3,428
Views
22
CrossRef citations to date
0
Altmetric
Review

Progress on adenovirus-vectored universal influenza vaccines

, , , , , & show all
Pages 1209-1222 | Received 25 Nov 2014, Accepted 02 Feb 2015, Published online: 27 May 2015

References

  • WHO. Influenza (Seasonal). Disponibile al link: http://wwwwhoint/mediacentre/factsheets/fs211/en/, 2014
  • WHO. Influenza update. http://wwwwhoint/influenza/surveillance_monitoring/updates/latest_update_GIP_surveillance/en/, 2014
  • Lagace-Wiens PR, Rubinstein E, Gumel A. Influenza epidemiology–past, present, and future. Crit Care Med 2010; 38:e1-9; PMID:20029350; http://dx.doi.org/10.1097/CCM.0b013e3181cbaf34
  • Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, Recuenco S, Ellison JA, Davis CT, York IA, et al. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A 2012; 109:4269-74; PMID:22371588; http://dx.doi.org/10.1073/pnas.1116200109
  • Emanuel EJ, Wertheimer A. Who should get influenza vaccine when not all can? Public Health Ethik 2010; 1:191.
  • Tutykhina IL, Logunov DY, Shcherbinin DN, Shmarov MM, Tukhvatulin AI, Naroditsky BS, Gintsburg AL. Development of adenoviral vector-based mucosal vaccine against influenza. J Mol Med (Berl) 2011; 89:331-41; PMID:21104066; http://dx.doi.org/10.1007/s00109-010-0696-0
  • Lambe T. Novel viral vectored vaccines for the prevention of influenza. Mol Med 2012; 18:1153-60; PMID:22735755; http://dx.doi.org/10.2119/molmed.2012.00147
  • Toro H, Tang DC, Suarez DL, Sylte MJ, Pfeiffer J, Van Kampen KR. Protective avian influenza in ovo vaccination with non-replicating human adenovirus vector. Vaccine 2007; 25:2886-91; PMID:17055126; http://dx.doi.org/10.1016/j.vaccine.2006.09.047
  • Xiang ZQ, Yang Y, Wilson JM, Ertl HC. A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier. Virology 1996; 219:220-7; PMID:8623532; http://dx.doi.org/10.1006/viro.1996.0239
  • Colloca S, Barnes E, Folgori A, Ammendola V, Capone S, Cirillo A, Siani L, Naddeo M, Grazioli F, Esposito ML, et al. Vaccine vectors derived from a large collection of simian adenoviruses induce potent cellular immunity across multiple species. Sci Transl Med 2012; 4:115ra2; PMID:22218691; http://dx.doi.org/10.1126/scitranslmed.3002925
  • Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM, Coyne-Johnson L, Whizin N, Oswald K, Shoemaker R, Swanson T, et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 2011; 473:523-7; PMID:21562493; http://dx.doi.org/10.1038/nature10003
  • Rowe WP, Huebner RJ, Gilmore LK, Parrott RH, Ward TG. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY): Royal Society of Medicine, 1953:570-3
  • Bangari DS, Mittal SK. Development of nonhuman adenoviruses as vaccine vectors. Vaccine 2006; 24:849-62; PMID:16297508; http://dx.doi.org/10.1016/j.vaccine.2005.08.101
  • Smith JG, Wiethoff CM, Stewart PL, Nemerow GR. Adenovirus. Curr Topics Microbiol Immunol 2010; 343:195-224; PMID:20376613
  • Reddy VS, Natchiar SK, Stewart PL, Nemerow GR. Crystal structure of human adenovirus at 3.5 Å resolution. Science 2010; 329:1071-5; PMID:20798318; http://dx.doi.org/10.1126/science.1187292
  • Russell WC. Adenoviruses: update on structure and function. J Gen Virol 2009; 90:1-20; PMID:19088268; http://dx.doi.org/10.1099/vir.0.003087-0
  • Ginsberg HS. The life and times of adenoviruses. Adv Virus Res 1999; 54:1-13; PMID:10547672; http://dx.doi.org/10.1016/S0065-3527(08)60363-2
  • Young CS. The structure and function of the adenovirus major late promoter. Curr Topics Microbiol Immunol 2003; 272:213-49; PMID:12747552
  • Kovesdi I, Hedley SJ. Adenoviral producer cells. Viruses 2010; 2:1681-703; PMID:21994701; http://dx.doi.org/10.3390/v2081681
  • Croyle M, Cheng X, Wilson J. Development of formulations that enhance physical stability of viral vector for gene therapy. Gene Ther 2001; 8:1281-90; PMID:11571564; http://dx.doi.org/10.1038/sj.gt.3301527
  • Alcock R, Cottingham MG, Rollier CS, Furze J, De Costa SD, Hanlon M, Spencer AJ, Honeycutt JD, Wyllie DH, Gilbert SC, et al. Long-term thermostabilization of live poxviral and adenoviral vaccine vectors at supraphysiological temperatures in carbohydrate glass. Sci Transl Med 2010; 2:19ra2-ra2; PMID:20371486; http://dx.doi.org/10.1126/scitranslmed.3000490
  • Lewis DJ, Huo Z, Barnett S, Kromann I, Giemza R, Galiza E, Woodrow M, Thierry-Carstensen B, Andersen P, Novicki D, et al. Transient facial nerve paralysis (Bell's palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PloS One 2009; 4:e6999; PMID:19756141; http://dx.doi.org/10.1371/journal.pone.0006999
  • Molinier-Frenkel V, Lengagne R, Gaden F, Hong S-S, Choppin J, Gahery-Ségard H, Boulanger P, Guillet JG. Adenovirus hexon protein is a potent adjuvant for activation of a cellular immune response. J Virol 2002; 76:127-35; PMID:11739678; http://dx.doi.org/10.1128/JVI.76.1.127-135.2002
  • Roy CJ, Ault A, Sivasubramani SK, Gorres JP, Wei CJ, Andersen H, Gall J, Roederer M, Rao SS. Aerosolized adenovirus-vectored vaccine as an alternative vaccine delivery method. Respir Res 2011; 12:153; PMID:22103776; http://dx.doi.org/10.1186/1465-9921-12-153
  • Lambe T, Carey JB, Li Y, Spencer AJ, van Laarhoven A, Mullarkey CE, Vrdoljak A, Moore AC, Gilbert SC. Immunity against heterosubtypic influenza virus induced by adenovirus and MVA expressing nucleoprotein and matrix protein-1. Sci Rep 2013; 3:1443; PMID:23485942; http://dx.doi.org/10.1038/srep01443
  • Appaiahgari MB, Vrati S. Adenoviruses as gene/vaccine delivery vectors: promises and pitfalls. Expert opinion on biological therapy 2015; 15:337-51; PMID:25529044
  • Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977; 36:59-74; PMID:886304; http://dx.doi.org/10.1099/0022-1317-36-1-59
  • Zhu J, Grace M, Casale J, Chang AT, Musco ML, Bordens R, Greenberg R, Schaefer E, Indelicato SR. Characterization of replication-competent adenovirus isolates from large-scale production of a recombinant adenoviral vector. Hu Gene Ther 1999; 10:113-21; PMID:10022536; http://dx.doi.org/10.1089/10430349950019246
