856
Views
0
CrossRef citations to date
0
Altmetric
Research Article

MS-YOLOv5: a lightweight algorithm for strawberry ripeness detection based on deep learning

ORCID Icon & ORCID Icon
Article: 2285292 | Received 20 Aug 2023, Accepted 14 Nov 2023, Published online: 29 Nov 2023

References

  • An, Q., Wang, K., Li, Z., Song, C., Tang, X., & Song, J. (2022). Real-time monitoring method of strawberry fruit growth state based on YOLO improved model. IEEE Access, 10, 124363–124372. https://doi.org/10.1109/ACCESS.2022.3220234
  • Anraeni, S., Indra, D., Adirahmadi, D., & Pomalingo, S. (2021). Strawberry ripeness identification using feature extraction of RGB and K-nearest neighbor. In 2021 3rd East Indonesia conference on computer and information technology (EIConCIT) (pp. 395–398). IEEE.
  • Arefi, A., Motlagh, A. M., Mollazade, K., & Teimourlou, R. F. (2011). Recognition and localization of ripen tomato based on machine vision. Australian Journal of Crop Science, 5(10), 1144–1149.
  • Cai, Z., & Vasconcelos, N. (2018). Cascade R-CNN: Delving into high quality object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6154–6162). IEEE.
  • Chen, J., Bai, S., Wan, G., & Li, Y. (2023). Research on YOLOv7-based defect detection method for automotive running lights. Systems Science & Control Engineering, 11(1), 2185916. https://doi.org/10.1080/21642583.2023.2185916
  • Chen, W., Lu, S., Liu, B., Chen, M., Li, G., & Qian, T. (2022). CitrusYOLO: A algorithm for citrus detection under orchard environment based on YOLOV4. Multimedia Tools and Applications, 81(22), 31363–31389. https://doi.org/10.1007/s11042-022-12687-5
  • Gai, R., Chen, N., & Yuan, H. (2023). A detection algorithm for cherry fruits based on the improved YOLO-v4 model. Neural Computing and Applications, 35(19), 13895–13906. https://doi.org/10.1007/s00521-021-06029-z
  • Hou, Q., Zhou, D., & Feng, J. (2021). Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13713–13722). IEEE.
  • Hu, J., Shen, L., Albanie, S., Sun, G., & Wu, E. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132–7141). IEEE.
  • Huang, M. L., & Wu, Y. S. (2023). GCS-YOLOV4-Tiny: A lightweight group convolution network for multi-stage fruit detection. Mathematical Biosciences and Engineering, 20(1), 241–268. https://doi.org/10.3934/mbe.2023011
  • Hurtik, P., Molek, V., Hula, J., Vajgl, M., Vlasanek, P., & Nejezchleba, T. (2022). Poly-YOLO: Higher speed, more precise detection and instance segmentation for YOLOv3. Neural Computing and Applications, 34(10), 8275–8290. https://doi.org/10.1007/s00521-021-05978-9
  • Kowalska, J., Kowalska, H., Marzec, A., Brzeziński, T., Samborska, K., & Lenart, A. (2018). Dried strawberries as a high nutritional value fruit snack. Food Science and Biotechnology, 27(3), 799–807. https://doi.org/10.1007/s10068-018-0304-6
  • Latha, R. S., Sreekanth, G. R., Rajadevi, R., Nivetha, S. K., Kumar, K. A., Akash, V., Bhuvanesh, S., & Anbarasu, P. (2022). Fruits and vegetables recognition using YOLO. In 2022 international conference on computer communication and informatics (pp. 1–6). IEEE.
  • Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie, W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., & Wei, X. (2022). YOLOv6: A single-stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976.
  • Li, K., Wang, J., Jalil, H., & Wang, H. (2023). A fast and lightweight detection algorithm for passion fruit pests based on improved YOLOv5. Computers and Electronics in Agriculture, 204, 107534. https://doi.org/10.1016/j.compag.2022.107534
