6,609
Views
88
CrossRef citations to date
0
Altmetric
Review

Oncolytic viruses: From bench to bedside with a focus on safety

, , &
Pages 1573-1584 | Received 16 Jan 2015, Accepted 29 Mar 2015, Published online: 06 Jul 2015

References

  • Campadelli-Fiume G, De Giovanni C, Gatta V, Nanni P, Lollini PL, Menotti L. Rethinking herpes simplex virus: the way to oncolytic agents. Revi Med Virol 2011; 21:213-26; PMID:21626603; http://dx.doi.org/10.1002/rmv.691
  • Zhou G, Roizman B. Construction and properties of a herpes simplex virus 1 designed to enter cells solely via the IL-13alpha2 receptor. Proc Natl Acad Sci U S A 2006; 103:5508-13; PMID:16554374; http://dx.doi.org/10.1073/pnas.0601258103
  • Menotti L, Cerretani A, Hengel H, Campadelli-Fiume G. Construction of a fully retargeted herpes simplex virus 1 recombinant capable of entering cells solely via human epidermal growth factor receptor 2. J Virol 2008; 82:10153-61; PMID:18684832; http://dx.doi.org/10.1128/JVI.01133-08
  • Zhou G, Ye GJ, Debinski W, Roizman B. Engineered herpes simplex virus 1 is dependent on IL13Ralpha 2 receptor for cell entry and independent of glycoprotein D receptor interaction. Proc Natl Acad Sci U S A 2002; 99:15124-9; PMID:12417744; http://dx.doi.org/10.1073/pnas.232588699
  • Menotti L, Cerretani A, Campadelli-Fiume G. A herpes simplex virus recombinant that exhibits a single-chain antibody to HER2/neu enters cells through the mammary tumor receptor, independently of the gD receptors. J Virol 2006; 80:5531-9; PMID:16699034; http://dx.doi.org/10.1128/JVI.02725-05
  • Grandi P, Fernandez J, Szentirmai O, Carter R, Gianni D, Sena-Esteves M, Breakefield XO. Targeting HSV-1 virions for specific binding to epidermal growth factor receptor-vIII-bearing tumor cells. Cancer Gene Ther 2010; 17:655-63; PMID:20508670; http://dx.doi.org/10.1038/cgt.2010.22
  • Kambara H, Okano H, Chiocca EA, Saeki Y. An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res 2005; 65:2832-9; PMID:15805284; http://dx.doi.org/10.1158/0008-5472.CAN-04-3227
  • Amgen. http://www.amgen.com/media/media_pr_detail.jsp?releaseID=1962767
  • Varghese S, Newsome JT, Rabkin SD, McGeagh K, Mahoney D, Nielsen P, Todo T, Martuza RL. Preclinical safety evaluation of G207, a replication-competent herpes simplex virus type 1, inoculated intraprostatically in mice and nonhuman primates. Hum Gene Ther 2001; 12:999-1010; PMID:11387063; http://dx.doi.org/10.1089/104303401750195944
  • Wolfe D, Niranjan A, Trichel A, Wiley C, Ozuer A, Kanal E, Kondziolka D, Krisky D, Goss J, Deluca N, et al. Safety and biodistribution studies of an HSV multigene vector following intracranial delivery to non-human primates. Gene Ther 2004; 11:1675-84; PMID:15306839; http://dx.doi.org/10.1038/sj.gt.3302336
  • Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD, Palmer CA, Feigenbaum F, Tornatore C, Tufaro F, et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 2000; 7:867-74; PMID:10845725; http://dx.doi.org/10.1038/sj.gt.3301205
  • Markert JM, Liechty PG, Wang W, Gaston S, Braz E, Karrasch M, Nabors LB, Markiewicz M, Lakeman AD, Palmer CA, et al. Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol Ther 2009; 17:199-207; PMID:18957964; http://dx.doi.org/10.1038/mt.2008.228
  • Hu JC, Coffin RS, Davis CJ, Graham NJ, Groves N, Guest PJ, Harrington KJ, James ND, Love CA, McNeish I, et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 2006; 12:6737-47; PMID:17121894; http://dx.doi.org/10.1158/1078-0432.CCR-06-0759
  • Senzer NN, Kaufman HL, Amatruda T, Nemunaitis M, Reid T, Daniels G, Gonzalez R, Glaspy J, Whitman E, Harrington K, et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol 2009; 27:5763-71; PMID:19884534; http://dx.doi.org/10.1200/JCO.2009.24.3675
  • Harrington KJ, Hingorani M, Tanay MA, Hickey J, Bhide SA, Clarke PM, Renouf LC, Thway K, Sibtain A, McNeish IA, et al. Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin Cancer Res 2010; 16:4005-15; PMID:20670951; http://dx.doi.org/10.1158/1078-0432.CCR-10-0196
  • Geevarghese SK, Geller DA, de Haan HA, Horer M, Knoll AE, Mescheder A, Nemunaitis J, Reid TR, Sze DY, Tanabe KK, et al. Phase I/II study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver. Hum Gene Ther 2010; 21:1119-28; PMID:20486770; http://dx.doi.org/10.1089/hum.2010.020