  • Hermens WT, Verhaagen J. Adenoviral vector-mediated gene expression in the nervous system of immunocompetent Wistar and T cell-deficient nude rats: preferential survival of transduced astroglial cells in nude rats. Hum Gene Ther 1997; 8:1049-63; PMID:9189763; http://dx.doi.org/10.1089/hum.1997.8.9-1049
  • Tang DC, Zhang J, Toro H, Shi Z, Van Kampen KR. Adenovirus as a carrier for the development of influenza virus-free avian influenza vaccines. Expert Rev Vaccines 2009; 8:469-81; PMID:19348562; http://dx.doi.org/10.1586/erv.09.1
  • Subramanian S, Kim JJ, Harding F, Altaras GM, Aunins JG, Zhou W. Scaleable production of adenoviral vectors by transfection of adherent PER.C6 cells. Biotechnol Prog 2007; 23:1210-7; PMID:17715941
  • Gorziglia MI, Kadan MJ, Yei S, Lim J, Lee GM, Luthra R, Trapnell BC. Elimination of both E1 and E2 from adenovirus vectors further improves prospects for in vivo human gene therapy. J Virol 1996; 70:4173-8; PMID:8648763
  • Gorziglia MI, Lapcevich C, Roy S, Kang Q, Kadan M, Wu V, Pechan P, Kaleko M. Generation of an adenovirus vector lacking E1, E2a, E3, and all of E4 except open reading frame 3. J Virol 1999; 73:6048-55; PMID:10364357
  • Mitani K, Graham FL, Caskey CT, Kochanek S. Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector. Proc Natl Acad Sci U S A 1995; 92:3854-8; PMID:7731995; http://dx.doi.org/10.1073/pnas.92.9.3854
  • Osada T, Yang XY, Hartman ZC, Glass O, Hodges BL, Niedzwiecki D, Morse MA, Lyerly HK, Amalfitano A, Clay TM. Optimization of vaccine responses with an E1, E2b and E3-deleted Ad5 vector circumvents pre-existing anti-vector immunity. Cancer Gene Ther 2009; 16:673-82; PMID:19229288; http://dx.doi.org/10.1038/cgt.2009.17
  • Mast TC, Kierstead L, Gupta SB, Nikas AA, Kallas EG, Novitsky V, Mbewe B, Pitisuttithum P, Schechter M, Vardas E. International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: correlates of high Ad5 titers and implications for potential HIV vaccine trials. Vaccine 2010; 28:950-7; PMID:19925902; http://dx.doi.org/10.1016/j.vaccine.2009.10.145
  • Barouch DH, Kik SV, Weverling GJ, Dilan R, King SL, Maxfield LF, Clark S, Ng'ang'a D, Brandariz KL, Abbink P, et al. International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations. Vaccine 2011; 29:5203-9; PMID:21619905; http://dx.doi.org/10.1016/j.vaccine.2011.05.025
  • Pichla-Gollon SL, Lin SW, Hensley SE, Lasaro MO, Herkenhoff-Haut L, Drinker M, Tatsis N, Gao GP, Wilson JM, Ertl HC, et al. Effect of preexisting immunity on an adenovirus vaccine vector: in vitro neutralization assays fail to predict inhibition by antiviral antibody in vivo. J Virol 2009; 83:5567-73; PMID:19279092; http://dx.doi.org/10.1128/JVI.00405-09
  • Yang ZY, Wyatt LS, Kong WP, Moodie Z, Moss B, Nabel GJ. Overcoming immunity to a viral vaccine by DNA priming before vector boosting. J Virol 2003; 77:799-803; PMID:12477888; http://dx.doi.org/10.1128/JVI.77.1.799-803.2003
  • Vogels R, Zuijdgeest D, van Rijnsoever R, Hartkoorn E, Damen I, de Bethune MP, Kostense S, Penders G, Helmus N, Koudstaal W, et al. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J Virol 2003; 77:8263-71; PMID:12857895; http://dx.doi.org/10.1128/JVI.77.15.8263-8271.2003
  • Holterman L, Vogels R, van der Vlugt R, Sieuwerts M, Grimbergen J, Kaspers J, Geelen E, van der Helm E, Lemckert A, Gillissen G, et al. Novel replication-incompetent vector derived from adenovirus type 11 (Ad11) for vaccination and gene therapy: low seroprevalence and non-cross-reactivity with Ad5. J Virol 2004; 78:13207-15; PMID:15542673; http://dx.doi.org/10.1128/JVI.78.23.13207-13215.2004
  • Lemckert AA, Grimbergen J, Smits S, Hartkoorn E, Holterman L, Berkhout B, Barouch DH, Vogels R, Quax P, Goudsmit J, et al. Generation of a novel replication-incompetent adenoviral vector derived from human adenovirus type 49: manufacture on PER.C6 cells, tropism and immunogenicity. J Gen Virol 2006; 87:2891-9; PMID:16963747; http://dx.doi.org/10.1099/vir.0.82079-0
  • Abbink P, Lemckert AA, Ewald BA, Lynch DM, Denholtz M, Smits S, Holterman L, Damen I, Vogels R, Thorner AR, et al. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. J Virol 2007; 81:4654-63; PMID:17329340; http://dx.doi.org/10.1128/JVI.02696-06
  • Kahl CA, Bonnell J, Hiriyanna S, Fultz M, Nyberg-Hoffman C, Chen P, King CR, Gall JG. Potent immune responses and in vitro pro-inflammatory cytokine suppression by a novel adenovirus vaccine vector based on rare human serotype 28. Vaccine 2010; 28:5691-702; PMID:20600496; http://dx.doi.org/10.1016/j.vaccine.2010.06.050
  • Roy S, Kobinger GP, Lin J, Figueredo J, Calcedo R, Kobasa D, Wilson JM. Partial protection against H5N1 influenza in mice with a single dose of a chimpanzee adenovirus vector expressing nucleoprotein. Vaccine 2007; 25:6845-51; PMID:17728024; http://dx.doi.org/10.1016/j.vaccine.2007.07.035
  • Tatsis N, Tesema L, Robinson E, Giles-Davis W, McCoy K, Gao G, Wilson JM. Chimpanzee-origin adenovirus vectors as vaccine carriers. Gene Ther 2005; 13:421-9; http://dx.doi.org/10.1038/sj.gt.3302675
  • Singh N, Pandey A, Jayashankar L, Mittal SK. Bovine adenoviral vector-based H5N1 influenza vaccine overcomes exceptionally high levels of pre-existing immunity against human adenovirus. Mol Ther 2008; 16:965-71; PMID:18301400; http://dx.doi.org/10.1038/mt.2008.12
  • Gao YW, Xia XZ, Wang LG, Liu D, Huang G. [Construction and experimental immunity of recombinant replication-competent canine adenovirus type 2 expressing hemagglutinin gene of H5N1 subtype tiger influenza virus]. Wei Sheng Wu Xue Bao 2006; 46:297-300; PMID:16736595
  • Patel A, Tikoo S, Kobinger G. A porcine adenovirus with low human seroprevalence is a promising alternative vaccine vector to human adenovirus 5 in an H5N1 virus disease model. PloS One 2010; 5:e15301; PMID:21179494; http://dx.doi.org/10.1371/journal.pone.0015301
  • Matthews QL. Capsid-incorporation of antigens into adenovirus capsid proteins for a vaccine approach. Mol Pharm 2011; 8:3-11; PMID:21047139; http://dx.doi.org/10.1021/mp100214b
