778
Views
0
CrossRef citations to date
0
Altmetric
From the Forthcoming Special Issue: Recent Developments on Analysis and Control for Unmanned Systems

Robust fuzzy dynamic surface formation control for underactuated ships using MLP and LFG

, , & ORCID Icon
Pages 272-281 | Received 24 Jul 2021, Accepted 19 Oct 2021, Published online: 06 Nov 2021

References

  • Do, K. D. (2010). Practical control of underactuated ships. Ocean Engineering, 37(13), 1111–1119. https://doi.org/10.1016/j.oceaneng.2010.04.007
  • Fahimi, F. (2007). Sliding-mode formation control for underactuated surface vessels. IEEE Transactions on Robotics, 23(3), 617–622. https://doi.org/10.1109/TRO.2007.898961
  • Fossen, T. I. (1998). Guidance and control of ocean vehicles. Wiley.
  • Li, J., Zhang, G., Liu, C., & Zhang, W. (2020). COLREGs-constrained adaptive fuzzy event-triggered control for underactuated surface vessels with the actuator failures. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2020.3028907
  • Li, J. H., Lee, P. M., Jun, B. H., & Lim, Y. K. (2008). Point-to-point navigation of underactuated ships. Automatica, 44(12), 3201–3205. https://doi.org/10.1016/j.automatica.2008.08.003
  • Li, Y., & Tong, S. (2018). Adaptive fuzzy control with prescribed performance for block-triangular-structued nonlinear systems. IEEE Transactions on Fuzzy Systems, 26(3), 1153–1163. https://doi.org/10.1109/TFUZZ.91
  • Li, Y., Tong, S., & Li, T. (2015). Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation. IEEE Transactions on Cybernetics, 45(10), 2299–2308. https://doi.org/10.1109/TCYB.2014.2370645
  • Li, Y., Tong, S., & Li, T. (2016). Hybrid fuzzy adaptive output feedback control design for MIMO time varying delays uncertain nonlinear systems. IEEE Transactions on Fuzzy Systems, 24(4), 841–853. https://doi.org/10.1109/TFUZZ.2015.2486811
  • Liu, C., Wang, D., Zhang, Y., & Meng, X. (2020). Model predictive control for path following and roll stabilization of marine vessels based on neurodynamic optimization. Ocean Engineering, 217(5), 107524. https://doi.org/10.1016/j.oceaneng.2020.107524
  • Lu, Y., Zhang, G., Sun, Z., & Zhang, W. (2018). Robust adaptive formation control of underactuated autonomous surface vessels based on mlp and dob. Nonlinear Dynamics, 94(1), 503–519. https://doi.org/10.1007/s11071-018-4374-z
  • Peng, Z., Wang, D., Chen, Z., Hu, X., & Lan, W. (2013). Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics. IEEE Transactions on Control Systems Technology, 21(2), 513–520. https://doi.org/10.1109/TCST.2011.2181513
  • Peng, Z., Wang, D., Li, T., & Han, M. (2020). Output-feedback cooperative formation maneuvering of autonomous surface vehicles with connectivity preservation and collision avoidance. IEEE Transactions on Cybernetics, 50(6), 2527–2535. https://doi.org/10.1109/TCYB.6221036
  • Peng, Z., Wang, J., Wang, D., & Han, Q. L. (2021). An overview of recent advances in coordinated control of multiple autonomous surface vehicles. IEEE Transactions on Industrial Informatics, 17(2), 732–745. https://doi.org/10.1109/TII.2020.3004343
  • Shojaei, K. (2015). Leader-follower formation control of underactuated autonomous marine surface vehicles with limited torque. Ocean Engineering, 105(6), 196–205. https://doi.org/10.1016/j.oceaneng.2015.06.026
  • Tee, K. P., & Ge, S. S. (2006). Control of fully actuated ocean surface vessels using a class of feedforward approximators. IEEE Transactions on Control Systems Technology, 14(4), 750–756. https://doi.org/10.1109/TCST.2006.872507
  • Wang, M., Liu, X., & Shi, P. (2011). Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 41(6), 1681–1691. https://doi.org/10.1109/TSMCB.2011.2159111
  • Wang, Y., Jiang, B., Wu, Z., Xie, S., & Peng, Y. (2021). Adaptive sliding mode fault-tolerant fuzzy tracking control with application to unmanned marine vehicles. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(11), 6691–6700. 10.1109/TSMC.2020.2964808
  • Xiang, X., Lapierre, L., & Jouvencel, B. (2010). Guidance based collision free and obstacle avoidance of autonomous vehicles under formation constraints. IFAC Proceedings Volumes, 43(16), 599–604. https://doi.org/10.3182/20100906-3-IT-2019.00103
  • Xiang, X., Yu, C., & Zhang, Q. (2017). Robust fuzzy 3d path following for autonomous underwater vehicle subject to uncertainties. Computers and Operations Research, 84(11), 165–177. https://doi.org/10.1016/j.cor.2016.09.017
  • Xiao, B., Yang, X., & Huo, X. (2017). A novel disturbance estimation scheme for formation control of ocean surface vessels. IEEE Transactions on Industrial Electronics, 64(6), 4994–5003. https://doi.org/10.1109/TIE.2016.2622219
  • Yang, Y., Feng, G., & Li, T. (2004). A combined backstepping and small-gain approach to robust adaptive fuzzy control for strict-feedback nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics -- Part A: Systems and Humans, 34(3), 406–420. https://doi.org/10.1109/TSMCA.2004.824870
  • Yang, Y., & Ren, J. (2003). Adaptive fuzzy robust tracking controller design via small gain approach and its application. IEEE Transactions on Fuzzy System, 11(6), 783–795. https://doi.org/10.1109/TFUZZ.2003.819837
  • Zhang, G., Chu, S., Jin, X., & Zhang, W. (2020). Composite neural learning fault-tolerant control for underactuated vehicles with event-triggered input. IEEE Transactions on Cybernetics, 51(5), 2327–2338. https://doi.org/10.1109/TCYB.2020.3005800
  • Zhang, G., Zhang, X., & Zheng, Y. (2015). Adaptive neural path-following control for underactuated ships in fields of marine practice. Ocean Engineering, 104(8), 558–567. https://doi.org/10.1016/j.oceaneng.2015.05.013
  • Zhou, W., Wang, Y., Ahn, C. K., Chen, J., & Chen, C. (2020). Adaptive fuzzy backstepping-based formation control of unmanned surface vehicles with unknown model nonlinearity and actuator saturation. IEEE Transactions on Vehicular Technology, 69(12), 14749–14762. https://doi.org/10.1109/TVT.25