5,964
Views
56
CrossRef citations to date
0
Altmetric
Review

Clinically feasible approaches to potentiating cancer cell-based immunotherapies

, &
Pages 851-869 | Received 29 Oct 2014, Accepted 23 Dec 2014, Published online: 01 May 2015

References

  • Seledtsov VI, Shishkov AA, Seledtsova GV. Xenovaccinotherapy for cancer. in:ozdemir O, editor. current cancer treatment – novel beyond conventional approaches. InTech 2011; 415-28.
  • Strioga MM, Darinskas A, Pasukoniene V, Mlynska A, Ostapenko V, Schijns V. Xenogeneic therapeutic cancer vaccines as breakers of immune tolerance for clinical application: to use or not to use? Vaccine 2014; 32:4015-24; PMID:24837511; http://dx.doi.org/10.1016/j.vaccine.2014.05.006
  • Lim SH, Zhang Y, Zhang J. Cancer-testis antigens: the current status on antigenregulation and potential clinical use. Am J Blood Res 2012; 2:29-35; PMID:22432085
  • Malati T. Tumour markers: an overview. Indian J Clin Biochem 2007; 22:17-31; PMID:23105677; http://dx.doi.org/10.1007/BF02913308
  • Lucas S, Coulie PG. About human tumor antigens to be used in immunotherapy. Semin Immunol 2008; 20:301-7; PMID:18395462; http://dx.doi.org/10.1016/j.smim.2008.02.001
  • Cormier JN, Abati A, Fetsch P, Hijazi YM, Rosenberg SA, Marincola FM, Topalian SL. Comparative analysis of the in vivo expression of tyrosinase, MART-1/melan-A,and gp100 in metastatic melanoma lesions: implications for immunotherapy. J Immunother 1998; 21: 27-31; PMID:9456433; http://dx.doi.org/10.1097/00002371-199801000-00003
  • Hakomori S. Tumor-associated carbohydrate antigens defining tumor malig-nancy: basis for development of anti-cancer vaccines. Adv Exp Med Biol 2001; 491: 369-402; PMID:14533809; http://dx.doi.org/10.1007/978-1-4615-1267-7_24
  • Shimizu K, Kurosawa Y, Taniguchi M, Steinman RM, Fujii S. Cross-presentation of glycolipid from tumor cells loaded with α-galactosylceramide leads topotent and long-lived T cell mediated immunity via dendritic cells. J Exp Med 2007; 204:2641-53; PMID:17923500; http://dx.doi.org/10.1084/jem.20070458
  • Darcy PK, Neeson P, Yong CS, Kershaw MH. Manipulating immune cells for adoptive immunotherapy of cancer. Curr Opin Immunol 2014; 27: 46-52; PMID:24534448; http://dx.doi.org/10.1016/j.coi.2014.01.008
  • Palucka K, Ueno H, Banchereau J. Recent developments in cancer vaccines. J Immunol 2011; 186:1325-31; PMID:21248270; http://dx.doi.org/10.4049/jimmunol.0902539
  • Raval RR, Sharabi AB, Walker AJ, Drake CG, Sharma P. Tumor immunology and cancer immunotherapy: summary of the 2013 SITC primer. J Immunother Cancer 2014; 2:14; PMID:24883190; http://dx.doi.org/10.1186/2051-1426-2-14
  • Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang XY. Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res 2013; 119: 421-75; PMID:23870514; http://dx.doi.org/10.1016/B978-0-12-407190-2.00007-1
  • Fridlender ZG, Albelda SM. Modifying tumor-associated macrophages: an important adjunct to immunotherapy. Oncoimmunology 2013; 2: e26620; PMID:24498549; http://dx.doi.org/10.4161/onci.26620
  • Cromheecke JL, Nguyen KT, Huston DP. Emerging role of human basophil biology in health and disease. Curr Allergy Asthma Rep 2014; 14:408; PMID:24346805; http://dx.doi.org/10.1007/s11882-013-0408-2
  • Fremd C, Schuetz F, Sohn C, Beckhove P, Domschke C. B cell-regulated immune responses in tumor models and cancer patients. Oncoimmunology 2013; 2:e25443; PMID:24073382; http://dx.doi.org/10.4161/onci.25443
  • Ashton-Rickardt PG, Tonegawa S. A differential-avidity model for T-cell selection. Immunol Today 1994; 15:362-6; PMID:7916949; http://dx.doi.org/10.1016/0167-5699(94)90174-0
