2,396
Views
52
CrossRef citations to date
0
Altmetric
Review

Epilepsy and innate immune system: A possible immunogenic predisposition and related therapeutic implications

, , , , , , , , , & show all
Pages 2021-2029 | Received 05 Jan 2015, Accepted 23 Mar 2015, Published online: 11 Aug 2015

References

  • Noe FM, Polascheck N, Frigerio F, Bankstahl M, Ravizza T, Marchini S, Beltrame L, Banderó CR, Löscher W, Vezzani A. Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiol Dis 2013; 59:183-93; PMID:23938763; http://dx.doi.org/10.1016/j.nbd.2013.07.015
  • Vitaliti G. Pavone P. Mahmood F, Nunnari G, Falsaperla R. Targeting inflammation as a therapeutic strategy for drug-resistant epilepsies. An update of new immunomodulating approaches. Hum Vaccine Immunother 2014; 10:41-8; http://dx.doi.org/10.4161/hv.28400
  • Falsaperla R, Pavone P, Miceli-Sopo S, Mahmood F, Scalia F, Corsello G, Lubrano R, Vitaliti G. Epileptic seizures as a manifestation of cow's milk allergy: a studied relationship and description of our pediatric experience. Expert Rev Clin Immunol 2014; 10:1597-609; PMID:25394911; http://dx.doi.org/10.1586/1744666X.2014.977259
  • Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, Engel J Jr, Forsgren L, French JA, Glynn M, et al. ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia 2014; 55:475-82; PMID:24730690; http://dx.doi.org/10.1111/epi.12550
  • de Boer HM, Mula M, Sander JW. The global burden and stigma of epilepsy. Epilepsy Behav 2008; 12:540-6; PMID:18280210
  • Sander JW. The epidemiology of epilepsy revisited. Curr Opin Neurol 2003; 16:165-70
  • Banerjee PN, Filippi D, Allen Hauser W. The descriptive epidemiology of epilepsy—a review. Epilepsy Res 2009; 85:31-45; PMID:19369037; http://dx.doi.org/10.1016/j.eplepsyres.2009.03.003
  • Leonardi M, Ustun TB. The global burden of epilepsy. Epilepsia 2002; 43:21-5; PMID:12190974; http://dx.doi.org/10.1046/j.1528-1157.43.s.6.11.x
  • Sirven JI, Pedley TA, Wilterdink JL. Evaluation and management of drug-resistant epilepsy 2011.
  • Lodish H, Berk A, Zipursky S. Molecular Cell Biology 4th edition 2000.
  • Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochem J 2009; 420:1-16; PMID:19382893; http://dx.doi.org/10.1042/BJ20090272
  • Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol 2011; 30:16-34; PMID:21235323; http://dx.doi.org/10.3109/08830185.2010.529976
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124:783-801; PMID:16497588; http://dx.doi.org/10.1016/j.cell.2006.02.015
  • Lemaitre B, Nicolas E, Michaut L, Reichhart J-M, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86:973-83; PMID:8808632; http://dx.doi.org/10.1016/S0092-8674(00)80172-5
  • Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388:394-7; PMID:9237759; http://dx.doi.org/10.1038/41131
  • Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 2002; 169:10-4; PMID:12077222; http://dx.doi.org/10.4049/jimmunol.169.1.10
  • Poltorak A, He X, Smirnova I, Liu M-Y, Van Huffel C, Du X, Modlin RL, Akira S. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282:2085-8; PMID:9851930; http://dx.doi.org/10.1126/science.282.5396.2085
  • Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999; 11:443-51; PMID:10549626; http://dx.doi.org/10.1016/S1074-7613(00)80119-3
  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410:1099-103; PMID:11323673; http://dx.doi.org/10.1038/35074106
