1,002
Views
0
CrossRef citations to date
0
Altmetric
From the Forthcoming Special Issue: Recent Developments on Analysis and Control for Unmanned Systems

Adaptive fuzzy sensor failure compensation for active suspension systems with multiple sensor failures

ORCID Icon & ORCID Icon
Pages 229-240 | Received 02 Jun 2021, Accepted 15 Aug 2021, Published online: 06 Sep 2021

References

  • Chen, H., & Guo, K.-H. (2005). Constrained control of active suspensions: An LMI approach. IEEE Transactions on Control Systems Technology, 13(3), 412–421. https://doi.org/10.1109/TCST.2004.841661
  • Gao, H., Sun, W., & Shi, P. (2010). Robust sampled-data control for vehicle active suspension systems. IEEE Transactions on Control Systems Technology, 18(1), 238–245. https://doi.org/10.1109/TCST.2009.2015653
  • Li, H., Zhang, Z., Yan, H., & Xie, X. (2019). Adaptive event-triggered fuzzy control for uncertain active suspension systems. IEEE Transactions on Cybernetics, 49(12), 4388–4397. https://doi.org/10.1109/TCYB.2018.2864776
  • Li, H. Y., Jing, X., Lam, H.-K., & Shi, P. (2014). Fuzzy sampled-data control for uncertain vehicle suspension systems. IEEE Transactions on Cybernetics, 44(7), 1111–1126. https://doi.org/10.1109/TCYB.2013.2279534
  • Li, K. W., & Li, Y. M. (2021). Fuzzy adaptive optimal consensus fault-tolerant control for stochastic nonlinear multi-agent systems. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1007/s12555-018-0751-0
  • Li, Y. X., Wang, Q. Y., & Tong, S. C. (2021). Fuzzy adaptive fault-tolerant control of fractional-order nonlinear systems. IEEE Transactions on Systems, 51(10), 1372–1379. https://doi.org/10.1109/TSMC.2019.2894663
  • Liu, B., Saif, M., & Fan, H. (2016). Adaptive fault tolerant control of a half-car active suspension systems subject to random actuator failures. IEEE/ASME Transactions on Mechatronics, 21(6), 2847–2857. https://doi.org/10.1109/TMECH.2016.2587159
  • Liu, L., Liu, Y.-J., & Tong, S. (2019). Neural networks-based adaptive finite-time fault-tolerant control for a class of strict-feedback switched nonlinear systems. IEEE Transactions on Cybernetics, 49(7), 2536–2545. https://doi.org/10.1109/TCYB.2018.2828308
  • Liu, L., Wang, Z., & Zhang, H. (2017). Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters. IEEE Transactions on Automation Science and Engineering, 14(1), 299–313. https://doi.org/10.1109/TASE.2016.2517155
  • Liu, Y.-J., Zeng, Q., Tong, S., Chen, C. L. P., & Liu, L. (2019). Adaptive neural network control for active suspension systems with time-varying vertical displacement and speed constraints. IEEE Transactions on Industrial Electronics, 66(12), 9458–9466. https://doi.org/10.1109/TIE.2019.2893847
  • Liu, Y.-J., Zeng, Q., Tong, S., Chen, C. L. P., & Liu, L. (2020). Actuator failure compensation-based adaptive control of active suspension systems with prescribed performance. IEEE Transactions on Industrial Electronics, 67(8), 7044–7053. https://doi.org/10.1109/TIE.2019.2937037
  • Na, J., Huang, Y., Wu, X., Su, S.-F., & Li, G. (2020). Adaptive finite-time fuzzy control of nonlinear active suspension systems with input delay. IEEE Transactions on Cybernetics, 50(6), 2639–2650. https://doi.org/10.1109/TCYB.2019.2894724
  • Pan, H., Li, H., Sun, W., & Wang, Z. (2020). Adaptive fault-tolerant compensation control and its application to nonlinear suspension systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(5), 1766–1776. https://doi.org/10.1109/TSMC.2017.2785796
  • Pan, H., & Sun, W. (2019). Nonlinear output feedback finite-time control for vehicle active suspension systems. IEEE Transactions on Industrial Informatics, 15(4), 2073–2082. https://doi.org/10.1109/TII.2018.2866518
