3,013
Views
32
CrossRef citations to date
0
Altmetric
Review

Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases

, , , , &
Pages 650-656 | Received 31 Jul 2014, Accepted 10 Nov 2014, Published online: 03 Apr 2015

References

  • Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol 2011; 12:509–17; PMID:21739679; http://dx.doi.org/10.1038/ni.2039
  • Wilson-Welder JH, Torres MP, Kipper MJ, Mallapragada SK, Wannemuehler MJ, Narasimhan B. Vaccine adjuvants: current challenges and future approaches. J Pharm Sci 2009; 98:1278-316; PMID:18704954; http://dx.doi.org/10.1002/jps.21523
  • CDC. Immunization Schedules for Children in Easy-to-read Formats. CDC: Atlanta, GA; 2014. Available from http://www.cdc.gov/vaccines/schedules/easy-to-read/child.html
  • Maina LC, Karanja S, Kombich J. Immunization coverage and its determinants among children aged 12 - 23 months in a peri-urban area of Kenya. Pan Afr Med J 2013; 14:3; PMID:23504493; http://dx.doi.org/10.11604/pamj.2013.14.3.2181
  • Jiang W, Gupta RK, Deshpande MC, Schwendeman SP. Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Del Rev 2005; 57:391-410; PMID:15560948; http://dx.doi.org/10.1016/j.addr.2004.09.003
  • Cleland JL. Single-administration vaccines: controlled-release technology to mimic repeated immunizations. Trends Biotechnol 1999; 17:25-9; PMID:10098275; http://dx.doi.org/10.1016/S0167-7799(98)01272-4
  • Aguado MT. Future approaches to vaccine development: single-dose vaccines using controlled-release delivery systems. Vaccine 1993; 11:596-7; PMID:8488720; http://dx.doi.org/10.1016/0264-410X(93)90241-O
  • Coombes AG, Lavelle EC, Jenkins PG, Davis SS. Single dose, polymeric, microparticle-based vaccines: the influence of formulation conditions on the magnitude and duration of the immune response to a protein antigen. Vaccine 1996; 14:1429-38; PMID:8994318; http://dx.doi.org/10.1016/S0264-410X(96)00077-1
  • Langer R, Cleland JL, Hanes J. New advances in microsphere-based single-dose vaccines. Adv Drug Del Rev 1997; 28:97-119; PMID:10837567; http://dx.doi.org/10.1016/S0169-409X(97)00053-7
  • Gupta RK, Singh M, O'Hagan DT. Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv Drug Del Rev 1998; 32:225-46; PMID:10837646; http://dx.doi.org/10.1016/S0169-409X(98)00008-8
  • Zhao Z, Leong KW. Controlled delivery of antigens and adjuvants in vaccine development. J Pharm Sci 1996; 85:1261-70; PMID:8961136; http://dx.doi.org/10.1021/js9602812
  • Singh M, Singh O, Singh A, Talwar GP. Immunogenicity studies on diphtheria toxoid loaded biodegradable microspheres. Int J Pharm 1992; 85:R5-R8; http://dx.doi.org/10.1016/0378-5173(92)90157-W
  • Thomasin C, Corradin G, Men Y, Merkle HP, Gander B. Tetanus toxoid and synthetic malaria antigen containing poly(lactide)/poly(lactide-co-glycolide) microspheres: importance of polymer degradation and antigen release for immune response. J Control Release 1996; 41:131-45; http://dx.doi.org/10.1016/0168-3659(96)01363-6
  • Lee HK, Park JH, Kwon KC. Double-walled microparticles for single shot vaccine. J Control Release 1997; 44:283-93; http://dx.doi.org/10.1016/S0168-3659(96)01534-9
  • Cruz LJ, Tacken PJ, Rueda F, Domingo JC, Albericio F, Figdor CG. Targeting nanoparticles to dendritic cells for immunotherapy. Methods Enzymol 2012; 509:143-63.; PMID:22568905; http://dx.doi.org/10.1016/B978-0-12-391858-1.00008-3
