1,130
Views
3
CrossRef citations to date
0
Altmetric
From the Forthcoming Special Issue: Advanced Intelligent Computing Theories and Applications (ICIC 2021)

Implementation of sensorless contact force estimation in collaborative robot based on adaptive third-order sliding mode observer

&
Pages 507-516 | Received 13 Dec 2021, Accepted 04 Apr 2022, Published online: 10 May 2022

References

  • Bahrami, M., Naraghi, M., & Zareinejad, M. (2018). Adaptive super-twisting observer for fault reconstruction in electro-hydraulic systems. ISA Transactions, 76, 235–245. https://doi.org/10.1016/j.isatra.2018.03.014
  • Bauer, W., Bender, M., Braun, M., Rally, P., & Scholtz, O. (2016). Lightweight robots in manual assembly–best to start simply. Frauenhofer-Institut für Arbeitswirtschaft und organ. IAO.
  • Chen, S., Luo, M., & He, F. (2018). A universal algorithm for sensorless collision detection of robot actuator faults. Advances in Mechanical Engineering, 10(1), https://doi.org/10.1177/1687814017740710.
  • Chen, W.-S., Yuen, P. C., Huang, J., & Dai, D.-Q. (2005). Kernel machine-based one-parameter regularized fisher discriminant method for face recognition. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 35(4), 659–669. https://doi.org/10.1109/TSMCB.2005.844596
  • Cirillo, A., Ficuciello, F., Natale, C., Pirozzi, S., & Villani, L. (2016). A conformable force/tactile skin for physical human–robot interaction. IEEE Robotics and Automation Letters, 1(1), 41–48. https://doi.org/10.1109/LRA.2015.2505061
  • Cruz-Zavala, E., & Moreno, J. A. (2016). Lyapunov functions for continuous and discontinuous differentiators. IFAC-PapersOnLine, 49(18), 660–665. https://doi.org/10.1016/j.ifacol.2016.10.241
  • Dao, P. N., Do, D. K., & Nguyen, D. K. (2021). Adaptive Reinforcement learning-enhanced motion/force control strategy for multirobot systems. Mathematical Problems in Engineering, 2021(18). https://doi.org/10.1155/2021/5560277
  • De Luca, A., & Mattone, R. (2005). Sensorless robot collision detection and hybrid force/motion control. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, 12–17 May 2009, pp. 999–1004.
  • Du, J.-X., Huang, D.-S., Wang, X.-F., & Gu, X. (2007). Shape recognition based on neural networks trained by differential evolution algorithm. Neurocomputing, 70(4–6), 896–903. https://doi.org/10.1016/j.neucom.2006.10.026
  • Du, J.-X., Huang, D.-S., Zhang, G.-J., & Wang, Z.-F. (2006). A novel full structure optimization algorithm for radial basis probabilistic neural networks. Neurocomputing, 70(1–3), 592–596. https://doi.org/10.1016/j.neucom.2006.05.003
  • Duchaine, V., Lauzier, N., Baril, M., Lacasse, M.-A., & Gosselin, C. (2009). A flexible robot skin for safe physical human robot interaction. In: IEEE International Conference on Robotics and Automation, 2009. ICRA’09,  12-17 May 2009, pp. 3676–3681.
  • Ebert, D., & Henrich, D. (2002). Safe human-robot-cooperation: Image-based collision detection for industrial robots. IEEE/RSJ International Conference on Intelligent Robots and Systems 2002. Date of Conference: 30 September–4 October 2002. Lausanne, Switzerland
  • Eom, K. S., Suh, I. H., Chung, W. K., & Oh, S.-R. (1998). Disturbance observer based force control of robot manipulator without force sensor. In: Proceedings. 1998 IEEE International Conference on Robotics and Automation, 1998, 20-20 May 1998. pp. 3012–3017.