  • McConnell MJ, Danthinne X, Imperiale MJ. Characterization of a permissive epitope insertion site in adenovirus hexon. J Virol 2006; 80:5361-70; PMID:16699016; http://dx.doi.org/10.1128/JVI.00256-06
  • Wang L, Cheng C, Ko SY, Kong WP, Kanekiyo M, Einfeld D, Schwartz RM, King CR, Gall JG, Nabel GJ. Delivery of human immunodeficiency virus vaccine vectors to the intestine induces enhanced mucosal cellular immunity. J Virol 2009; 83:7166-75; PMID:19420074; http://dx.doi.org/10.1128/JVI.00374-09
  • Chen H, Xiang ZQ, Li Y, Kurupati RK, Jia B, Bian A, Zhou DM, Hutnick N, Yuan S, Gray C, et al. Adenovirus-based vaccines: comparison of vectors from three species of adenoviridae. J Virol 2010; 84:10522-32; PMID:20686035; http://dx.doi.org/10.1128/JVI.00450-10
  • Frahm N, DeCamp AC, Friedrich DP, Carter DK, Defawe OD, Kublin JG, Casimiro DR, Duerr A, Robertson MN, Buchbinder SP, et al. Human adenovirus-specific T cells modulate HIV-specific T cell responses to an Ad5-vectored HIV-1 vaccine. J Clin Invest 2012; 122:359-67; PMID:22201684; http://dx.doi.org/10.1172/JCI60202
  • Hutnick NA, Carnathan D, Demers K, Makedonas G, Ertl HC, Betts MR. Adenovirus-specific human T cells are pervasive, polyfunctional, and cross-reactive. Vaccine 2010; 28:1932-41; PMID:20188249; http://dx.doi.org/10.1016/j.vaccine.2009.10.091
  • Tang J, Olive M, Pulmanausahakul R, Schnell M, Flomenberg N, Eisenlohr L, Flomenberg P. Human CD8+ cytotoxic T cell responses to adenovirus capsid proteins. Virology 2006; 350:312-22; PMID:16499941; http://dx.doi.org/10.1016/j.virol.2006.01.024
  • Tang J, Olive M, Champagne K, Flomenberg N, Eisenlohr L, Hsu S, Flomenberg P. Adenovirus hexon T-cell epitope is recognized by most adults and is restricted by HLA DP4, the most common class II allele. Gene Ther 2004; 11:1408-15; PMID:15269714; http://dx.doi.org/10.1038/sj.gt.3302316
  • Seregin SS, Amalfitano A. Overcoming pre-existing adenovirus immunity by genetic engineering of adenovirus-based vectors. Expert Opin Biol Ther 2009; 9:1521-31; PMID:19780714; http://dx.doi.org/10.1517/14712590903307388
  • Dharmapuri S, Peruzzi D, Aurisicchio L. Engineered adenovirus serotypes for overcoming anti-vector immunity. Expert Opin Biol Ther 2009; 9:1279-87; PMID:19645630; http://dx.doi.org/10.1517/14712590903187053
  • Koizumi N, Yamaguchi T, Kawabata K, Sakurai F, Sasaki T, Watanabe Y, Hayakawa T, Mizuguchi H. Fiber-modified adenovirus vectors decrease liver toxicity through reduced IL-6 production. J Immunol 2007; 178:1767-73; PMID:17237426; http://dx.doi.org/10.4049/jimmunol.178.3.1767
  • Tamanini A, Nicolis E, Bonizzato A, Bezzerri V, Melotti P, Assael BM, Cabrini G. Interaction of adenovirus type 5 fiber with the coxsackievirus and adenovirus receptor activates inflammatory response in human respiratory cells. J Virol 2006; 80:11241-54; PMID:16956941; http://dx.doi.org/10.1128/JVI.00721-06
  • Shayakhmetov DM, Li ZY, Ni S, Lieber A. Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J Virol 2004; 78:5368-81; PMID:15113916; http://dx.doi.org/10.1128/JVI.78.10.5368-5381.2004
  • Schoggins JW, Nociari M, Philpott N, Falck-Pedersen E. Influence of fiber detargeting on adenovirus-mediated innate and adaptive immune activation. J Virol 2005; 79:11627-37; PMID:16140740; http://dx.doi.org/10.1128/JVI.79.18.11627-11637.2005
  • De Geest B, Snoeys J, Van Linthout S, Lievens J, Collen D. Elimination of innate immune responses and liver inflammation by PEGylation of adenoviral vectors and methylprednisolone. Hum Gene Ther 2005; 16:1439-51; PMID:16390275; http://dx.doi.org/10.1089/hum.2005.16.1439
  • Farrow AL, Rachakonda G, Gu L, Krendelchtchikova V, Nde PN, Pratap S, Lima MF, Villalta F, Matthews QL. Immunization with Hexon modified adenoviral vectors integrated with gp83 epitope provides protection against Trypanosoma cruzi infection. PLoS Negl Trop Dis 2014; 8:e3089; PMID:25144771; http://dx.doi.org/10.1371/journal.pntd.0003089
  • Gu L, Krendelchtchikova V, Krendelchtchikov A, Oster RA, Fujihashi K, Matthews QL. A recombinant adenovirus-based vector elicits a specific humoral immune response against the V3 loop of HIV-1 gp120 in mice through the “Antigen Capsid-Incorporation” strategy. Virol J 2014; 11:112; PMID:24935650; http://dx.doi.org/10.1186/1743-422X-11-112
  • Tian X, Su X, Li X, Li H, Li T, Zhou Z, Zhong T, Zhou R. Protection against enterovirus 71 with neutralizing epitope incorporation within adenovirus type 3 hexon. PloS One 2012; 7:e41381; PMID:22848478; http://dx.doi.org/10.1371/journal.pone.0041381
  • Stone D, Liu Y, Li ZY, Tuve S, Strauss R, Lieber A. Comparison of adenoviruses from species B, C, E, and F after intravenous delivery. Mol Ther 2007; 15:2146-53; PMID:17895860; http://dx.doi.org/10.1038/sj.mt.6300319
  • Wei CJ, Boyington JC, McTamney PM, Kong WP, Pearce MB, Xu L, Andersen H, Rao S, Tumpey TM, Yang ZY, et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 2010; 329:1060-4; PMID:20647428; http://dx.doi.org/10.1126/science.1192517
  • Van Kampen KR, Shi Z, Gao P, Zhang J, Foster KW, Chen DT, Marks D, Elmets CA, Tang DC. Safety and immunogenicity of adenovirus-vectored nasal and epicutaneous influenza vaccines in humans. Vaccine 2005; 23:1029-36; PMID:15620476; http://dx.doi.org/10.1016/j.vaccine.2004.07.043
  • Hashem A, Jaentschke B, Gravel C, Tocchi M, Doyle T, Rosu-Myles M, He R, Li X. Subcutaneous immunization with recombinant adenovirus expressing influenza A nucleoprotein protects mice against lethal viral challenge. Hum Vaccines Immunother 2012; 8:425-30; PMID:22370512; http://dx.doi.org/10.4161/hv.19109
  • Song K, Bolton DL, Wei CJ, Wilson RL, Camp JV, Bao S, Mattapallil JJ, Herzenberg LA, Herzenberg LA, Andrews CA, et al. Genetic immunization in the lung induces potent local and systemic immune responses. Proc Natl Acad Sci U S A 2010; 107:22213-8; PMID:21135247; http://dx.doi.org/10.1073/pnas.1015536108