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release: Off J Control Release Soc 2001; 70:1-20; PMID:11166403; http://dx.doi.org/10.1016/S0168-3659(00)00339-4
  • Kreutz M, Tacken PJ, Figdor CG. Targeting dendritic cells–why bother? Blood 2013; 121:2836-44; PMID:23390195; http://dx.doi.org/10.1182/blood-2012-09-452078
  • Desai KG, Schwendeman SP. Active self-healing encapsulation of vaccine antigens in PLGA microspheres. J Control Release: Off J Control Release Soc 2013; 165:62-74; PMID:23103983; http://dx.doi.org/10.1016/j.jconrel.2012.10.012
  • Alonso MJ, Gupta RK, Min C, Siber GR, Langer R. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine 1994; 12:299-306; PMID:8178550; http://dx.doi.org/10.1016/0264-410X(94)90092-2
  • Sanders LM, McRae GI, Vitale KM, Kell BA. Controlled delivery of an LHRH analogue from biodegradable injectable microspheres. J Control Release 1985; 2:187-95; http://dx.doi.org/10.1016/0168-3659(85)90044-6
  • Cowsar DR, Tice TR, Gilley RM, English JP. Poly(lactide-co-glycolide) microcapsules for controlled release of steroids. Methods Enzymol 1985; 112:101-16; PMID:4046844; http://dx.doi.org/; http://dx.doi.org/10.1016/S0076-6879(85)12010-0
  • Singh M, Singh O, Talwar GP. Biodegradable delivery system for a birth control vaccine: immunogenicity studies in rats and monkeys. Pharm Res 1995; 12:1796-800; PMID:8592689; http://dx.doi.org/10.1023/A:1016294512292
  • Johansen P, Estevez F, Zurbriggen R, Merkle HP, Gluck R, Corradin G, Gander B. Towards clinical testing of a single-administration tetanus vaccine based on PLA/PLGA microspheres. Vaccine 2000; 19:1047-54; PMID:11137238; http://dx.doi.org/10.1016/S0264-410X(00)00343-1
  • Bloom BR. Vaccines for the Third World. Nature 1989; 342:115-20; PMID:2812009; http://dx.doi.org/10.1038/342115a0
  • Aguado MT, Lambert PH. Controlled-release vaccines–biodegradable polylactide/polyglycolide (PL/PG) microspheres as antigen vehicles. Immunobiology 1992; 184:113-25; PMID:1587538; http://dx.doi.org/10.1016/S0171-2985(11)80470-5
  • Alonso MJ, Cohen S, Park TG, Gupta RK, Siber GR, Langer R. Determinants of release rate of tetanus vaccine from polyester microspheres. Pharm Res 1993; 10:945-53; PMID:8378256; http://dx.doi.org/10.1023/A:1018942118148
  • Sanchez A, Gupta RK, Alonso MJ, Siber GR, Langer R. Pulsed controlled-released system for potential use in vaccine delivery. J Pharm Sci 1996; 85:547-52; PMID:8773947; http://dx.doi.org/10.1021/js960069y
  • Men Y, Thomasin C, Merkle HP, Gander B, Corradin G. A single administration of tetanus toxoid in biodegradable microspheres elicits T cell and antibody responses similar or superior to those obtained with aluminum hydroxide. Vaccine 1995; 13:683-9; PMID:7668038; http://dx.doi.org/10.1016/0264-410X(94)00046-P
  • Jung T, Koneberg R, Hungerer KD, Kissel T. Tetanus toxoid microspheres consisting of biodegradable poly(lactide-co-glycolide)- and ABA-triblock-copolymers: immune response in mice. Int J Pharm 2002; 234:75-90; PMID:11839439; http://dx.doi.org/10.1016/S0378-5173(01)00957-7
  • Singh M, Li XM, Wang H, McGee JP, Zamb T, Koff W, Wang CY, O'Hagan DT. Immunogenicity and protection in small-animal models with controlled-release tetanus toxoid microparticles as a single-dose vaccine. Infect Immun 1997; 65:1716-21; PMID:9125552
  • Johansen P, Moon L, Tamber H, Merkle HP, Gander B, Sesardic D. Immunogenicity of single-dose diphtheria vaccines based on PLA/PLGA microspheres in guinea pigs. Vaccine 1999; 18:209-15; PMID:10506644; http://dx.doi.org/10.1016/S0264-410X(99)00191-7