  • Seledtsov VI, Seledtsova GV. An 'antigenic ligand competition' model for antigen receptor-mediated lymphocyte selection. Biomed Pharmacother 1996; 50:170-7; PMID:8881375; http://dx.doi.org/10.1016/0753-3322(96)85293-0
  • Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 1996; 17:138-46; PMID:8820272; http://dx.doi.org/10.1016/0167-5699(96)80606-2
  • Seledtsov VI, Seledtsova GV. A possible role of pre-existing IgM/IgG antibodies in determining immune response type. Immunol Cell Biol 1997; 75:176-80; PMID:9107571; http://dx.doi.org/10.1038/icb.1997.24
  • Gajewski TF. Cancer immunotherapy. Mol Oncol 2012; 6:242-50; PMID:22248437; http://dx.doi.org/10.1016/j.molonc.2012.01.002
  • Jin HT, Jeong YH, Park HJ, Ha SJ. Mechanism of T cell exhaustion in a chronic environment. BMB Rep 2011; 44:217-31; PMID:21524346; http://dx.doi.org/10.5483/BMBRep.2011.44.4.217
  • Klebanoff CA, Acquavella N, Yu Z, Restifo NP. Therapeutic cancer vaccines: are we there yet? Immunol Rev 2011; 239:27-44; PMID:21198663; http://dx.doi.org/10.1111/j.1600-065X.2010.00979.x
  • Palena C, Schlom J. Vaccines against human carcinomas: strategies to improve antitumor immune responses. J Biomed Biotechnol 2010; 2010: ID 380697; PMID:20300434; http://dx.doi.org/10.1155/2010/380697
  • Lasaro MO, Ertl HC. Targeting inhibitory pathways in cancer immunotherapy. Curr Opin Immunol 2010; 22:385-90; PMID:20466529; http://dx.doi.org/10.1016/j.coi.2010.04.005
  • Spranger S, Gajewski T. Rational combinations of immunotherapeutics that target discrete pathways. J Immunother Cancer 2013; 1:16; PMID:24829752; http://dx.doi.org/10.1186/2051-1426-1-16
  • Melenhorst JJ, Barrett AJ.Tumor vaccines and beyond. Cytotherapy 2011; 13:8-18; PMID:21067312; http://dx.doi.org/10.3109/14653249.2010.530649
  • Hussain M, Javeed A, Ashraf M, Al-Zaubai N, Stewart A, Mukhtar MM. Non-steroidal anti-inflammatory drugs, tumour immunity and immunotherapy. Pharmacol Res 2012; 66:7-18; PMID:22449788; http://dx.doi.org/10.1016/j.phrs.2012.02.003
  • Greten TF, Manns MP, Korangy F. Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 2011; 11:802-7; PMID:21237299; http://dx.doi.org/10.1016/j.intimp.2011.01.003
  • Agarwal N, Padmanabh S, Vogelzang NJ. Development of novel immune interventions for prostate cancer. Clin Genitourin Cancer 2012; 10:84-92; PMID:22409862; http://dx.doi.org/10.1016/j.clgc.2012.01.012
  • Ward S, Casey D, Labarthe MC, Whelan M, Dalgleish A, Pandha H, Todryk S. Immunotherapeutic potential of whole tumor cells. Cancer Immunol Immunother 2002; 51:351-7; PMID:12192534; http://dx.doi.org/10.1007/s00262-002-0286-2
  • Chiang CL, Kandalaft LE, Coukos G. Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines. Int Rev Immunol 2011; 30:150-82; PMID:21557641; http://dx.doi.org/10.3109/08830185.2011.572210
  • Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 2000; 191:423-34; PMID:10662788
  • Hu D-E, Moore AM, Thomsen LL, Brindle KM. Uric acid promotes tumor immune rejection. Cancer Res 2004; 64:5059-62; PMID:15289304
  • Overwijk WW, Tsung A, Irvine KR, Parkhurst MR, Goletz TJ, Tsung K, Carroll MW, Liu C, Moss B, Rosenberg SA, Restifo NPgp100/pmel 17 is a murine tumor rejection antigen: induction of "self"-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 1998; 188:277-86; PMID:9670040
  • Galili U, Rachmilewitz EA, Peleg A, Flechner I. A unique natural human IgG antibody with anti-a-galactosyl specificity. J Exp Med 1984; 160:1519-31; PMID:6491603