  • Bowie AG, Haga IR. The role of Toll-like receptors in the host response to viruses. Mol Immunol 2005; 42:859-67; PMID:15829275; http://dx.doi.org/10.1016/j.molimm.2004.11.007
  • Tsan MF, Gao B. Endogenous ligands of Toll-like receptors. J Leukoc Biol 2004; 76:514-9; PMID:15178705; http://dx.doi.org/10.1189/jlb.0304127
  • Arancibia SA, Beltrán CJ, Aguirre IM, Silva P, Peralta AL, Malinarich F, Hermoso MA. Toll-like receptors are key participants in innate immune responses. Biol Res 2007; 40:97-112; PMID:18064347; http://dx.doi.org/10.4067/S0716-97602007000200001
  • Kang SS, Kauls LS, Gaspari AA. Toll-like receptors: applications to dermatologic disease. J Am Acad Dermatol 2006; 54:951-83; PMID:16713451; http://dx.doi.org/10.1016/j.jaad.2005.05.004
  • Akira S. Mammalian Toll-like receptors. Curr Opin Immunol 2003; 15:5-11; PMID:12495726; http://dx.doi.org/10.1016/S0952-7915(02)00013-4
  • Akira S, Hemmi H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 2003; 85:85-95; PMID:12527213; http://dx.doi.org/10.1016/S0165-2478(02)00228-6
  • Cai Z, Shi Z, Sanchez A, Zhang T, Liu M, Yang J, Wang F, Zhang D. Transcriptional regulation of Tlr11 gene expression in epithelial (16, 23, 83-85)
  • Mallard C. Innate immune regulation by toll-like receptors in the brain. ISRN Neurol 2012; 2012:701950; PMID:23097717; http://dx.doi.org/10.5402/2012/701950
  • Beg AA. Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses. Trends Immunol 2002; 23:509-12; PMID:12401394; http://dx.doi.org/10.1016/S1471-4906(02)02317-7
  • Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, Chow JC, Strauss JF 3rd. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 2001; 276:10229-33; PMID:11150311; http://dx.doi.org/10.1074/jbc.M100099200
  • Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 2001; 167:2887-94; PMID:11509636; http://dx.doi.org/10.4049/jimmunol.167.5.2887
  • Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M. Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 2002; 168:5989-92; PMID:12055204; http://dx.doi.org/10.4049/jimmunol.168.12.5989
  • Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, Miyake K, Freudenberg M, Galanos C, Simon JC. Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 2002; 195:99-111; PMID:11781369; http://dx.doi.org/10.1084/jem.20001858
  • Tsan M-F, Gao B. Endogenous ligands of Toll-like receptors. J Leukoc Biol 2004; 76:514-9; PMID:15178705; http://dx.doi.org/10.1189/jlb.0304127
  • Johnson GB, Brunn GJ, Kodaira Y, Platt JL. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol 2002; 168:5233-9; PMID:11994480; http://dx.doi.org/10.4049/jimmunol.168.10.5233
  • Moghimpour Bijani F, Vallejo JG, Rezaei N. Toll-like receptor signaling pathways in cardiovascular diseases: challenges and opportunities. Int Rev Immunol 2012; 3:379-95; http://dx.doi.org/10.3109/08830185.2012.706761
  • Wallin R, Lundqvist A, Moré SH, von Bonin A, Kiessling R, Ljunggren H-G. Heat-shock proteins as activators of the innate immune system. Trends Immunol 2002; 23:130-5; PMID:11864840; http://dx.doi.org/10.1016/S1471-4906(01)02168-8
  • Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Häcker H, Wagner H. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 2001; 276:31332-9; PMID:11402040; http://dx.doi.org/10.1074/jbc.M103217200