  • Holst PJ, Ørskov C, Thomsen AR, Christensen JP. Quality of the transgene-specific CD8+ T cell response induced by adenoviral vector immunization is critically influenced by virus dose and route of vaccination. J Immunol 2010; 184:4431-9; PMID:20212099; http://dx.doi.org/10.4049/jimmunol.0900537
  • Kaufman DR, Bivas-Benita M, Simmons NL, Miller D, Barouch DH. Route of adenovirus-based HIV-1 vaccine delivery impacts the phenotype and trafficking of vaccine-elicited CD8+ T lymphocytes. J Virol 2010; 84:5986-96; PMID:20357087; http://dx.doi.org/10.1128/JVI.02563-09
  • Suda T, Kawano M, Nogi Y, Ohno N, Akatsuka T, Matsui M. The route of immunization with adenoviral vaccine influences the recruitment of cytotoxic T lymphocytes in the lung that provide potent protection from influenza A virus. Antiviral Res 2011; 91:252-8; PMID:21722671; http://dx.doi.org/10.1016/j.antiviral.2011.06.008
  • Steitz J, Wagner RA, Bristol T, Gao W, Donis RO, Gambotto A. Assessment of route of administration and dose escalation for an adenovirus-based influenza A Virus (H5N1) vaccine in chickens. Clin Vaccine Immunol 2010; 17:1467-72; PMID:20660133; http://dx.doi.org/10.1128/CVI.00180-10
  • Hoelscher MA, Jayashankar L, Garg S, Veguilla V, Lu X, Singh N, Katz JM, Mittal SK, Sambhara S. New pre-pandemic influenza vaccines: an egg- and adjuvant-independent human adenoviral vector strategy induces long-lasting protective immune responses in mice. Clin Pharmacol Ther 2007; 82:665-71; PMID:17957181; http://dx.doi.org/10.1038/sj.clpt.6100418
  • Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D, Gilbert PB, Lama JR, Marmor M, Del Rio C, et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008; 372:1881-93; PMID:19012954; http://dx.doi.org/10.1016/S0140-6736(08)61591-3
  • Shi Z, Zeng M, Yang G, Siegel F, Cain LJ, van Kampen KR, Elmets CA, Tang DC. Protection against tetanus by needle-free inoculation of adenovirus-vectored nasal and epicutaneous vaccines. J Virol 2001; 75:11474-82; PMID:11689629; http://dx.doi.org/10.1128/JVI.75.23.11474-11482.2001
  • Yu JR, Kim S, Lee JB, Chang J. Single intranasal immunization with recombinant adenovirus-based vaccine induces protective immunity against respiratory syncytial virus infection. J Virol 2008; 82:2350-7; PMID:18094185; http://dx.doi.org/10.1128/JVI.02372-07
  • Croyle MA, Patel A, Tran KN, Gray M, Zhang Y, Strong JE, Feldmann H, Kobinger GP. Nasal delivery of an adenovirus-based vaccine bypasses pre-existing immunity to the vaccine carrier and improves the immune response in mice. PloS One 2008; 3:e3548; PMID:18958172; http://dx.doi.org/10.1371/journal.pone.0003548
  • Laube BL. The expanding role of aerosols in systemic drug delivery, gene therapy and vaccination: an update. Transl Respir Med 2014; 2:3; PMID:25505695; http://dx.doi.org/10.1186/2213-0802-2-3
  • Tamura S, Tanimoto T, Kurata T. Mechanisms of broad cross-protection provided by influenza virus infection and their application to vaccines. Jpn J Infect Dis 2005; 58:195-207; PMID:16116250
  • Shmarov MM, Sedova ES, Verkhovskaya LV, Rudneva IA, Bogacheva EA, Barykova YA, Shcherbinin DN, Lysenko AA, Tutykhina IL, Logunov DY, et al. Induction of a protective heterosubtypic immune response against the influenza virus by using recombinant adenoviral vectors expressing hemagglutinin of the influenza H5 virus. Acta Naturae 2010; 2:111-8; PMID:22649637
  • Park KS, Lee J, Ahn SS, Byun YH, Seong BL, Baek YH, Song MS, Choi YK, Na YJ, Hwang I, et al. Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge. Virology 2009; 395:182-9; PMID:19836045; http://dx.doi.org/10.1016/j.virol.2009.09.018
  • Price GE, Soboleski MR, Lo CY, Misplon JA, Pappas C, Houser KV, Tumpey TM, Epstein SL. Vaccination focusing immunity on conserved antigens protects mice and ferrets against virulent H1N1 and H5N1 influenza A viruses. Vaccine 2009; 27:6512-21; PMID:19729082; http://dx.doi.org/10.1016/j.vaccine.2009.08.053
  • Perrone LA, Ahmad A, Veguilla V, Lu X, Smith G, Katz JM, Pushko P, Tumpey TM. Intranasal vaccination with 1918 influenza virus-like particles protects mice and ferrets from lethal 1918 and H5N1 influenza virus challenge. J Virol 2009; 83:5726-34; PMID:19321609; http://dx.doi.org/10.1128/JVI.00207-09
  • Lau YF, Wright AR, Subbarao K. The contribution of systemic and pulmonary immune effectors to vaccine-induced protection from H5N1 influenza virus infection. J Virol 2012; 86:5089-98; PMID:22379093; http://dx.doi.org/10.1128/JVI.07205-11
  • Gustin KM, Maines TR, Belser JA, van Hoeven N, Lu X, Dong L, Isakova-Sivak I, Chen LM, Voeten JT, Heldens JG, et al. Comparative immunogenicity and cross-clade protective efficacy of mammalian cell-grown inactivated and live attenuated H5N1 reassortant vaccines in ferrets. J Infect Dis 2011; 204:1491-9; PMID:21957153; http://dx.doi.org/10.1093/infdis/jir596
  • Draghia R, Caillaud C, Manicom R, Pavirani A, Kahn A, Poenaru L. Gene delivery into the central nervous system by nasal instillation in rats. Gene Ther 1995; 2:418; PMID:7584117
  • Damjanovic D, Zhang X, Mu J, Medina MF, Xing Z. Organ distribution of transgene expression following intranasal mucosal delivery of recombinant replication-defective adenovirus gene transfer vector. Genet Vaccines Ther 2008; 6:5; PMID:18261231; http://dx.doi.org/10.1186/1479-0556-6-5
  • Huang D, Pereboev A, Korokhov N, He R, Larocque L, Gravel C, Jaentschke B, Tocchi M, Casley WL, Lemieux M, et al. Significant alterations of biodistribution and immune responses in Balb/c mice administered with adenovirus targeted to CD40 (+) cells. Gene Ther 2007; 15:298-308; PMID:18046426; http://dx.doi.org/10.1038/sj.gt.3303085
  • Smith JH, Brooks P, Johnson S, Tompkins SM, Custer KM, Haas DL, Mair R, Papania M, Tripp RA. Aerosol vaccination induces robust protective immunity to homologous and heterologous influenza infection in mice. Vaccine 2011; 29:2568-75; PMID:21300100; http://dx.doi.org/10.1016/j.vaccine.2011.01.059