  • Galili U. Interaction of the natural anti-gal antibody with a-galactosyl epitopes: a major obstacle for xenotransplantation in humans. Immunol Today 1993; 14:480-2; PMID:7506033
  • Seledtsov VI, Shishkov AA, Surovtseva MA, Samarin DM, Seledtsova GV, Niza NA, Seledtsov DV. Xenovaccinotherapy for melanoma. Eur J Dermatol 2006; 16:655-61; PMID:17229606
  • Seledtsov VI, Niza NA, Surovtseva MA, Shishkov AA, Samarin DM, Seledtsova GV, Seledtsov DV. Xenovaccinotherapy for colorectal cancer. Biomed Pharmacother 2007; 61:125-30
  • Asada H, Kishida T, Hirai H, Satoh E, Ohashi S, Takeuchi M, Kubo T, Kita M, Iwakura Y, Imanishi J., et al. Significant antitumor effects obtained by autologous tumor cell vaccine engineered to secrete interleukin (IL)-12 and IL-18 by means of the EBV/lipoplex. Mol Ther 2002; 5:609-16; PMID:11991752
  • Fishman M, Hunter TB, Soliman H, Thompson P, Dunn M, Smilee R, Farmelo MJ, Noyes DR, Mahany JJ, Lee JH., et al. Phase II trial of B7–1 (CD-86) transduced, cultured autologous tumor cell vaccine plus subcutaneous interleukin-2 for treatment of stage IV renal cell carcinoma. J Immunother 2008; 31:72-80; PMID:18157014
  • Parmiani G, Pilla L, Maccalli C, Russo V. Autologous versus allogeneic cell-based vaccines? Cancer J 2011; 17:331-6; PMID:21952283; http://dx.doi.org/10.1097/PPO.0b013e3182337a76
  • Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol 2002; 3:1129-34; PMID:12447370
  • Lapenta C, Santini SM, Logozzi M, Spada M, Andreotti M, Di Pucchio T, Parlato S, Belardelli F. Potent immune response against HIV-1 and protection from virus challenge in hu-PBL-SCID mice immunized with inactivated virus-pulsed dendritic cells generated in the presence of IFN-α. J Exp Med 2003; 198:361-7; PMID:12874266
  • Dubsky P, Saito H, Leogier M, Dantin C, Connolly JE, Banchereau J, Palucka AK. IL-15-induced human DC efficiently prime melanoma-specific naive CD8+ T cells to differentiate into CTL. Eur J Immunol 2007; 37:1678-90; PMID:17492620
  • Palucka K, Ueno H, Banchereau J.Recent developments in cancer vaccines. J Immunol 2011; 186:1325-31; PMID:21248270; http://dx.doi.org/10.4049/jimmunol.0902539
  • Salem ML. Triggering of toll-like receptor signaling pathways in T cells contributes to the anti-tumor efficacy of T cell responses. Immunol Lett 2011; 137:9-14; PMID:21352854; http://dx.doi.org/10.1016/j.imlet.2011.02.019
  • Kenderian SS, Ruella M, Gill S, Kalos M. Chimeric antigen receptor T-cell therapy to target hematologic malignancies.Cancer Res 2014; 74:6383-89; PMID:25371415; http://dx.doi.org/10.1158/0008-5472.CAN-14-1530
  • Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 2013; 10:230-52; PMID:23604045; http://dx.doi.org/10.1038/cmi.2013.10
  • Scalzo AA, Elliott SL, Cox J, Gardner J, Moss DJ, Suhrbier A. Induction of protective cytotoxic T cells to murine cytomegalovirus by using a nonapeptide and a human-compatible adjuvant (montanide ISA 720). J Virol 1995; 69:1306-9; PMID:7815511
  • Miles AP, McClellan HA, Rausch KM, Zhu D, Whitmore MD, Singh S, Martin LB, Wu Y, Giersing BK, Stowers AW., et al. Montanide ISA 720 vaccines: quality control of emulsions, stability of formulated antigens, and comparative immunogenicity of vaccine formulations. Vaccine 2005; 23:2530-9; PMID:15752840; http://dx.doi.org/10.1016/j.vaccine.2004.08.049
  • Hem SL, HogenEsch H. Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev Vaccines 2007; 6:685-98; PMID:17931150; http://dx.doi.org/10.1586/14760584.6.5.685
  • Eisenbarth SC, Colegio OR, O'Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 2008; 453:1122-6; PMID:18496530; http://dx.doi.org/10.1038/nature06939