  • Peyre M, Sesardic D, Merkle HP, Gander B, Johansen P. An experimental divalent vaccine based on biodegradable microspheres induces protective immunity against tetanus and diphtheria. J Pharm Sci 2003; 92:957-66; PMID:12712415; http://dx.doi.org/10.1002/jps.10361
  • Josefsberg JO, Buckland B. Vaccine process technology. Biotechnol Bioeng 2012; 109:1443-60; PMID:22407777; http://dx.doi.org/10.1002/bit.24493
  • Moldoveanu Z, Clements ML, Prince SJ, Murphy BR, Mestecky J. Human immune responses to influenza virus vaccines administered by systemic or mucosal routes. Vaccine 1995; 13:1006-12; PMID:8525683; http://dx.doi.org/10.1016/0264-410X(95)00016-T
  • Johansson EL, Wassen L, Holmgren J, Jertborn M, Rudin A. Nasal and vaginal vaccinations have differential effects on antibody responses in vaginal and cervical secretions in humans. Infect Immun 2001; 69:7481-6; PMID:11705923; http://dx.doi.org/10.1128/IAI.69.12.7481-7486.2001
  • Rudin A, Riise GC, Holmgren J. Antibody responses in the lower respiratory tract and male urogenital tract in humans after nasal and oral vaccination with cholera toxin B subunit. Infect Immun 1999; 67:2884-90; PMID:10338495
  • Bergquist C, Johansson EL, Lagergard T, Holmgren J, Rudin A. Intranasal vaccination of humans with recombinant cholera toxin B subunit induces systemic and local antibody responses in the upper respiratory tract and the vagina. Infect Immun 1997; 65:2676-84; PMID:9199436
  • Kozlowski PA, Williams SB, Lynch RM, Flanigan TP, Patterson RR, Cu-Uvin S, Neutra MR. Differential induction of mucosal and systemic antibody responses in women after nasal, rectal, or vaginal immunization: influence of the menstrual cycle. J Immunol 2002; 169:566-74; PMID:12077289; http://dx.doi.org/10.4049/jimmunol.169.1.566
  • Liang B, Hyland L, Hou S. Nasal-associated lymphoid tissue is a site of long-term virus-specific antibody production following respiratory virus infection of mice. J Virol 2001; 75:5416-20; PMID:11333927; http://dx.doi.org/10.1128/JVI.75.11.5416-5420.2001
  • Hanes J, Chiba M, Langer R. Polymer microspheres for vaccine delivery. Pharm Biotechnol 1995; 6:389-412; PMID:7551227; http://dx.doi.org/10.1007/978-1-4615-1823-5_16
  • Eldridge JH, Meulbroek JA, Staas JK, Tice TR, Gilley RM. Vaccine-containing biodegradable microspheres specifically enter the gut-associated lymphoid tissue following oral administration and induce a disseminated mucosal immune response. Adv Exp Med Biol 1989; 251:191-202; PMID:2610110
  • Eyles JE, Sharp GJ, Williamson ED, Spiers ID, Alpar HO. Intra nasal administration of poly-lactic acid microsphere co-encapsulated Yersinia pestis subunits confers protection from pneumonic plague in the mouse. Vaccine 1998; 16:698-707; PMID:9562689; http://dx.doi.org/10.1016/S0264-410X(97)00249-1
  • Almeida AJ, Alpar HO. Nasal delivery of vaccines. J Drug Target 1996; 3:455-67; PMID:8863138; http://dx.doi.org/10.3109/10611869609015965
  • Beier R, Gebert A. Kinetics of particle uptake in the domes of Peyer's patches. Am J Physiol 1998; 275:G130-7; PMID:9655693
  • Yeh M-K, Liu Y-T, Chen J-L, Chiang C-H. Oral immunogenicity of the inactivated Vibrio cholerae whole-cell vaccine encapsulated in biodegradable microparticles. J Control Release 2002; 82:237-47; PMID:12175740; http://dx.doi.org/10.1016/S0168-3659(02)00140-2