  • Dybdahl B, Wahba A, Lien E, Flo TH, Waage A, Qureshi N, Sellevold OF, Espevik T, Sundan A. Inflammatory response after open heart surgery release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation 2002; 105:685-90; PMID:11839622; http://dx.doi.org/10.1161/hc0602.103617
  • Park JS, Svetkauskaite D, He Q, Kim J-Y, Strassheim D, Ishizaka A, Abraham E. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 2004; 279:7370-7; PMID:14660645; http://dx.doi.org/10.1074/jbc.M306793200
  • Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim J-Y, Strassheim D, Sohn JW, Yamada S, Maruyama I, Banerjee A, et al. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol 2006; 290:C917-C24; PMID:16267105
  • Karikó K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 2004; 279:12542-50; http://dx.doi.org/10.1074/jbc.M310175200
  • Watters TM, Kenny EF, O'Neill LA. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 2007; 85:411-9; PMID:17667936; http://dx.doi.org/10.1038/sj.icb.7100095
  • Belinda LW-C, Wei WX, Hanh BTH, Lei LX, Bow H, Ling DJ. SARM. a novel Toll-like receptor adaptor, is functionally conserved from arthropod to human. Mol Immunol 2008; 45:1732-42; PMID:17980913; http://dx.doi.org/10.1016/j.molimm.2007.09.030
  • Horng T, Barton GM, Flavell RA, Medzhitov R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 2002; 420:329-33; PMID:12447442; http://dx.doi.org/10.1038/nature01180
  • Peng J, Yuan Q, Lin B, Panneerselvam P, Wang X, Luan XL, Lim SK, Leung BP, Ho B, Ding JL. SARM inhibits both TRIF-and MyD88-mediated AP-1 activation. Eur J Immunol 2010; 40:1738-47; PMID:20306472; http://dx.doi.org/10.1002/eji.200940034
  • Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol 2005; 17:1-14; PMID:15585605; http://dx.doi.org/10.1093/intimm/dxh186
  • Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochem Biophys Res Commun 2009; 388:621-5; PMID:19686699; http://dx.doi.org/10.1016/j.bbrc.2009.08.062
  • Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3–mediated interferon-β induction. Nat Immunol 2003; 4:161-7; PMID:12539043; http://dx.doi.org/10.1038/ni886
  • Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S. TRAM is specifically involved in the Toll-like receptor 4–mediated MyD88-independent signaling pathway. Nat Immunol 2003; 4:1144-50; PMID:14556004; http://dx.doi.org/10.1038/ni986
  • O'Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2007; 7:353-64; PMID:17457343; http://dx.doi.org/10.1038/nri2079
  • Town T, Nikolic V, Tan J. The microglial “activation” continuum: from innate to adaptive responses. J Neuroinflammation 2005; 2:24; http://dx.doi.org/10.1186/1742-2094-2-24
  • Carpentier PA, Duncan DAS, Miller SD. Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain Behav Immun 2008; 22:140-7; PMID:17920811
  • Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci 2011; 121:367-87; http://dx.doi.org/10.1042/CS20110164
  • Pelvig D, Pakkenberg H, Stark A, Pakkenberg B. Neocortical glial cell numbers in human brains. Neurobiol Aging 2008; 29:1754-62; PMID:17544173; http://dx.doi.org/10.1016/j.neurobiolaging.2007.04.013
  • Olson JK, Miller SD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 2004; 173:3916-24; PMID:15356140; http://dx.doi.org/10.4049/jimmunol.173.6.3916
  • Babcock AA, Wirenfeldt M, Holm T, Nielsen HH, Dissing-Olesen L, Toft-Hansen H, Millward JM, Landmann R, Rivest S, Finsen B, et al. Toll-like receptor 2 signaling in response to brain injury: an innate bridge to neuroinflammation. J Neurosci 2006; 26:12826-37; PMID:17151286; http://dx.doi.org/10.1523/JNEUROSCI.4937-05.2006