  • Kensil C, Kammer R. QS-21: A water-soluble triterpene glycoside adjuvant. Expert Opin Investig Drugs 1998; 7:1475-82; PMID:15992044; http://dx.doi.org/10.1517/13543784.7.9.1475
  • Dubensky TW Jr, Reed SG. Adjuvants for cancer vaccines. Semin Immunol 2010; 22:155-61; PMID:20488726; http://dx.doi.org/10.1016/j.smim.2010.04.007
  • Akira S. Pathogen recognition by innate immunity and its signaling. Proc Jpn Acad Ser B Phys Biol Sci 2009; 85, 143-56; PMID:19367086; http://dx.doi.org/10.2183/pjab.85.143
  • Rakoff-Nahoum S, Medzhitov R, Role of toll-like receptors in tissue repair and tumorigenesis. Biochemistry (Mosc) 2008; 73:555-61; PMID:18605980; http://dx.doi.org/10.1134/S0006297908050088
  • Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009; 22:240-73; PMID:19366914; http://dx.doi.org/10.1128/CMR.00046-08
  • Mencin A, Kluwe J, Schwabe RF. Toll-like receptors as targets in chronic liver diseases. Gut 2009; 58:704-20; PMID:19359436; http://dx.doi.org/10.1136/gut.2008.156307
  • Uehori J, Matsumoto M, Tsuji S, Akazawa T, Takeuchi O, Akira S, Kawata T, Azuma I, Toyoshima K, Seya T. Simultaneous blocking of human toll-like receptors 2 and 4 suppresses myeloid dendritic cell activation induced by mycobacterium bovis bacillus calmette-guérin peptidoglycan. Infect Immun 2003; 71:4238-49; PMID:12874299; http://dx.doi.org/10.1128/IAI.71.8.4238-4249.2003
  • Schneider C, Schmidt T, Ziske C, Tiemann K, Lee KM, Uhlinsky V, Behrens P, Sauerbruch T, Schmidt-Wolf IG, Mühlradt PF., et al. Tumour suppression induced by the macrophage activating lipopeptide MALP-2 in an ultrasound guided pancreatic carcinoma mouse model. Gut 2004; 53:355-61; PMID:14960515; http://dx.doi.org/10.1136/gut.2003.026005
  • Verdijk RM, Mutis T, Esendam B, Kamp J, Melief CJ, Brand A, Goulmy E Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J Immunol 1999; 163:57-61; PMID:10384099
  • Navabi H, Jasani B, Reece A, Clayton A, Tabi Z, Donninger C, Mason M, Adams M. A clinical grade poly I:C-analogue (ampligen) promotes optimal DC maturation and Th1-type T cell responses of healthy donors and cancer patients in vitro. Vaccine 2009; 27:107-15; PMID:18977262; http://dx.doi.org/10.1016/j.vaccine.2008.10.024
  • Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R.TRAM couples endocytosis of toll-like receptor 4 to the induction of interferon-β. Nat Immunol 2008; 9:361-8; PMID:18297073; http://dx.doi.org/10.1038/ni1569
  • Smits EL, Ponsaerts P, Berneman ZN, Van Tendeloo VFI. The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 2008; 13:859-75; PMID:18701762; http://dx.doi.org/10.1634/theoncologist.2008-0097
  • Meyer T, Stockfleth E. Clinical investigations of Toll-like receptor agonists. Expert Opin Investig Drugs 2008; 17:1051-65; PMID:18549341; http://dx.doi.org/10.1517/13543784.17.7.1051
  • Krieg AM. Development of TLR9 agonists for cancer therapy. J Clin Invest 2007; 117:1184-94; PMID:17476348
  • Bobanga ID, Petrosiute A, Huang AY. Chemokines as cancer vaccine adjuvants. Vaccines (Basel) 2013; 1:444-62; PMID:24967094
  • Dranoff G. GM-CSF-based cancer vaccines. Immunol Rev 2002; 188:147-54; PMID:12445288
  • Baxevanis CN, Perez SA, Papamichail M. Cancer immunotherapy. Critical Rev Clin Lab Sci 2009; 46:167-189; PMID:19650714; http://dx.doi.org/10.1080/10408360902937809
  • Kuppala MB, Syed SB, Bandaru S, Varre S, Akka J, Mundulru HP. Immunotherapeutic approach for better management of cancer: role of IL-18. Asian Pac J Cancer Prev 2012; 13:5353-61; PMID:23317183
  • Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+CD25hi foxp3+ regulatory T cells in cancer patients. Blood 2006; 107:2409-14; PMID:16304057