  • Yeh M, Chiang C. Inactive Vibrio cholerae whole-cell vaccine-loaded biodegradable microparticles: in vitro release and oral vaccination. J Microencapsul 2004; 21:91-106; PMID:14718189; http://dx.doi.org/10.1080/02652040310001619794
  • Huang SS, Li IH, Hong PD, Yeh MK. Development of Yersinia pestis F1 antigen-loaded microspheres vaccine against plague. Int J Nanomed 2014; 9:813-22; PMID:24550673
  • Huang SS, Li IH, Hong PD, Yeh MK. Evaluation of protective efficacy using a nonstructural protein NS1 in DNA vaccine-loaded microspheres against dengue 2 virus. Int J Nanomed 2013; 8:3161-9; PMID:23990724
  • Plotkin SA. Vaccines: correlates of vaccine-induced immunity. Clin Infect Dis: Off Pub Infect Dis Soc Am 2008; 47:401-9; PMID:18558875; http://dx.doi.org/10.1086/589862
  • Pantaleo G, Koup RA. Correlates of immune protection in HIV-1 infection: what we know, what we don't know, what we should know. Nat Med 2004; 10:806-10; PMID:15286782; http://dx.doi.org/10.1038/nm0804-806]
  • Hoft DF. Tuberculosis vaccine development: goals, immunological design, and evaluation. Lancet 2008; 372:164-75; PMID:18620952; http://dx.doi.org/10.1016/S0140-6736(08)61036-3
  • Reyes-Sandoval A, Pearson FE, Todryk S, Ewer K. Potency assays for novel T-cell-inducing vaccines against malaria. Curr Opin Mol Therap 2009; 11:72-80; PMID:19169962
  • Steinman RM. Dendritic cells in vivo: a key target for a new vaccine science. Immunity 2008; 29:319-24; PMID:18799140; http://dx.doi.org/10.1016/j.immuni.2008.08.001
  • Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ. Dendritic cell immunotherapy: mapping the way. Nat Med 2004; 10:475-80; PMID:15122249; http://dx.doi.org/10.1038/nm1039
  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12:265-77; PMID:22437871; http://dx.doi.org/10.1038/nrc3258
  • Idoyaga J, Cheong C, Suda K, Suda N, Kim JY, Lee H, Park CG, Steinman RM. Cutting edge: langerin/CD207 receptor on dendritic cells mediates efficient antigen presentation on MHC I and II products in vivo. J Immunol 2008; 180:3647-50; PMID:18322168; http://dx.doi.org/10.4049/jimmunol.180.6.3647
  • Idoyaga J, Fiorese C, Zbytnuik L, Lubkin A, Miller J, Malissen B, Mucida D, Merad M, Steinman RM. Specialized role of migratory dendritic cells in peripheral tolerance induction. J Clin Invest 2013; 123:844-54; PMID:23298832
  • Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat Med 1999; 5:1249-55; PMID:10545990; http://dx.doi.org/10.1038/15200
  • Kastenmuller W, Kastenmuller K, Kurts C, Seder RA. Dendritic cell-targeted vaccines - hope or hype? Nat Rev Immunol 2014; 14:705-11; PMID:25190285; http://dx.doi.org/10.1038/nri3727
  • Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, Torensma R, Figdor CG. Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release: Off J Control Release Soc 2010; 144:118-26; PMID:20156497; http://dx.doi.org/10.1016/j.jconrel.2010.02.013
  • Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M, Reinhold B, Keskin DB, Reinherz EL, Sasada T. Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 2011; 32:3666-78; PMID:21345488; http://dx.doi.org/10.1016/j.biomaterials.2011.01.067
  • Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B, Groettrup M. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine 2008; 26:1626-37; PMID:18295941; http://dx.doi.org/10.1016/j.vaccine.2008.01.030
