire, R., Barros, J. D. J., & Fontgalland, G. (2005). Kalman filter in real time for indirect measurement of space vehicle position using a reconfigurable architecture. Paper presented at 2005 IEEE instrumentation and measurement technology conference proceedings, Ottawa, ON, Canada. (Vol. 2, pp. 853–858).
  • Muralisankar, S., & Gopalakrishnan, N. (2014). Robust stability criteria for Takagi–Sugeno fuzzy Cohen–Grossberg neural networks of neutral type. Neurocomputing, 144, 516–525. Retrieved from http://www.sciencedirect.com/science/article/pii/S0925231214006006. doi: 10.1016/j.neucom.2014.04.019
  • Nappi, C. (2013). The global aluminium industry: 40 years from 1972. London, International Aluminium Institute [online]. Retrieved from http://www.world-aluminium.org/publications.
  • Neto, J. V. F., Farid, J. A., & de Abreu, J. A. P. (2010). Qr-duality tuning of standard kalman filters oriented to rocket velocity indirect measurement. Paper presented at the 12th international conference on Computer modelling and simulation (UKSim) (pp. 74–79). Cambridge, UK.
  • Ouyang, C.-S., Lee, W.-J., & Lee, S.-J. (2005). A tsk-type neurofuzzy network approach to system modeling problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(4), 751–767. doi: 10.1109/TSMCB.2005.846000
  • Pedrycz, W., & Gomide, F. (1998). An introduction to fuzzy sets: Analysis and design. Cambridge, UK: MIT Press.
  • Pedrycz, W., & Peters, J. F. (1998). Computational intelligence in software engineering (Vol. 16). Singapore: World Scientific.
  • Pinho, R. R., & da Silva Tavares, J. M. R. (2009). Comparison between Kalman and unscented Kalman filters in tracking applications of computational vision. Paper presented at VipIMAGE 2009-II ECCOMAS thematic conference on computational vision and medical image processing, Porto, Portugal.
  • Romanenko, A., & Castro, J. A. (2004). The unscented filter as an alternative to the EKF for nonlinear state estimation: A simulation case study. Computers & Chemical Engineering, 28(3), 347–355. doi: 10.1016/S0098-1354(03)00193-5
  • Smith, A. H. C ., Monti, A., & Ponci, F. (2007). Indirect measurements via a polynomial chaos observer. IEEE Transactions on Instrumentation and Measurement, 56(3), 743–752. doi: 10.1109/TIM.2007.894914
  • Solheim, A. (2014). Current efficiency in aluminium reduction cells: Theories, models, concepts, and speculations. Light Metals, 2014, 753–758.
  • Tarcy, G. P., Gavasto, T. M., & Ray, S. P. (1986, November 4). Electrolytic production of metals using a resistant anode. Google Patents (US Patent 4,620,905).
  • Tarcy, G. P., Kvande, H., & Tabereaux, A. (2011). Advancing the industrial aluminum process: 20th century breakthrough inventions and developments. JOM, 63(8), 101–108. doi: 10.1007/s11837-011-0120-4
  • Tarcy, G. P., & Tørklep, K. (2005). Current efficiency in Prebake and Søderberg cells. In G. Bearne, M. Dupuis, & G. Tarcy (Eds.), Essential readings in light metals: Aluminum reduction technology (Vol. 2, pp. 211–216). Hoboken, NJ: Wiley.
  • Taylor, M. P., Chen, J. J., & Young, B. R. (2013). Control for aluminum production and other processing industries. Boca Raton: CRC Press.
  • Totten, G. E., & MacKenzie, D. S. (2003). Handbook of aluminum: Vol. 1: Physical metallurgy and processes, Vol. 1. New York: CRC Press.
  • Van Der Merwe, R. (2004). Sigma-point Kalman filters for probabilistic inference in dynamic state-space models (Unpublished doctoral dissertation). Oregon Health & Science University.
  • Van Der Merwe, R., & Wan, E. A. (2001). The square-root unscented Kalman filter for state and parameter-estimation. Paper presented at 2001 IEEE international conference on acoustics, speech, and signal processing, 2001 (ICASSP'01) (Vol. 6, pp. 3461–3464).
  • Wan, E. A., & Van Der Merwe, R. (2000). The unscented Kalman filter for nonlinear estimation. Paper presented at the Adaptive systems for signal processing, communications, and control symposium 2000. AS-SPCC. The IEEE 2000, Dortmund. (pp. 153–158).
  • Welch, B. J. (1999). Aluminum production paths in the new millennium. JOM, 51(5), 24–28. doi: 10.1007/s11837-999-0036-4
  • Welch, G. F. (2014). Kalman filter. In A. Fossati, J. Gall, H. Grabner, X. Ren, & K. Konolige (Eds.), Computer vision (pp. 435–437). London: Springer.
  • Welch, G., & Bishop, G. (1995). An introduction to the Kalman filter (Tech. Rep. 95-041). Chapel Hill, NC: University of North Carolina at Chapel Hill. Retrieved from http://www.cs.unc.edu/welch/kalman/kalmanIntro.html.
  • Xu, L., Wang, J., & Chen, Q. (2012). Kalman filtering state of charge estimation for battery management system based on a stochastic fuzzy neural network battery model. Energy Conversion and Management, 53(1), 33–39. doi: 10.1016/j.enconman.2011.06.003
  • Yeh, H.-G. (1990). Real-time implementation of a narrow-band Kalman filter with a floating-point processor DSP32. IEEE Transactions on Industrial Electronics, 37(1), 13–18. doi: 10.1109/41.45838
  • Ying-fu, T. (2011). Anode-cathode-distance model for aluminium reduction cell and its energy consumption. Light Metals, 2, 009.
  • Zhuk, A. Z., Sheindlin, A. E., Kleymenov, B. V., Shkolnikov, E. I., & Lopatin, M. Y. (2006). Use of low-cost aluminum in electric energy production. Journal of Power Sources, 157(2), 921–926. doi: 10.1016/j.jpowsour.2005.11.097