  • Waldmann TA.The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 2006; 6:595-601; PMID:16868550
  • Melchionda F, Fry TJ, Milliron MJ, McKirdy MA, Tagaya Y, Mackall CL. Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J Clin Invest 2005; 115:1177-87; PMID:15841203
  • Spolski R, Leonard WJ. The yin and yang of interleukin-21 in allergy, autoimmunity and cancer. Curr Opin Immunol 2008; 20:295-301; PMID:18554883; http://dx.doi.org/10.1016/j.coi.2008.02.004
  • Leonard WJ, Zeng R, Spolski R. Interleukin 21: a cytokine/ cytokine receptor system that has come of age. J Leukoc Biol 2008; 84:348-56; PMID:18467657; http://dx.doi.org/10.1189/jlb.0308149
  • Wilk E, Kalippke K, Buyny S, Schmidt RE, Jacobs R. New aspects of NK cell subset identification and inference of NK cells’ regulatory capacity by assessing functional and genomic profiles. Immunobiology 2008; 213:271-83; PMID:18406373; http://dx.doi.org/10.1016/j.imbio.2007.10.012
  • Davis ID, Skak K, Smyth MJ, Kristjansen PE, Miller DM, Sivakumar PV. Interleukin-21 signaling: functions in cancer and autoimmunity. Clin Cancer Res 2007; 13:6926-32; PMID:18056166; http://dx.doi.org/10.1158/1078-0432.CCR-07-1238
  • Bekisz J, Sato Y, Johnson C, Husain SR, Puri RK, Zoon KC. Immunomodulatory effects of interferons in malignancies. J Interferon Cytokine Res 2013; 33:154-61; PMID:23570381; http://dx.doi.org/10.1089/jir.2012.0167
  • Balachandran S, Adams GP. Interferon-γ-induced necrosis: an antitumor biotherapeutic perspective. J Interferon Cytokine Res 2013; 33:171-80; PMID:23570383; http://dx.doi.org/10.1089/jir.2012.0087
  • Cao Q, Jin Y, Jin M, He S, Gu Q, Qiu Y, Ge H, Yoneyama H, Zhang Y. Therapeutic effect of MIP-1alpha-recruited dendritic cells on preestablished solid and metastatic tumors. Cancer Lett 2010; 295:17-26; PMID:20202744; http://dx.doi.org/10.1016/j.canlet.2010.02.009
  • Serra HM, Baena-Cagnani CE, Eberhard Y. Is secondary lymphoid-organ chemokine (SLC/CCL21) much more than a constitutive chemokine? Allergy 2004; 59:1219-23; PMID:15461605; http://dx.doi.org/10.1111/j.1398-9995.2004.00531.x
  • Wong MM, Fish EN. Chemokines: attractive mediators of the immune response. Semin Immunol 2003; 15:5-14; PMID:12495636; http://dx.doi.org/10.1016/S1044-5323(02)00123-9
  • Espino J, Pariente JA, Rodríguez AB. Oxidative stress and immunosenescence: therapeutic effects of melatonin. Oxid Med Cell Longev 2012; 2012:670294; PMID:23346283; http://dx.doi.org/10.1155/2012/670294
  • Garcia-Mauriño S, Gonzalez-Haba MG, Calvo JR, Rafii-El-Idrissi M, Sanchez-Margalet V, Goberna R, Guerrero JM.“Melatonin enhances IL-2, IL-6, and IFN gamma production by human circulating CD4+ cells: a possible nuclear receptor mediated mechanism involving T helper type 1 lymphocytes and monocytes. J Immunol 1997; 159:574-81; PMID:9218571
  • Currier NL, Sun LZ, Miller SC. Exogenous melatonin: quantitative enhancement in vivo of cells mediating non-specific immunity. J Neuroimmunol 2000; 104:101-8; PMID:10713348; http://dx.doi.org/10.1016/S0165-5728(99)00271-4
  • Ershler WB, Gravenstein S, Geloo ZS. Thymosin α 1 as an adjunct to influenza vaccination in the elderly: rationale and trial summaries. Ann N Y Acad Sci 2007; 1112:375-84; PMID:17600281; http://dx.doi.org/10.1196/annals.1415.050
  • Heng TS, Reiseger JJ, Fletcher AL, Leggatt GR, White OJ, Vlahos K, Frazer IH, Turner SJ, Boyd RL. Impact of sex steroid ablation on viral, tumour and vaccine responses in aged mice. PLoS One 2012; 7:e42677; PMID:22880080; http://dx.doi.org/10.1371/journal.pone.0042677