  • Fahmy TM, Samstein RM, Harness CC, Mark Saltzman W. Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials 2005; 26:5727-36; PMID:15878378; http://dx.doi.org/10.1016/j.biomaterials.2005.02.025
  • Duncanson WJ, Figa MA, Hallock K, Zalipsky S, Hamilton JA, Wong JY. Targeted binding of PLA microparticles with lipid-PEG-tethered ligands. Biomaterials 2007; 28:4991-9; PMID:17707503; http://dx.doi.org/10.1016/j.biomaterials.2007.05.044
  • Cruz LJ, Tacken PJ, Fokkink R, Figdor CG. The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells. Biomaterials 2011; 32:6791-803; PMID:21724247; http://dx.doi.org/10.1016/j.biomaterials.2011.04.082
  • Woodrow KA, Bennett KM, Lo DD. Mucosal vaccine design and delivery. Annu Rev Biomed Eng 2012; 14:17-46; PMID:22524387; http://dx.doi.org/10.1146/annurev-bioeng-071811-150054
  • Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 2013; 3:13; PMID:23532930; http://dx.doi.org/10.3389/fcimb.2013.00013
  • Fu PP. Introduction to the special issue: nanomaterials– toxicology and medical applications. J Food Drug Anal 2014; 22:1-2; PMID:24673899; http://dx.doi.org/10.1016/j.jfda.2014.01.013
  • Karmakar A, Zhang Q, Zhang Y. Neurotoxicity of nanoscale materials. J Food Drug Anal 2014; 22:147-60; PMID:24673911; http://dx.doi.org/10.1016/j.jfda.2014.01.012
  • McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal 2014; 22:116-27; PMID:24673909; http://dx.doi.org/10.1016/j.jfda.2014.01.010
  • Guo X, Mei N. Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal 2014; 22:105-15; PMID:24673908; http://dx.doi.org/10.1016/j.jfda.2014.01.009
  • Chen T, Yan J, Li Y. Genotoxicity of titanium dioxide nanoparticles. J Food Drug Anal 2014; 22:95-104; PMID:24673907; http://dx.doi.org/10.1016/j.jfda.2014.01.008
  • Wu H, Yin JJ, Wamer WG, Zeng M, Lo YM. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J Food Drug Anal 2014; 22:86-94; PMID:24673906; http://dx.doi.org/10.1016/j.jfda.2014.01.007
  • Li M, Yin JJ, Wamer WG, Lo YM. Mechanistic characterization of titanium dioxide nanoparticle-induced toxicity using electron spin resonance. J Food Drug Anal 2014; 22:76-85; PMID:24673905; http://dx.doi.org/10.1016/j.jfda.2014.01.006
  • Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 2014; 22:64-75; PMID:24673904; http://dx.doi.org/10.1016/j.jfda.2014.01.005
  • Serda RE. Particle platforms for cancer immunotherapy. Int J Nanomed 2013; 8:1683-96; PMID:23761969; http://dx.doi.org/10.2147/IJN.S31756
  • Kohane DS. Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng 2007; 96:203-9; PMID:17191251; http://dx.doi.org/10.1002/bit.21301
  • Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, McKenzie IF, Plebanski M. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 2004; 173:3148-54; PMID:15322175; http://dx.doi.org/10.4049/jimmunol.173.5.3148
  • Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 2008; 38:1404-13; PMID:18389478; http://dx.doi.org/10.1002/eji.200737984
  • Slutter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, Kaijzel E, van Eden W, Augustijns P, Löwik C, et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 2010; 28:6282-91; PMID:20638455; http://dx.doi.org/10.1016/j.vaccine.2010.06.121
  • Baca-Estrada ME, Foldvari M, Snider M. Induction of mucosal immune responses by administration of liposome-antigen formulations and interleukin-12. J Interf Cytok Res: Off J Int Soc Interf Cytok Res 1999; 19:455-62; PMID:10386857; http://dx.doi.org/10.1089/107999099313893