  • Ferretti, G., Magnani, G., & Rocco, P. (1997). Toward the implementation of hybrid position/force control in industrial robots. IEEE Transactions on Robotics and Automation, 13(6), 838–845. https://doi.org/10.1109/70.650162
  • Fridman, L., Shtessel, Y., Edwards, C., & Yan, X.-G. (2008). Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. International Journal of Robust and Nonlinear Control, 18(4–5), 399–412. https://doi.org/10.1002/rnc.1198
  • Gaz, C., Magrini, E., & De Luca, A. (2018). A model-based residual approach for human-robot collaboration during manual polishing operations. Mechatronics, 22(2018), 234–247. https://doi.org/10.1016/j.mechatronics.2018.02.014
  • Geravand, M., Flacco, F., & De Luca, A. (2013). Human-robot physical interaction and collaboration using an industrial robot with a closed control architecture. In 2013 IEEE International Conference on Robotics and Automation, pp. 4000–4007. https://doi.org/10.1109/ICRA.2013.6631141
  • Han, F., & Huang, D.-S. (2006). Improved extreme learning machine for function approximation by encoding a priori information. Neurocomputing, 69(16-18), 2369–2373. https://doi.org/10.1016/j.neucom.2006.02.013
  • Han, F., & Huang, D.-S. (2008). A new constrained learning algorithm for function approximation by encoding a priori information into feedforward neural networks. Neural Computing and Applications, 17(5–6), 433–439. https://doi.org/10.1007/s00521-007-0135-5
  • Han, F., Ling, Q.-H., & Huang, D.-S. (2008). Modified constrained learning algorithms incorporating additional functional constraints into neural networks. Information Sciences, 178(3), 907–919. https://doi.org/10.1016/j.ins.2007.09.008
  • Han, F., Ling, Q.-H., & Huang, D.-S. (2010). An improved approximation approach incorporating particle swarm optimization and a priori information into neural networks. Neural Computing and Applications, 19(2), 255–261. https://doi.org/10.1007/s00521-009-0274-y
  • Hogan, N. (1984). Impedance control: An approach to manipulation. In American Control Conference, 1984, 6–8 June 1984. pp. 304–313.
  • Hu, J., & Xiong, R. (2018). Contact force estimation for robot manipulator using semiparametric model and disturbance Kalman Filter. IEEE Transactions on Industrial Electronics, 65(4), 3365–3375. https://doi.org/10.1109/TIE.2017.2748056
  • Huang, D. (1999). Radial basis probabilistic neural networks: Model and application. International Journal of Pattern Recognition and Artificial Intelligence, 13(07), 1083–1101. https://doi.org/10.1142/S0218001499000604
  • Huang, D.-S., & Du, J.-X. (2008). A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Transactions on Neural Networks, 19(12), 2099–2115. https://doi.org/10.1109/TNN.2008.2004370
  • Huang, D.-S., & Jiang, W. (2012). A general CPL-AdS methodology for fixing dynamic parameters in dual environments. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(5), 1489–1500. https://doi.org/10.1109/TSMCB.2012.2192475
  • Huang, G.-B., Mao, K. Z., Siew, C.-K., & Huang, D.-S. (2005). Fast modular network implementation for support vector machines. IEEE Transactions on Neural Networks, 16(6), 1651–1663. https://doi.org/10.1109/TNN.2005.857952
  • Jung, S., Hsia, T. C., & Bonitz, R. G. (2004). Force tracking impedance control of robot manipulators under unknown environment. IEEE Transactions on Control Systems Technology, 12(3), 474–483. https://doi.org/10.1109/TCST.2004.824320
  • Khalil, H. K. (2017). Cascade high-gain observers in output feedback control. Automatica, 80, 110–118. https://doi.org/10.1016/j.automatica.2017.02.031
  • Khalil, H. K., & Praly, L. (2014). High-gain observers in nonlinear feedback control. International Journal of Robust and Nonlinear Control, 24(6), 993–1015. https://doi.org/10.1002/rnc.3051
  • Kommuri, S. K., Rath, J. J., & Veluvolu, K. C. (2018). Sliding-Mode-Based observer–controller structure for fault-resilient control in DC servomotors. IEEE Transactions on Industrial Electronics, 65(1), 918–929. https://doi.org/10.1109/TIE.2017.2721883
  • Le, Q. D., & Kang, H.-J. (2020). Implementation of fault-tolerant control for a robot manipulator based on synchronous sliding mode control. Applied Sciences, 10(7), 2534. https://doi.org/10.3390/app10072534
  • Le, Q. D., & Kang, H.-J. (2021). Sensor-Less contact force estimation in physical human-robot interaction. In D.-S. Huang, K.-H. Jo, J. Li, V. Gribova, & A. Hussain (Eds.), Intelligent computing theories and application (pp. 233–244). Springer International Publishing.
  • Luo, D., Xiong, X., Jin, S., & Kamal, S. (2018). Adaptive gains of dual level to super-twisting algorithm for sliding mode design. IET Control Theory & Applications, 12(17), 2347–2356. https://doi.org/10.1049/iet-cta.2018.5380
  • Magrini, E., Flacco, F., & De Luca, A. (2014). Estimation of contact forces using a virtual force sensor. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), 14–18 September 2014, pp. 2126–2133.