  • Pan, H., Sun, W., Gao, H., & Yu, J. (2015). Finite-time stabilization for vehicle active suspension systems with hard constraints. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2663–2672. https://doi.org/10.1109/TITS.2015.2414657
  • Sun, W., Gao, H., & Kaynak, O. (2011). Finite frequency control for vehicle active suspension systems. IEEE Transactions on Control Systems Technology, 19(2), 416–422. https://doi.org/10.1109/TCST.2010.2042296
  • Sun, W., Gao, H., & Yao, B. (2013). Adaptive robust vibration control of full-car active suspensions with electrohydraulic actuators. IEEE Transactions on Control Systems Technology, 21(6), 2417–2422. https://doi.org/10.1109/TCST.2012.2237174
  • Tong, S., Huo, B., & Li, Y. (2014). Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Transactions on Fuzzy Systems, 22(1), 1–15. https://doi.org/10.1109/TFUZZ.2013.2241770
  • Tong, S., Wang, T., & Li, Y. (2014). Fuzzy adaptive actuator failure compensation control of uncertain stochastic nonlinear systems with unmodeled dynamics. IEEE Transactions on Fuzzy Systems, 22(3), 563–574. https://doi.org/10.1109/TFUZZ.2013.2264939
  • Tong, S. C., Li, K. W., & Li, Y. M. (2021). Robust fuzzy adaptive finite-time control for high-order nonlinear systems with unmodeled dynamics. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2020.2981917
  • Wang, T. C., & Li, Y. M. (2020). Neural-network adaptive output-feedback saturation control for uncertain active suspension systems. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2020.3001581
  • Wei, M., Li, Y.-X., & Tong, S. (2021). Adaptive fault-tolerant control for a class of fractional order non-strict feedback nonlinear systems. International Journal of Systems Science, 52(5), 1014–1025. https://doi.org/10.1080/00207721.2020.1852627
  • Yagiz, N., Hacioglu, Y., & Taskin, Y. (2008). Fuzzy sliding-mode control of active suspensions. IEEE Transactions on Industrial Electronics, 55(11), 3883–3890. https://doi.org/10.1109/TIE.2008.924912
  • Yamashita, M., Fujimori, K., Hayakawa, K., & Kimura, H. (1994). Application of control to active suspension systems. Automatica, 30(11), 1717–1729. https://doi.org/10.1016/0005-1098(94)90074-4
  • Zeng, Q., Liu, Y. J., & Liu, L. (2021). Adaptive vehicle stability control of half-car active suspension systems with partial performance constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(3), 1704–1714. https://doi.org/10.1109/TSMC.2019.2903203
  • Zhang, H., Zheng, X., Yan, H., Peng, C., Wang, Z., & Chen, Q. (2017). Codesign of event-triggered and distributed filtering for active semi-vehicle suspension systems. IEEE/ASME Transactions on Mechatronics, 22(2), 1047–1058. https://doi.org/10.1109/TMECH.2016.2646722
  • Zhang, H. G., Liu, Y., & Wang, Y. C. (2021). Observer-Based finite-time adaptive fuzzy control for nontriangular nonlinear systems with full-state constraints. IEEE Transactions on Cybernetics, 51(3), 1110–1120. https://doi.org/10.1109/TCYB.2020.2984791
  • Zhang, L. L., & Yang, G.-H. (2018). Observer-based fuzzy adaptive sensor fault compensation for uncertain nonlinear strict-feedback systems. IEEE Transactions on Fuzzy Systems, 26(4), 2301–2310. https://doi.org/10.1109/TFUZZ.2017.2772879
  • Zhang, L. L., & Yang, G.-H. (2019). Observer-based adaptive decentralized fault-tolerant control of nonlinear large-scale systems with sensor and actuator faults. IEEE Transactions on Industrial Electronics, 66(10), 8019–8029. https://doi.org/10.1109/TIE.2018.2883267
  • Zhang, M., & Jing, X. (2021). A bioinspired dynamics-based adaptive fuzzy SMC method for half-car active suspension systems with input dead zones and saturations. IEEE Transactions on Cybernetics, 51(4), 1743–1755. https://doi.org/10.1109/TCYB.2020.2972322