  • Iliev AI, Stringaris AK, Nau R, Neumann H. Neuronal injury mediated via stimulation of microglial toll-like receptor-9 (TLR9). FASEB J 2004; 18:412-4
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3. Nature 2001; 413:732-8; PMID:11607032; http://dx.doi.org/10.1038/35099560
  • Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 2005; 175:4320-30; PMID:16177072; http://dx.doi.org/10.4049/jimmunol.175.7.4320
  • Farina C, Krumbholz M, Giese T, Hartmann G, Aloisi F, Meinl E. Preferential expression and function of Toll-like receptor 3 in human astrocytes. J Neuroimmunol 2005; 159:12-9; PMID:15652398; http://dx.doi.org/10.1016/j.jneuroim.2004.09.009
  • Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007; 28:138-45; PMID:17276138; http://dx.doi.org/10.1016/j.it.2007.01.005
  • Bsibsi M, Ravid R, Gveric D, van Noort JM. Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 2002; 61:1013-21; PMID:12430718
  • Kigerl KA, Lai W, Rivest S, Hart RP, Satoskar AR, Popovich PG. Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J Neurochem 2007; 102:37-50; PMID:17403033; http://dx.doi.org/10.1111/j.1471-4159.2007.04524.x
  • Tang S-C, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, Lathia JD, Siler DA, Chigurupati S, Ouyang X, et al. Pivotal role for neuronal toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci 2007; 104:13798-803; http://dx.doi.org/10.1073/pnas.0702553104
  • Cameron JS, Alexopoulou L, Sloane JA, DiBernardo AB, Ma Y, Kosaras B, Flavell R, Strittmatter SM, Volpe J, Sidman R, et al. Toll-like receptor 3 is a potent negative regulator of axonal growth in mammals. J Neurosci 2007; 27:13033-41; PMID:18032677; http://dx.doi.org/10.1523/JNEUROSCI.4290-06.2007
  • Maroso M, Balosso S, Ravizza T, Liu J, Bianchi M, Vezzani A. Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. J Internal Med 2011; 270:319-26; PMID:21793950; http://dx.doi.org/10.1111/j.1365-2796.2011.02431.x
  • Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol 2011; 7:31-40; PMID:21135885; http://dx.doi.org/10.1038/nrneurol.2010.178
  • Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci 2013; 36:174-84; PMID:23298414; http://dx.doi.org/10.1016/j.tins.2012.11.008
  • Peltola J, Hurme M, Miettinen A, Keränen T. Elevated levels of interleukin-6 may occur in cerebrospinal fluid from patients with recent epileptic seizures. Epilepsy Res 1998; 31:129-33; PMID:9714504; http://dx.doi.org/10.1016/S0920-1211(98)00024-2
  • Vezzani A. Inflammation and epilepsy. Epilepsy Curr 2005; 5:1-6; http://dx.doi.org/10.1111/j.1535-7597.2005.05101.x
  • Aronica E, Crino PB. Inflammation in epilepsy: clinical observations. Epilepsia 2011; 52:26-32; PMID:21542843; http://dx.doi.org/10.1111/j.1528-1167.2011.03033.x
  • Galic MA, Riazi K, Heida JG, Mouihate A, Fournier NM, Spencer SJ, Kalynchuk LE, Teskey GC, Pittman QJ. Postnatal inflammation increases seizure susceptibility in adult rats. J Neurosci 2008; 28:6904-13; PMID:18596165; http://dx.doi.org/10.1523/JNEUROSCI.1901-08.2008
  • Rodgers KM, Hutchinson MR, Northcutt A, Maier SF, Watkins LR, Barth DS. The cortical innate immune response increases local neuronal excitability leading to seizures. Brain 2009; 132:2478-86; PMID:19567702; http://dx.doi.org/10.1093/brain/awp177
  • Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M, Casalgrandi M, Manfredi AA, et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 2010; 16:413-9; PMID:20348922; http://dx.doi.org/10.1038/nm.2127
  • Zurolo E, Iyer A, Maroso M, Carbonell C, Anink JJ, Ravizza T, Fluiter K, Spliet WG, van Rijen PC, Vezzani A, et al. Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain 2011; 134:1015-32; PMID:21414994; http://dx.doi.org/10.1093/brain/awr032
  • Kawai T, Akira S. Signaling to NF-κB by Toll-like receptors. Trends Mol Med 2007; 13:460-9; PMID:18029230; http://dx.doi.org/10.1016/j.molmed.2007.09.002
  • Vezzani A. Epilepsy and inflammation in the brain: overview and pathophysiology. Epilepsy Curr 2014; 14:3-7; http://dx.doi.org/10.5698/1535-7511-14.s2.3
  • Galic M, Riazi K, Henderson A, Tsutsui S, Pittman Q. Viral-like brain inflammation during development causes increased seizure susceptibility in adult rats. Neurobiol Dis 2009; 36:343-51; PMID:19660546; http://dx.doi.org/10.1016/j.nbd.2009.07.025
  • Bo T, Chen Y, Mao D, Li Y, Zhu X. [Long-term effects of neonatal recurrent seizures on gamma-aminobutyric acid A receptor alpha1 and gamma2 subunit expressions in the rat brain]. Beijing Da Xue Xue Bao 2006; 38:628-33; PMID:17173085
  • Zhang G, Raol YSH, Hsu FC, Brooks-Kayal AR. Long-term alterations in glutamate receptor and transporter expression following early-life seizures are associated with increased seizure susceptibility. J Neurochem 2004; 88:91-101; PMID:14675153; http://dx.doi.org/10.1046/j.1471-4159.2003.02124.x
  • Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 2008; 22:797-803; PMID:18495419; http://dx.doi.org/10.1016/j.bbi.2008.03.009
  • Balosso S, Maroso M, Sanchez-Alavez M, Ravizza T, Frasca A, Bartfai T, Vezzani A. A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1beta. Brain 2008; 131:3256-65; PMID:18952671; http://dx.doi.org/10.1093/brain/awn271
  • Dubé CM, Ravizza T, Hamamura M, Zha Q, Keebaugh A, Fok K, Andres AL, Nalcioglu O, Obenaus A, Vezzani A, Baram TZ. Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J Neurosci 2010; 30:7484-94; http://dx.doi.org/10.1523/JNEUROSCI.0551-10.2010
  • Yuskaitis CJ, Beurel E, Jope RS. Evidence of reactive astrocytes but not peripheral immune system activation in a mouse model of Fragile × syndrome. Biochim Biophys 2010; 1082:1006-12; http://dx.doi.org/10.1016/j.bbadis.2010.06.015
  • Lee RH, Mills EA, Schwartz N, Bell MR, Deeg KE, Ruthazer ES, Marsh-Armstrong N, Aizenman CD. Neurodevelopmental effects of chronic exposure to elevated levels of pro-inflammatory cytokines in a developing visual system. Neural Dev 2010; 5:1-18; PMID:20047651; http://dx.doi.org/10.1186/1749-8104-5-2
  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005; 57:67-81; PMID:15546155; http://dx.doi.org/10.1002/ana.20315
  • Randle JC, Harding MW, Ku G, Schönharting M, Kurrle R. ICE/Caspase-1 inhibitors as novel anti-inflammatory drugs. Expert Opin Invest Drugs 2001; 10:1207-9; PMID:11772244; http://dx.doi.org/10.1517/13543784.10.7.1207
  • Wannamaker W, Davies R, Namchuk M, Pollard J, Ford P, Ku G, Decker C, Charifson P, Weber P, Germann UA, et al. (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3, 3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R, 3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1β and IL-18. J Pharmacol Exp Ther 2007; 321:509-16; PMID:17289835; http://dx.doi.org/10.1124/jpet.106.111344