  • Schlesinger RB. Comparative deposition of inhaled aerosols in experimental animals and humans: a review. J Toxicol Environ Health A Curr Issues 1985; 15:197-214; http://dx.doi.org/10.1080/15287398509530647
  • Zhang J, Tarbet EB, Feng T, Shi Z, Van Kampen KR, De-chu CT. Adenovirus-vectored drug-vaccine duo as a rapid-response tool for conferring seamless protection against influenza. PloS One 2011; 6:e22605; PMID:21818346; http://dx.doi.org/10.1371/journal.pone.0022605
  • Hartman ZC, Appledorn DM, Amalfitano A. Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res 2008; 132:1-14; PMID:18036698; http://dx.doi.org/10.1016/j.virusres.2007.10.005
  • Yamaguchi T, Kawabata K, Kouyama E, Ishii KJ, Katayama K, Suzuki T, Kurachi S, Sakurai F, Akira S, Mizuguchi H. Induction of type I interferon by adenovirus-encoded small RNAs. Proc Natl Acad Sci U S A 2010; 107:17286-91; PMID:20855616; http://dx.doi.org/10.1073/pnas.1009823107
  • Thiele AT, Sumpter TL, Walker JA, Xu Q, Chang CH, Bacallao RL, Kher R, Wilkes DS. Pulmonary immunity to viral infection: adenovirus infection of lung dendritic cells renders T cells nonresponsive to interleukin-2. J Virol 2006; 80:1826-36; PMID:16439539; http://dx.doi.org/10.1128/JVI.80.4.1826-1836.2006
  • Zhu J, Huang X, Yang Y. A Critical Role for Type I IFN-dependent NK Cell Activation in Innate Immune Elimination of Adenoviral Vectors In Vivo. Mol Ther 2008; 16:1300-7; PMID:18443600; http://dx.doi.org/10.1038/mt.2008.88
  • Higashimoto Y, Yamagata Y, Itoh H. Complex effect of adenovirus early region proteins on innate immune system. Inflamm Allergy Drug Targets 2006; 5:229-37; PMID:17168793; http://dx.doi.org/10.2174/187152806779010927
  • Poland GA, Jacobson RM, Ovsyannikova IG. Influenza virus resistance to antiviral agents: a plea for rational use. Clin Infect Dis 2009; 48:1254-6; PMID:19323631; http://dx.doi.org/10.1086/598989
  • Takahashi E, Kataoka K, Fujii K, Chida J, Mizuno D, Fukui M, Hiro-O Ito, Fujihashi K, Kido H. Attenuation of inducible respiratory immune responses by oseltamivir treatment in mice infected with influenza A virus. Microbes Infect 2010; 12:778-83; PMID:20452454; http://dx.doi.org/10.1016/j.micinf.2010.04.013
  • Lu Y, Welsh JP, Swartz JR. Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc Natl Acad Sci U S A 2014; 111:125-30; PMID:24344259; http://dx.doi.org/10.1073/pnas.1308701110
  • Hobson D, Curry RL, Beare AS, Ward-Gardner A. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J Hyg (Lond) 1972; 70:767-77; PMID:4509641
  • Smirnov YA, Lipatov AS, Gitelman AK, Claas EC, Osterhaus AD. Prevention and treatment of bronchopneumonia in mice caused by mouse-adapted variant of avian H5N2 influenza A virus using monoclonal antibody against conserved epitope in the HA stem region. Arch Virol 2000; 145:1733-41; PMID:11003481; http://dx.doi.org/10.1007/s007050070088
  • Okuno Y, Matsumoto K, Isegawa Y, Ueda S. Protection against the mouse-adapted A/FM/1/47 strain of influenza A virus in mice by a monoclonal antibody with cross-neutralizing activity among H1 and H2 strains. J Virol 1994; 68:517-20; PMID:8254764
  • Throsby M, van den Brink E, Jongeneelen M, Poon LL, Alard P, Cornelissen L, Bakker A, Cox F, van Deventer E, Guan Y, et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PloS One 2008; 3:e3942; PMID:19079604; http://dx.doi.org/10.1371/journal.pone.0003942
  • Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, Throsby M, Throsby M, Goudsmit J, Wilson IA. Antibody recognition of a highly conserved influenza virus epitope. Science 2009; 324:246-51; PMID:19251591; http://dx.doi.org/10.1126/science.1171491
  • Sui J, Hwang WC, Perez S, Wei G, Aird D, Chen LM, Bakker A, Cox F, van Deventer E, Guan Y, et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol 2009; 16:265-73; PMID:19234466; http://dx.doi.org/10.1038/nsmb.1566
  • Wang TT, Tan GS, Hai R, Pica N, Petersen E, Moran TM, Palese P. Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins. PLoS Pathog 2010; 6:e1000796; PMID:20195520; http://dx.doi.org/10.1371/journal.ppat.1000796
  • Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, Vachieri SG, Pinna D, Minola A, Vanzetta F, et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 2011; 333:850-6; PMID:21798894; http://dx.doi.org/10.1126/science.1205669
  • Dreyfus C, Laursen NS, Kwaks T, Zuijdgeest D, Khayat R, Ekiert DC, Lee JH, Metlagel Z, Bujny MV, Jongeneelen M, et al. Highly conserved protective epitopes on influenza B viruses. Science 2012; 337:1343-8; PMID:22878502; http://dx.doi.org/10.1126/science.1222908
  • Gaudin Y, Ruigrok RW, Brunner J. Low-pH induced conformational changes in viral fusion proteins: implications for the fusion mechanism. J Gen Virol 1995; 76 (Pt 7):1541-56; PMID:9049361; http://dx.doi.org/10.1099/0022-1317-76-7-1541
  • Lin SC, Huang MH, Tsou PC, Huang LM, Chong P, Wu SC. Recombinant trimeric HA protein immunogenicity of H5N1 avian influenza viruses and their combined use with inactivated or adenovirus vaccines. PloS One 2011; 6:e20052; PMID:21655326; http://dx.doi.org/10.1371/journal.pone.0020052
  • Lin SC, Liu WC, Jan JT, Wu SC. Glycan masking of hemagglutinin for adenovirus vector and recombinant protein immunizations elicits broadly neutralizing antibodies against H5N1 avian influenza viruses. PloS One 2014; 9:e92822; PMID:24671139; http://dx.doi.org/10.1371/journal.pone.0092822
  • DiLillo DJ, Tan GS, Palese P, Ravetch JV. Broadly neutralizing hemagglutinin stalk-specific antibodies require FcgammaR interactions for protection against influenza virus in vivo. Nat Med 2014; 20:143-51; PMID:24412922; http://dx.doi.org/10.1038/nm.3443
  • Hu W, Chen A, Miao Y, Xia S, Ling Z, Xu K, Wang T, Xu Y, Cui J, Wu H, et al. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Virology 2013; 435:320-8; PMID:23084424; http://dx.doi.org/10.1016/j.virol.2012.09.034
  • Yewdell JW, Frank E, Gerhard W. Expression of influenza A virus internal antigens on the surface of infected P815 cells. J Immunol 1981; 126:1814-9.