  • Mascanfroni I, Montesinos Mdel M, Susperreguy S, Cervi L, Ilarregui JM, Ramseyer VD, Masini-Repiso AM, Targovnik HM, Rabinovich GA, Pellizas CG. Control of dendritic cell maturation and function by triiodothyronine. FASEB J 2008; 22:1032-42; PMID:17991732; http://dx.doi.org/10.1096/fj.07-8652com
  • Kelley KW, Weigent DA, Kooijman R. Protein hormones and immunity. Brain Behav Immun 2007; 21:384-92; PMID:17198749; http://dx.doi.org/10.1016/j.bbi.2006.11.010
  • Postow M, Callahan MK, Wolchok JD. Beyond cancer vaccines: a reason for future optimism with immunomodulatory therapy. Cancer J 2011; 17:372-8; PMID:21952288; http://dx.doi.org/10.1097/PPO.0b013e31823261db
  • Tone M, Tone Y, Adams E, Yates SF, Frewin MR, Cobbold SP, Waldmann H. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc Natl Acad Sci USA 2003; 100:15059-64; PMID:14608036; http://dx.doi.org/10.1073/pnas.2334901100
  • Cohen AD, Diab A, Perales MA, Wolchok JD, Rizzuto G, Merghoub T, Huggins D, Liu C, Turk MJ, Restifo NP., et al. Agonist anti-GITR antibody enhances vaccine-induced CD8+ T-cell responses and tumor immunity. Cancer Res 2006; 66:4904-12; PMID:16651447; http://dx.doi.org/10.1158/0008-5472.CAN-05-2813
  • Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 2002; 3:611-8; PMID:12087419; http://dx.doi.org/10.1038/ni0702-611
  • Hodge JW, Chakraborty M, Kudo-Saito C, Garnett CT, Schlom J. Multiple costimulatory modalities enhance CTL avidity. J Immunol. 2005; 174:5994-6004; PMID:15879092; http://dx.doi.org/10.4049/jimmunol.174.10.5994
  • Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K., et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8:793-800; PMID:12091876; http://dx.doi.org/10.1038/nm0902-1039c
  • Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 2002; 99:12293-7; PMID:12218188; http://dx.doi.org/10.1073/pnas.192461099
  • Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, Rietz C, Flies DB, Lau JS, Zhu G., et al. Blockade of B7- H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 2005; 65:1089-96; PMID:15705911
  • Sica GL, Choi IH, Zhu G, Tamada K, Wang SD, Tamura H, Chapoval AI, Flies DB, Bajorath J, Chen L. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 2003; 18:849-61; PMID:12818165; http://dx.doi.org/10.1016/S1074-7613(03)00152-3
  • Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, Brahmer JR, Lawrence DP, Atkins MB, Powderly JD, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 2014; 32:1020-30; PMID:24590637; http://dx.doi.org/10.1200/JCO.2013.53.0105
  • Terabe M, Ambrosino E, Takaku S, O'Konek JJ, Venzon D, Lonning S, McPherson JM, Berzofsky JA. Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-β monoclonal antibody. Clin Cancer Res 2009; 15:6560-9; PMID:19861451; http://dx.doi.org/10.1158/1078-0432.CCR-09-1066
  • Palucka K, Ueno H, Banchereau J. Recent developments in cancer vaccines. Immunol 2011; 186:1325-31; PMID:21248270; http://dx.doi.org/10.4049/jimmunol.0902539
  • Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 1999; 5:2963-70; PMID:10537366
  • Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res 1999; 59:3128-33; PMID:10397255
  • Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 1999; 163:5211-8; PMID:10553041
  • Dunne A, Marshall NA, Mills KH. TLR based therapeutics. Curr Opin Pharmacol 2011; 11:404-11; PMID:21501972; http://dx.doi.org/10.1016/j.coph.2011.03.004
  • Iclozan C, Antonia S, Chiappori A, Chen DT, Gabrilovich D. Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother 2013; 62:909-18; PMID:23589106; http://dx.doi.org/10.1007/s00262-013-1396-8