  • Li, Y., Wang, J., Wu, H., Yu, Y., Sun, H., & Zhang, H. (2022). Detection of powdery mildew on strawberry leaves based on DAC-YOLOv4 model. Computers and Electronics in Agriculture, 202, 107418. https://doi.org/10.1016/j.compag.2022.107418
  • Lu, J., & Sang, N. (2015). Detecting citrus fruits and occlusion recovery under natural illumination conditions. Computers and Electronics in Agriculture, 110, 121–130. https://doi.org/10.1016/j.compag.2014.10.016
  • Mai, X., Zhang, H., Jia, X., & Meng, M. Q. H. (2020). Faster R-CNN with classifier fusion for automatic detection of small fruits. IEEE Transactions on Automation Science and Engineering, 17(3), 1555–1569.
  • Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., & Lin, D. (2019). Libra R-CNN: Towards balanced learning for object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 821–830). IEEE.
  • Pérez-Zavala, R., Torres-Torriti, M., Cheein, F. A., & Troni, G. (2018). A pattern recognition strategy for visual grape bunch detection in vineyards. Computers and Electronics in Agriculture, 151, 136–149. https://doi.org/10.1016/j.compag.2018.05.019
  • Qiao, L., Chen, Y., Cheng, Z., Xu, Y., Niu, Y., Pu, S., & Wu, F. (2021). Mango: A mask attention guided one-stage scene text spotter. Proceedings of the AAAI Conference on Artificial Intelligence, 35(3), 2467–2476. https://doi.org/10.1609/aaai.v35i3.16348
  • Vats, A., & Anastasiu, D. C. (2023). Enhancing retail checkout through video inpainting, YOLOv8 detection, and DeepSort tracking. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5529–5536). IEEE.
  • Wahjuni, S., & Nurarifah, H. (2023). Faster RCNN based leaf segmentation using stereo images. Journal of Agriculture and Food Research, 11, 100514. https://doi.org/10.1016/j.jafr.2023.100514
  • Wang, D., & He, D. (2021). Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning. Biosystems Engineering, 210, 271–281. https://doi.org/10.1016/j.biosystemseng.2021.08.015
  • Woo, S., Park, J., Lee, J. Y., & Kweon, I. S. (2018). CBAM: Convolutional block attention module. In V. Ferrari, M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Proceedings of the European conference on computer vision (pp. 3–19). Springer.
  • Xing, Z., Chen, X., & Pang, F. (2022). DD-YOLO: An object detection method combining knowledge distillation and Differentiable Architecture Search. IET Computer Vision, 16(5), 418–430. https://doi.org/10.1049/cvi2.12097
  • Zhang, J., Wan, G., Jiang, M., Lu, G., Tao, X., & Huang, Z. (2023). Small object detection in UAV image based on improved YOLOv5. Systems Science & Control Engineering, 11(1), 2247082. https://doi.org/10.1080/21642583.2023.2247082
  • Zhang, Y., Yu, J., Chen, Y., Yang, W., Zhang, W., & He, Y. (2022). Real-time strawberry detection using deep neural networks on embedded system (RTSD-net): An edge AI application. Computers and Electronics in Agriculture, 192, 106586. https://doi.org/10.1016/j.compag.2021.106586
  • Zhao, S., Liu, J., & Wu, S. (2022). Multiple disease detection method for greenhouse-cultivated strawberry based on multiscale feature fusion Faster R_CNN. Computers and Electronics in Agriculture, 199, 107176. https://doi.org/10.1016/j.compag.2022.107176
  • Zhong, S., Xu, W., Zhang, T., & Chen, H. (2022). Identification and depth localization of clustered pod pepper based on improved Faster R-CNN. IEEE Access, 10, 93615–93625. https://doi.org/10.1109/ACCESS.2022.3203106
  • Zhou, H., Wang, X., Au, W., Kang, H., & Chen, C. (2022). Intelligent robots for fruit harvesting: Recent developments and future challenges. Precision Agriculture, 23(5), 1856–1907. https://doi.org/10.1007/s11119-022-09913-3