  • Magrini, E., Flacco, F., & De Luca, A. (2015). Control of generalized contact motion and force in physical human-robot interaction. In 2015 IEEE International Conference on Robotics and Automation (ICRA), 26–30 May 2015, pp. 2298–2304.
  • Mörtl, A., Lawitzky, M., Kucukyilmaz, A., Sezgin, M., Basdogan, C., & Hirche, S. (2012). The role of roles: Physical cooperation between humans and robots. The International Journal of Robotics Research, 31(13), 1656–1674. https://doi.org/10.1177/0278364912455366
  • Ortiz-Ricardez, F. A., Sánchez, T., & Moreno, J. A. (2015). Smooth Lyapunov function and gain design for a second order differentiator. In 2015 IEEE 54th Annual Conference on Decision and Control (CDC), 15–18 December 2015, pp. 5402–5407.
  • Peshkin, M. A., Colgate, J. E., Wannasuphoprasit, W., Moore, C. A., Gillespie, R. B., & Akella, P. (2001). Cobot architecture. IEEE Transactions on Robotics and Automation, 17(4), 377–390. https://doi.org/10.1109/70.954751
  • Stolt, A., Robertsson, A., & Johansson, R. (2015). Robotic force estimation using dithering to decrease the low velocity friction uncertainties. In 2015 IEEE International Conference on Robotics and Automation (ICRA), 26–30 May 2015, pp. 3896–3902.
  • Suita, K., Yamada, Y., Tsuchida, N., Imai, K., Ikeda, H., & Sugimoto, N. (1995). A failure-to-safety “Kyozon” system with simple contact detection and stop capabilities for safe human-autonomous robot coexistence. In Proceedings, 1995 IEEE International Conference on Robotics and Automation, 21–27 May 1995, pp. 3089–3096.
  • Sun, B.-Y., Huang, D.-S., & Fang, H.-T. (2005). Lidar signal denoising using least-squares support vector machine. IEEE Signal Processing Letters, 12(2), 101–104. https://doi.org/10.1109/LSP.2004.836938
  • Sun, B.-Y., Huang, D.-S., Fang, H.-T., & Yang, X.-M. (2005). A novel robust regression approach of lidar signal based on modified least squares support vector machine. International Journal of Pattern Recognition and Artificial Intelligence, 19((05)), 715–729. https://doi.org/10.1142/S021800140500423X
  • Van, M., Ge, S. S., & Ren, H. (2017). Robust fault-tolerant control for a class of second-order nonlinear systems using an adaptive third-order sliding mode control. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(2), 221–228. https://doi.org/10.1109/TSMC.2016.2557220
  • Wahrburg, A., Bös, J., Listmann, K. D., Dai, F., Matthias, B., & Ding, H. (2017). Motor-current-based estimation of cartesian contact forces and torques for robotic manipulators and its application to force control. IEEE Transactions on Automation Science and Engineering, 15(2), 879–886. https://doi.org/10.1109/TASE.2017.2691136
  • Wang, X.-F., & Huang, D.-S. (2009). A novel density-based clustering framework by using level set method. IEEE Transactions on Knowledge and Data Engineering, 21(11), 1515–1531. https://doi.org/10.1109/TKDE.2009.21
  • Wang, X.-F., Huang, D.-S., & Xu, H. (2010). An efficient local Chan–Vese model for image segmentation. Pattern Recognition, 43(3), 603–618. https://doi.org/10.1016/j.patcog.2009.08.002
  • Wojtara, T., Uchihara, M., Murayama, H., Shimoda, S., Sakai, S., Fujimoto, H., & Kimura, H. (2009). Human–robot collaboration in precise positioning of a three-dimensional object. Automatica, 45(2), 333–342. https://doi.org/10.1016/j.automatica.2008.08.021
  • Xu, H., & Huang, D.-S. (2008). One class support vector machines for distinguishing photographs and graphics. In 2008 IEEE International Conference on Networking, Sensing and Control, 6–8 April 2008, pp. 602–607.
  • Yu, W., & Perrusquia, A. (2022). Reinforcement learning for robot position/force control. In Human-robot interaction control using reinforcement learning (pp. 97–118). IEEE.
  • Zhao, Z.-Q., Huang, D.-S., & Sun, B.-Y. (2004). Human face recognition based on multi-features using neural networks committee. Pattern Recognition Letters, 25(12), 1351–1358. https://doi.org/10.1016/j.patrec.2004.05.008