  • Gollob JA, Sciambi CJ. Decitabine up-regulates S100A2 expression and synergizes with IFN-gamma to kill uveal melanoma cells. Clin Cancer Res 2007; 13:5219-25; PMID:17785578
  • Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N., et al. Functional and physical interaction between bcl-X(L) and a BH3-like domain in beclin-1. Embo J 2007; 26:2527-39; PMID:17446862
  • Franco AV, Zhang XD, Van Berkel E, Sanders JE, Zhang XY, Thomas WD, Nguyen T, Hersey P. The role of NF-kappa B in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of melanoma cells. J Immunol 2001; 166:5337-45; PMID:11313369
  • Sayers TJ, Brooks AD, Koh CY, Ma W, Seki N, Raziuddin A, Blazar BR, Zhang X, Elliott PJ, Murphy WJ. The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAILmediated apoptosis by reducing levels of c-FLIP. Blood 2003; 102:303-10; PMID:12637321
  • Fehres CM, Unger WW, Garcia-Vallejo JJ, van Kooyk Y. Understanding the biology of antigen cross-presentation for the design of vaccines against cancer. Front Immunol 2014; 5:149; PMID:24782858; http://dx.doi.org/10.3389/fimmu.2014.00149
  • Hussain M, Javeed A, Ashraf M, Al-Zaubai N, Stewart A, Mukhtar MM. Non-steroidal anti-inflammatory drugs, tumour immunity and immunotherapy. Pharmacol Res 2012; 66:7-18; PMID:22449788; http://dx.doi.org/10.1016/j.phrs.2012.02.003
  • Kubota T, Fujiwara H, Ueda Y, Itoh T, Yamashita T, Yoshimura T, Okugawa K, Yamamoto Y, Yano Y, Yamagishi H. Cimetidine modulates the antigen presenting capacity of dendritic cells from colorectal cancer patients. Br J Cancer 2002; 86:1257-61; PMID:11953882
  • Osband ME, Hamilton D, Shen Y-J, Cohen E, Shlesinger M, Laven P, Brown A, McCaffrey R. Successful tumour immunotherapy with cimetidine in mice. Lancet 1981; 1:636-38; PMID:6110864
  • Zheng Y, Xu M, Li X, Jia J, Fan K, Lai G. Cimetidine suppresses lung tumor growth in mice through proapoptosis of myeloid-derived suppressor cells. Mol Immunol 2013; 54:74-83; PMID:23220070; http://dx.doi.org/10.1016/j.molimm.2012.10.035
  • Hellstrand K, Hermodsson S. Histamine H2-receptor-mediated regulation of human natural killer cell activity. J Immunol 1986; 137:656-60; PMID:3722819
  • Gifford RRM, Tirberg AF. Histamine type-2 receptor antagonist immune modulation II. cimetidine and ranitidine increase interleukin-2 production. Surgery 1987; 102:242-47; PMID:3497460
  • Quan WD, Gagnon GA, Walker PR, Quan FM. Pulse interleukin-2 with famotidine inducesCD56+ lymphocytes in the peripheral blood of patients with metastatic melanoma or kidney cancer. Cancer Biother Radiopharm 2011; 26:65-7; PMID:21348776; http://dx.doi.org/10.1089/cbr.2010.0879
  • Ng EW, Shima DT, Calias P, Cunningham ET, Jr., Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 2006; 5:123-32; PMID:16518379
  • McNamara JO, Kolonias D, Pastor F, Mittler RS, Chen L, Giangrande PH, Sullenger B, Gilboa E. Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Invest 2008; 118:376-86; PMID:18060045
  • Malmberg KJ. Effective immunotherapy against cancer: a question of overcoming immune suppression and immune escape? Cancer Immunol Immunother 2004; 53:879-92; PMID:15338206
  • Aravindaram K, Yang NS. Anti-inflammatory plant natural products for cancer therapy. Planta Med 2010; 76:1103-17; PMID:20432202; http://dx.doi.org/10.1055/s-0030-1249859
  • Fagnoni FF, Zerbini A, Pelosi G, Missale G. Combination of radiofrequency ablation and immunotherapy. Front Biosci 2008; 13:369-81; PMID:17981554
  • Higgins JP, Bernstein MB, Hodge JW. Enhancing immune responses to tumor-associated antigens. Cancer Biol Ther 2009; 8:1440-9; PMID:19556848