  • Ravizza T, Lucas SM, Balosso S, Bernardino L, Ku G, Noé F, Malva J, Randle JC, Allan S, Vezzani A. Inactivation of caspase-1 in rodent brain: a novel anticonvulsive strategy. Epilepsia 2006; 47:1160-8; PMID:16886979; http://dx.doi.org/10.1111/j.1528-1167.2006.00590.x
  • Ravizza T, Noé F, Zardoni D, Vaghi V, Sifringer M, Vezzani A. Interleukin converting enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1β production. Neurobiol Dis 2008; 31:327-33; PMID:18632279; http://dx.doi.org/10.1016/j.nbd.2008.05.007
  • Incorporated VP. Study of VX-765 in subjects with treatment-resistant partial epilepsy. (Study code-clinicaltrials.gov identifier: NCT01048255)
  • Yang QW, Wang J-Z, Li J-C, Zhou Y, Zhong Q, Lu F-L, Xiang J. High-mobility group protein box-1 and its relevance to cerebral ischemia. J Cereb Blood Flow Metab 2009; 30:243-54; PMID:9794402
  • Barnes GN. “For whom the bell tolls”: blockade of toll-like receptors may regulate seizure occurrence. Epilepsy Curr 2010; 10:164-5; PMID:21157547; http://dx.doi.org/10.1111/j.1535-7511.2010.01389.x
  • Walker L, Sills GJ. Inflammation and epilepsy: the foundations for a new therapeutic approach in epilepsy? Epilepsy Curr 2012; 12:8-12; http://dx.doi.org/10.5698/1535-7511-12.1.8
  • Frémont L. Biological effects of resveratrol. Life Sci 2000; 66:663-73; http://dx.doi.org/10.1016/S0024-3205(99)00410-5
  • Bhat KP, Kosmeder JW, Pezzuto JM. Biological effects of resveratrol. Antioxid Redox Signal 2001; 3:1041-64; PMID:11813979; http://dx.doi.org/10.1089/152308601317203567
  • Clément M-V, Hirpara JL, Chawdhury S-H, Pervaiz S. Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood 1998; 92:996-1002
  • Albani D, Polito L, Signorini A, Forloni G. Neuroprotective properties of resveratrol in different neurodegenerative disorders. Biofactors 2010; 36:370-6; PMID:20848560; http://dx.doi.org/10.1002/biof.118
  • Youn HS, Lee JY, Fitzgerald KA, Young HA, Akira S, Hwang DH. Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: molecular targets are TBK1 and RIP1 in TRIF complex. J Immunol 2005; 175:3339-46; PMID:16116226; http://dx.doi.org/10.4049/jimmunol.175.5.3339
  • Wu Z, Xu Q, Zhang L, Kong D, Ma R, Wang L. Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem Res 2009; 34:1393-400; PMID:19219549; http://dx.doi.org/10.1007/s11064-009-9920-0
  • Gupta Y, Briyal S, Chaudhary G. Protective effect of tans-resveratrol against kainic acid-induced seizures and oxidative stress in rats. Pharmacol Biochem Behav 2002; 71:245-9; http://dx.doi.org/10.1016/S0091-3057(01)00663-3
  • Zhang F, Liu J, Shi J-S. Anti-inflammatory activities of resveratrol in the brain: role of resveratrol in microglial activation. Eur J Pharmacol 2010; 636:1-7; PMID:20361959; http://dx.doi.org/10.1016/j.ejphar.2010.03.043
  • Falchetti R, Fuggetta MP, Lanzilli G, Tricarico M, Ravagnan G. Effects of resveratrol on human immune cell function. Life Sci 2001; 70:81-96; PMID:11764009; http://dx.doi.org/10.1016/S0024-3205(01)01367-4
  • Subbaramaiah K, Chung WJ, Michaluart P, Telang N, Tanabe T, Inoue H, Jang M, Pezzuto JM, Dannenberg AJ. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem 1998; 273:21875-82; PMID:9705326; http://dx.doi.org/10.1074/jbc.273.34.21875

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.