  • Sukeno N, Otsuki Y, Konno J, Yamane N, Odagiri T, Arikawa J, Ishida N. Anti-nucleoprotein antibody response in influenza A infection. Tohoku J Exp Med 1979; 128:241-9; PMID:494246; http://dx.doi.org/10.1620/tjem.128.241
  • LaMere MW, Lam HT, Moquin A, Haynes L, Lund FE, Randall TD, Kaminski DA. Contributions of antinucleoprotein IgG to heterosubtypic immunity against influenza virus. J Immunol 2011; 186:4331-9; http://dx.doi.org/10.4049/jimmunol.1003057
  • Jegerlehner A, Schmitz N, Storni T, Bachmann MF. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J Immunol 2004; 172:5598-605; http://dx.doi.org/10.4049/jimmunol.172.9.5598
  • Denkers EY, Badger CC, Ledbetter JA, Bernstein ID. Influence of antibody isotype on passive serotherapy of lymphoma. J Immunol 1985; 135:2183-6.
  • Wang R, Song A, Levin J, Dennis D, Zhang NJ, Yoshida H, Koriazova L, Madura L, Shapiro L, Matsumoto A, et al. Therapeutic potential of a fully human monoclonal antibody against influenza A virus M2 protein. Antiviral Res 2008; 80:168-77; PMID:18598723; http://dx.doi.org/10.1016/j.antiviral.2008.06.002
  • Song A, Myojo K, Laudenslager J, Harada D, Miura T, Suzuki K, Kuni-Kamochi R, Soloff R, Ohgami K, Kanda Y. Evaluation of a fully human monoclonal antibody against multiple influenza A viral strains in mice and a pandemic H1N1 strain in nonhuman primates. Antiviral Res 2014; 111:60-8; PMID:25218949; http://dx.doi.org/10.1016/j.antiviral.2014.08.016
  • McMichael AJ, Gotch FM, Noble GR, Beare PA. Cytotoxic T-cell immunity to influenza. N Engl J Med 1983; 309:13-7; PMID:6602294; http://dx.doi.org/10.1056/NEJM198307073090103
  • Bender BS, Croghan T, Zhang L, Small PA, Jr. Transgenic mice lacking class I major histocompatibility complex-restricted T cells have delayed viral clearance and increased mortality after influenza virus challenge. J Exp Med 1992; 175:1143-5; PMID:1552285; http://dx.doi.org/10.1084/jem.175.4.1143
  • Epstein SL, Lo CY, Misplon JA, Bennink JR. Mechanism of protective immunity against influenza virus infection in mice without antibodies. J Immunol 1998; 160:322-7.
  • Graham MB, Braciale TJ. Resistance to and recovery from lethal influenza virus infection in B lymphocyte-deficient mice. J Exp Med 1997; 186:2063-8; PMID:9396777; http://dx.doi.org/10.1084/jem.186.12.2063
  • Yap KL, Ada GL, McKenzie IF. Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus. Nature 1978; 273:238-9; PMID:306072; http://dx.doi.org/10.1038/273238a0
  • Lukacher AE, Braciale VL, Braciale TJ. In vivo effector function of influenza virus-specific cytotoxic T lymphocyte clones is highly specific. J Exp Med 1984; 160:814-26; PMID:6206190; http://dx.doi.org/10.1084/jem.160.3.814
  • Weinfurter JT, Brunner K, Capuano SV 3rd, Li C, Broman KW, Kawaoka Y, Friedrich TC. Cross-reactive T cells are involved in rapid clearance of 2009 pandemic H1N1 influenza virus in nonhuman primates. PLoS Pathog 2011; 7:e1002381; PMID:22102819; http://dx.doi.org/10.1371/journal.ppat.1002381
  • Flynn KJ, Belz GT, Altman JD, Ahmed R, Woodland DL, Doherty PC. Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 1998; 8:683-91; PMID:9655482; http://dx.doi.org/10.1016/S1074-7613(00)80573-7
  • Sridhar S, Begom S, Bermingham A, Hoschler K, Adamson W, Carman W, Bean T, Barclay W, Deeks JJ, Lalvani A. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med 2013; 19:1305-12; PMID:24056771; http://dx.doi.org/10.1038/nm.3350
  • Sette A, Sidney J. HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. Curr Opin Immunol 1998; 10:478-82; PMID:9722926; http://dx.doi.org/10.1016/S0952-7915(98)80124-6
  • Sette A, Sidney J. Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 1999; 50:201-12; PMID:10602880; http://dx.doi.org/10.1007/s002510050594
  • Sidney J, Peters B, Frahm N, Brander C, Sette A. HLA class I supertypes: a revised and updated classification. BMC Immunol 2008; 9:1; PMID:18211710; http://dx.doi.org/10.1186/1471-2172-9-1
  • Assarsson E, Bui HH, Sidney J, Zhang Q, Glenn J, Oseroff C, Mbawuike IN, Alexander J, Newman MJ, Grey H, et al. Immunomic analysis of the repertoire of T-cell specificities for influenza A virus in humans. J Virol 2008; 82:12241-51; PMID:18842709; http://dx.doi.org/10.1128/JVI.01563-08
  • Peters B, Sidney J, Bourne P, Bui HH, Buus S, Doh G, Fleri W, Kronenberg M, Kubo R, Lund O, et al. The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol 2005; 3:e91; PMID:15760272; http://dx.doi.org/10.1371/journal.pbio.0030091
  • Vita R, Peters B, Sette A. The curation guidelines of the immune epitope database and analysis resource. Cytometry A 2008; 73:1066-70; PMID:18688821; http://dx.doi.org/10.1002/cyto.a.20585
  • Ponomarenko J, Papangelopoulos N, Zajonc DM, Peters B, Sette A, Bourne PE. IEDB-3D: structural data within the immune epitope database. Nucleic Acids Res 2011; 39:D1164-70; PMID:21030437; http://dx.doi.org/10.1093/nar/gkq888
  • Wu C, Zanker D, Valkenburg S, Tan B, Kedzierska K, Zou QM, Doherty PC, Chen W. Systematic identification of immunodominant CD8+ T-cell responses to influenza A virus in HLA-A2 individuals. Proc Natl Acad Sci U S A 2011; 108:9178-83; PMID:21562214; http://dx.doi.org/10.1073/pnas.1105624108
  • Alexander J, Bilsel P, del Guercio M-F, Marinkovic-Petrovic A, Southwood S, Stewart S, Ishioka G, Kotturi MF, Botten J, Sidney J, et al. Identification of broad binding class I HLA supertype epitopes to provide universal coverage of influenza A virus. Hum Immunol 2010; 71:468-74; PMID:20156506; http://dx.doi.org/10.1016/j.humimm.2010.02.014
  • Liu J, Wu B, Zhang S, Tan S, Sun Y, Chen Z, Qin Y, Sun M, Shi G, Wu Y, et al. Conserved epitopes dominate cross-CD8+ T-cell responses against influenza A H1N1 virus among Asian populations. Eur J Immunol 2013; 43:2055-69; PMID:23681926; http://dx.doi.org/10.1002/eji.201343417
  • Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M, Liebner JC, Lambkin-Williams R, Gilbert A, Oxford J, Nicholas B, et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med 2012; 18:274-80; PMID:22286307; http://dx.doi.org/10.1038/nm.2612