  • Zhang HG, Mehta K, Cohen P, Guha C. Hyperthermia on immune regulation: a temperature's story. Cancer Lett 2008; 271:191-204; PMID:18597930; http://dx.doi.org/10.1016/j.canlet.2008.05.026
  • Osada S, Imai H, Tomita H, Tokuyama Y, Okumura N, Matsuhashi N, Sakashita F, Nonaka K. Serum cytokine levels in response to hepatic cryoablation. J Surg Oncol 2007; 95:491-8; PMID:17219394
  • Si T, Guo Z, Hao X. Immunologic response to primary cryoablation of high-risk prostate cancer. Cryobiology 2008; 57:66-71; PMID:18593573; http://dx.doi.org/10.1016/j.cryobiol.2008.06.003
  • Lesterhuis WJ, Haanen JB, Punt CJ. Cancer immunotherapy-revisited. Nat Rev Drug Discov 2011; 10:591-600; PMID:21804596; http://dx.doi.org/10.1038/nrd3500
  • Curiel TJ. Immunotherapy: a useful strategy to help combat multidrug resistance. Drug Resist Updat 2012; 15:106-13; PMID:22483359; http://dx.doi.org/10.1016/j.drup.2012.03.003
  • Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013; 14:1014-22; PMID:24048123; 10.1038/ni.2703
  • Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D, Okoye FI, Jaffee EM. Cyclophosphamide, doxorubicin, and paclitaxel enhance theantitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 2001; 61:3689-97; PMID:11325840
  • Dunne A, Marshall NA, Mills KH. TLR based therapeutics. Curr Opin Pharmacol 2011; 11:404-11; PMID:21501972; http://dx.doi.org/10.1016/j.coph.2011.03.004
  • Lu H. TLR Agonists for cancer immunotherapy: tipping the balance between the Immune stimulatory and inhibitory effects. Front Immunol 2014; 5:83; PMID:24624132; http://dx.doi.org/10.3389/fimmu.2014.00083
  • Sasada T, Komatsu N, Suekane S, Yamada A, Noguchi M, Itoh K. Overcoming the hurdles of randomised clinical trials of therapeutic cancer vaccines. Eur J Cancer 2010; 46:1514-9; PMID:20413296; http://dx.doi.org/10.1016/j.ejca.2010.03.013
  • Disis ML. Immunologic biomarkers as correlates of clinical response to cancer immunotherapy. Cancer Immunol Immunother 2011; 60:433-42; PMID:21221967; http://dx.doi.org/10.1007/s00262-010-0960-8
  • Dang Y, Disis ML. Identification of immunologic biomarkers associated with clinical response after immune-based therapy for cancer. Ann N Y Acad Sci 2009; 1174:81-7; PMID:19769740; http://dx.doi.org/10.1111/j.1749-6632.2009.04937.x
  • Quaglino P, Marenco F, Osella-Abate S, Cappello N, Ortoncelli M, Salomone B, Fierro MT, Savoia P, Bernengo MG. Vitiligo is an independent favourable prognostic factor in stage III and IV metastatic melanoma patients: results from a singleinstitution hospital-based observational cohort study. Ann Oncol 2010; 21:409-14; PMID:19622589; http://dx.doi.org/10.1093/annonc/mdp325
  • Lasaro MO, Ertl HC. Targeting inhibitory pathways in cancer immunotherapy. Curr Opin Immunol 2010; 22:385-90; PMID:20466529; http://dx.doi.org/10.1016/j.coi.2010.04.005
  • Weber J. Ipilimumab: controversies in its development, utility and autoimmune adverse events. Cancer Immunol Immunother 2009; 58:823-30; PMID:19198837; http://dx.doi.org/10.1007/s00262-008-0653-8
  • Madan RA, Gulley JL, Fojo T, Dahut WL. Therapeutic cancer vaccines in prostate cancer: the paradox of improved survival without changes in time to progression. The oncologist 2010; 15:969-75; PMID:20798195; http://dx.doi.org/10.1634/theoncologist.2010-0129
  • Wolchok JD, Hoos A, O'Day S, Weber JS, Hamid O, Lebbe C, Maio M, Binder M, Bohnsack O, Nichol G., et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 2009; 15:7412-20; PMID:19934295; http://dx.doi.org/10.1158/1078-0432.CCR-09-1624

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.