  • Laidlaw BJ, Decman V, Ali MA, Abt MC, Wolf AI, Monticelli LA, Mozdzanowska K, Angelosanto JM, Artis D, Erikson J, et al. Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity. PLoS Pathog 2013; 9:e1003207; PMID:23516357; http://dx.doi.org/10.1371/journal.ppat.1003207
  • Gao W, Soloff AC, Lu X, Montecalvo A, Nguyen DC, Matsuoka Y, Robbins PD, Swayne DE, Donis RO, Katz JM, et al. Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization. J Virol 2006; 80:1959-64; PMID:16439551; http://dx.doi.org/10.1128/JVI.80.4.1959-1964.2006
  • Hoelscher MA, Garg S, Bangari DS, Belser JA, Lu X, Stephenson I, Bright RA, Katz JM, Mittal SK, Sambhara S. Development of adenoviral-vector-based pandemic influenza vaccine against antigenically distinct human H5N1 strains in mice. Lancet 2006; 367:475-81; PMID:16473124; http://dx.doi.org/10.1016/S0140-6736(06)68076-8
  • Gurwith M, Lock M, Taylor EM, Ishioka G, Alexander J, Mayall T, Mayall T, Ervin JE, Greenberg RN, Strout C, et al. Safety and immunogenicity of an oral, replicating adenovirus serotype 4 vector vaccine for H5N1 influenza: a randomised, double-blind, placebo-controlled, phase 1 study. Lancet Infect Dis 2013; 13:238-50; PMID:23369412; http://dx.doi.org/10.1016/S1473-3099(12)70345-6
  • Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annual Rev Biochem 2000; 69:531-69; PMID:10966468; http://dx.doi.org/10.1146/annurev.biochem.69.1.531
  • Wesley RD, Tang M, Lager KM. Protection of weaned pigs by vaccination with human adenovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein of H3N2 swine influenza virus. Vaccine 2004; 22:3427-34; PMID:15308368; http://dx.doi.org/10.1016/j.vaccine.2004.02.040
  • Thomas PG, Keating R, Hulse-Post DJ, Doherty PC. Cell-mediated protection in influenza infection. Emerg Infect Dis 2006; 12:48-54; PMID:16494717; http://dx.doi.org/10.3201/eid1201.051237
  • Steel J, Lowen AC, Wang TT, Yondola M, Gao Q, Haye K, García-Sastre A, Palese P. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio 2010; 1:pii: e00018-10; PMID:20689752; http://dx.doi.org/10.1128/mBio.00018-10
  • Bommakanti G, Citron MP, Hepler RW, Callahan C, Heidecker GJ, Najar TA, Lu X, Joyce JG, Shiver JW, Casimiro DR, et al. Design of an HA2-based Escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge. Proc Natl Acad Sci 2010; 107:13701-6; PMID:20615991
  • Wang TT, Tan GS, Hai R, Pica N, Ngai L, Ekiert DC, Wilson IA, García-Sastre A, Moran TM, et al. Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc Natl Acad Sci U S A 2010; 107:18979-84; PMID:20956293; http://dx.doi.org/10.1073/pnas.1013387107
  • Krammer F, Pica N, Hai R, Margine I, Palese P. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J Virol 2013; 87:6542-50; PMID:23576508; http://dx.doi.org/10.1128/JVI.00641-13
  • Krammer F, Margine I, Hai R, Flood A, Hirsh A, Tsvetnitsky V, Chen D, Palese P. H3 stalk-based chimeric hemagglutinin influenza virus constructs protect mice from H7N9 challenge. J Virol 2014; 88:2340-3; PMID:24307585; http://dx.doi.org/10.1128/JVI.03183-13
  • Margine I, Krammer F, Hai R, Heaton NS, Tan GS, Andrews SA, Runstadler JA, Wilson PC, Albrecht RA, García-Sastre A, et al. Hemagglutinin stalk-based universal vaccine constructs protect against group 2 influenza A viruses. J Virol 2013; 87:10435-46; PMID:23903831; http://dx.doi.org/10.1128/JVI.01715-13
  • Krammer F, Palese P. Universal influenza virus vaccines: need for clinical trials. Nat Immunol 2014; 15:3-5; PMID:24352315; http://dx.doi.org/10.1038/ni.2761
  • Noureddini SC, Curiel DT. Genetic targeting strategies for adenovirus. Mol Pharm 2005; 2:341-7; PMID:16196486; http://dx.doi.org/10.1021/mp050045c
  • Aichele P, Brduscha-Riem K, Zinkernagel RM, Hengartner H, Pircher H. T cell priming versus T cell tolerance induced by synthetic peptides. J Expe Med 1995; 182:261-6; PMID:7540654; http://dx.doi.org/10.1084/jem.182.1.261
  • Franco D, Liu W, Gardiner DF, Hahn BH, Ho DD. CD40L-containing virus-like particle as a candidate HIV-1 vaccine targeting dendritic cells. J Acquir Immune Defic Syndr 2011; 56:393-400; PMID:21239998; http://dx.doi.org/10.1097/QAI.0b013e31820b844e
  • Kim YS, Kim YJ, Lee JM, Han SH, Ko HJ, Park HJ, Pereboev A, Nguyen HH, Kang CY. CD40-targeted recombinant adenovirus significantly enhances the efficacy of antitumor vaccines based on dendritic cells and B cells. Hum Gene Ther 2010; 21:1697-706; PMID:20604681; http://dx.doi.org/10.1089/hum.2009.202
  • Cao J, Wang X, Du Y, Li Y, Wang X, Jiang P. CD40 ligand expressed in adenovirus can improve the immunogenicity of the GP3 and GP5 of porcine reproductive and respiratory syndrome virus in swine. Vaccine 2010; 28:7514-22; PMID:20851084; http://dx.doi.org/10.1016/j.vaccine.2010.09.002
  • Bishop GA, Hostager BS. The CD40-CD154 interaction in B cell-T cell liaisons. Cytokine Growth Factor Rev 2003; 14:297-309; PMID:12787567; http://dx.doi.org/10.1016/S1359-6101(03)00024-8
  • Ma DY, Clark EA. The role of CD40 and CD154/CD40L in dendritic cells. Semin Immunol 2009; 21:265-72; PMID:19524453; http://dx.doi.org/10.1016/j.smim.2009.05.010
  • Fan X, Hashem AM, Chen Z, Li C, Doyle T, Zhang Y, Yi Y, Farnsworth A, Xu K, Li Z, et al. Targeting the HA2 subunit of influenza A virus hemagglutinin via CD40L provides universal protection against diverse subtypes. Mucosal Immunol 2015; 8:211-20; PMID:25052763; http://dx.doi.org/10.1038/mi.2014.59
  • Lo CY, Wu Z, Misplon JA, Price GE, Pappas C, Kong WP, Tumpey TM, Epstein SL. Comparison of vaccines for induction of heterosubtypic immunity to influenza A virus: cold-adapted vaccine versus DNA prime-adenovirus boost strategies. Vaccine 2008; 26:2062-72; PMID:18378366
  • Rao SS, Kong WP, Wei CJ, Van Hoeven N, Gorres JP, Nason M, Andersen H, Tumpey TM, Nabel GJ. Comparative efficacy of hemagglutinin, nucleoprotein, and matrix 2 protein gene-based vaccination against H5N1 influenza in mouse and ferret. PloS One 2010; 5:e9812; PMID:20352112; http://dx.doi.org/10.1371/journal.pone.0009812
  • Hashem AM, Gravel C, Chen Z, Yi Y, Tocchi M, Jaentschke B, Fan X, Li C, Rosu-Myles M, Pereboev A, et al. CD40 ligand preferentially modulates immune response and enhances protection against influenza virus. J Immunol 2014; 193:722-34; PMID:24928989; http://dx.doi.org/10.4049/jimmunol.1300093
  • Hoelscher MA, Singh N, Garg S, Jayashankar L, Veguilla V, Pandey A, Matsuoka Y, Katz JM, Donis R, Mittal SK, et al. A broadly protective vaccine against globally dispersed clade 1 and clade 2 H5N1 influenza viruses. J Infect Dis 2008; 197:1185-8; PMID:18462165; http://dx.doi.org/10.1086/529522
  • Vemula SV, Ahi YS, Swaim AM, Katz JM, Donis R, Sambhara S, Mittal SK. Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness. PloS One 2013; 8:e62496; PMID:23638099; http://dx.doi.org/10.1371/journal.pone.0062496
  • Patel A, Gray M, Li Y, Kobasa D, Yao X, Kobinger GP. Co-administration of certain DNA vaccine combinations expressing different H5N1 influenza virus antigens can be beneficial or detrimental to immune protection. Vaccine 2012; 30:626-36; PMID:22119588; http://dx.doi.org/10.1016/j.vaccine.2011.11.017
  • Kim EH, Park HJ, Han GY, Song MK, Pereboev A, Hong JS, Chang J, Byun YH, Seong BL, Nguyen HH. Intranasal adenovirus vectored vaccine for induction of long-lasting humoral immunity-mediated broad protection against influenza in mice. J Virol 2014; 88(17):9693-703; PMID:24920793
  • Holman DH, Wang D, Raja NU, Luo M, Moore KM, Woraratanadharm J, Mytle N, Dong JY. Multi-antigen vaccines based on complex adenovirus vectors induce protective immune responses against H5N1 avian influenza viruses. Vaccine 2008; 26:2627-39; PMID:18395306; http://dx.doi.org/10.1016/j.vaccine.2008.02.053
  • Li KB, Zhang XG, Ma J, Jia XJ, Wang M, Dong J, Zhang XM, Xu H, Shu YL. [Codon optimization of the H5N1 influenza virus HA gene gets high expression in mammalian cells]. Bing Du Xue Bao 2008; 24:101-5; PMID:18533341
  • Steitz J, Barlow PG, Hossain J, Kim E, Okada K, Kenniston T, Rea S, Donis RO, Gambotto A. A candidate H1N1 pandemic influenza vaccine elicits protective immunity in mice. PloS One 2010; 5:e10492; PMID:20463955; http://dx.doi.org/10.1371/journal.pone.0010492
  • Hsu KH, Lubeck MD, Bhat BM, Bhat RA, Kostek B, Selling BH, Mizutani S, Davis AR, Hung PP. Efficacy of adenovirus-vectored respiratory syncytial virus vaccines in a new ferret model. Vaccine 1994; 12:607-12; PMID:8085377; http://dx.doi.org/10.1016/0264-410X(94)90264-X
  • Gauger PC, Loving CL, Lager KM, Janke BH, Kehrli ME, Jr., Roth JA, Vincent AL. Vaccine-associated enhanced respiratory disease does not interfere with the adaptive immune response following challenge with pandemic A/H1N1 2009. Viral Immunol 2013; 26:314-21; PMID:24033080; http://dx.doi.org/10.1089/vim.2013.0018
  • To KK, Zhang AJ, Hung IF, Xu T, Ip WC, Wong RT, Ng JC, Chan JF, Chan KH, Yuen KY. High titer and avidity of nonneutralizing antibodies against influenza vaccine antigen are associated with severe influenza. Clin Vaccine Immunol 2012; 19:1012-8; PMID:22573737; http://dx.doi.org/10.1128/CVI.00081-12
  • Khurana S, Loving CL, Manischewitz J, King LR, Gauger PC, Henningson J, Vincent AL, Golding H. Vaccine-induced anti-HA2 antibodies promote virus fusion and enhance influenza virus respiratory disease. Sci Transl Med 2013; 5:200ra114; PMID:23986398; http://dx.doi.org/10.1126/scitranslmed.3006366
  • Gauger PC, Loving CL, Khurana S, Lorusso A, Perez DR, Kehrli ME, Jr., Roth JA, Golding H, Vincent AL. Live attenuated influenza A virus vaccine protects against A(H1N1)pdm09 heterologous challenge without vaccine associated enhanced respiratory disease. Virology 2014; 471-473C:93-104; PMID:25461535; http://dx.doi.org/10.1016/j.virol.2014.10.003
  • Dougan SK, Ashour J, Karssemeijer RA, Popp MW, Avalos AM, Barisa M, Altenburg AF, Ingram JR, Cragnolini JJ, Guo C, et al. Antigen-specific B-cell receptor sensitizes B cells to infection by influenza virus. Nature 2013; 503:406-9; PMID:24141948; http://dx.doi.org/10.1038/nature12637
  • Quinones-Parra S, Loh L, Brown LE, Kedzierska K, Valkenburg SA. Universal immunity to influenza must outwit immune evasion. Front Microbiol 2014; 5:285; PMID:24971078
  • Valkenburg SA, Quinones-Parra S, Gras S, Komadina N, McVernon J, Wang Z, Halim H, Iannello P, Cole C, Laurie K, et al. Acute emergence and reversion of influenza A virus quasispecies within CD8+ T cell antigenic peptides. Nat Commun 2013; 4:2663; PMID:24173108; http://dx.doi.org/10.1038/ncomms3663
  • Gras S, Kedzierski L, Valkenburg SA, Laurie K, Liu YC, Denholm JT, Richards MJ, Rimmelzwaan GF, Kelso A, Doherty PC, et al. Cross-reactive CD8+ T-cell immunity between the pandemic H1N1-2009 and H1N1-1918 influenza A viruses. Proc Natl Acad Sci U S A 2010; 107:12599-604; PMID:20616031; http://dx.doi.org/10.1073/pnas.1007270107
  • Valkenburg SA, Venturi V, Dang TH, Bird NL, Doherty PC, Turner SJ, Davenport MP, Kedzierska K. Early priming minimizes the age-related immune compromise of CD8(+) T cell diversity and function. PLoS Pathog 2012; 8:e1002544; PMID:22383879; http://dx.doi.org/10.1371/journal.ppat.1002544
  • Madore DV, Meade BD, Rubin F, Deal C, Lynn F, Meeting C. Utilization of serologic assays to support efficacy of vaccines in nonclinical and clinical trials: meeting at the crossroads. Vaccine 2010; 28:4539-47; PMID:20470795; http://dx.doi.org/10.1016/j.vaccine.2010.04.094
  • Potter CW, Oxford JS. Determinants of immunity to influenza infection in man. Br Med Bull 1979; 35:69-75; PMID:367490
  • Fulop T, Jr., Foris G, Worum I, Leovey A. Age-dependent alterations of Fc gamma receptor-mediated effector functions of human polymorphonuclear leucocytes. Clin Exp Immunol 1985; 61:425-32; PMID:2994926
  • Ekiert DC, Friesen RH, Bhabha G, Kwaks T, Jongeneelen M, Yu W, Ophorst C, Cox F, Korse HJ, Brandenburg B, et al. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 2011; 333:843-50; PMID:21737702; http://dx.doi.org/10.1126/science.1204839

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.