  • Umene K. Mechanism and application of genetic recombination in herpesviruses. Rev Med Virol 1999; 9:171-82; PMID:10479778; http://dx.doi.org/10.1002/(SICI)1099-1654(199907/09)9:3%3c171::AID-RMV243%3e3.0.CO;2-A
  • Cassady KA, Gross M, Roizman B. The second-site mutation in the herpes simplex virus recombinants lacking the gamma134.5 genes precludes shutoff of protein synthesis by blocking the phosphorylation of eIF-2alpha. J Virol 1998; 72:7005-11; PMID:9696792
  • Lenaerts L, De Clercq E, Naesens L. Clinical features and treatment of adenovirus infections. Rev Med Virol 2008; 18:357-74; PMID:18655013; http://dx.doi.org/10.1002/rmv.589
  • Pesonen S, Kangasniemi L, Hemminki A. Oncolytic adenoviruses for the treatment of human cancer: focus on translational and clinical data. Mol Pharm 2011; 8:12-28; PMID:21126047; http://dx.doi.org/10.1021/mp100219n
  • Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274:373-6; PMID:8832876; http://dx.doi.org/10.1126/science.274.5286.373
  • O'Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A, Boyle L, Pandey K, Soria C, Kunich J, et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 2004; 6:611-23; PMID:15607965; http://dx.doi.org/10.1016/j.ccr.2004.11.012
  • Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, Shi YX, Levin VA, Yung WK, Kyritsis AP. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000; 19:2-12; PMID:10644974; http://dx.doi.org/10.1038/sj.onc.1203251
  • Johnson L, Shen A, Boyle L, Kunich J, Pandey K, Lemmon M, Hermiston T, Giedlin M, McCormick F, Fattaey A. Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell 2002; 1:325-37; PMID:12086848; http://dx.doi.org/10.1016/S1535-6108(02)00060-0
  • Kim J, Cho JY, Kim JH, Jung KC, Yun CO. Evaluation of E1B gene-attenuated replicating adenoviruses for cancer gene therapy. Cancer Gene Ther 2002; 9:725-36; PMID:12189522; http://dx.doi.org/10.1038/sj.cgt.7700494
  • Cascallo M, Capella G, Mazo A, Alemany R. Ras-dependent oncolysis with an adenovirus VAI mutant. Cancer Res 2003; 63:5544-50; PMID:14500393
  • Mantwill K, Naumann U, Seznec J, Girbinger V, Lage H, Surowiak P, Beier D, Mittelbronn M, Schlegel J, Holm PS. YB-1 dependent oncolytic adenovirus efficiently inhibits tumor growth of glioma cancer stem like cells. J Transl Med 2013; 11:216; PMID:24044901; http://dx.doi.org/10.1186/1479-5876-11-216
  • Heise C, Kirn DH. Replication-selective adenoviruses as oncolytic agents. J Clin Invest 2000; 105:847-51; PMID:10749561; http://dx.doi.org/10.1172/JCI9762
  • Nettelbeck DM. Virotherapeutics: conditionally replicative adenoviruses for viral oncolysis. Anticancer Drugs 2003; 14:577-84; PMID:14501378; http://dx.doi.org/10.1097/00001813-200309000-00001
  • Li X, Liu Y, Wen Z, Li C, Lu H, Tian M, Jin K, Sun L, Gao P, Yang E, et al. Potent anti-tumor effects of a dual specific oncolytic adenovirus expressing apoptin in vitro and in vivo. Mol Cancer 2010; 9:10; PMID:20085660; http://dx.doi.org/10.1186/1476-4598-9-10
  • Gao Q, Chen C, Ji T, Wu P, Han Z, Fang H, Li F, Liu Y, Hu W, Gong D, et al. A systematic comparison of the anti-tumoural activity and toxicity of the three Adv-TKs. PLoS One 2014; 9:e94050; PMID:24722669; http://dx.doi.org/10.1371/journal.pone.0094050
  • Koski A, Kangasniemi L, Escutenaire S, Pesonen S, Cerullo V, Diaconu I, Nokisalmi P, Raki M, Rajecki M, Guse K, et al. Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Mol Ther 2010; 18:1874-84; PMID:20664527; http://dx.doi.org/10.1038/mt.2010.161
  • Burke JM, Lamm DL, Meng MV, Nemunaitis JJ, Stephenson JJ, Arseneau JC, Aimi J, Lerner S, Yeung AW, Kazarian T, et al. A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J Urol 2012; 188:2391-7; PMID:23088985; http://dx.doi.org/10.1016/j.juro.2012.07.097
  • European Medicines Agency (EMA). Withdrawal assessment report for Advexin. EMEA/692328/2008 2008
  • European Medicines Agency (EMA). Withdrawal assessment report for Cerepro. EMEA/203243/2008 2007
  • Kim M, Zinn KR, Barnett BG, Sumerel LA, Krasnykh V, Curiel DT, Douglas JT. The therapeutic efficacy of adenoviral vectors for cancer gene therapy is limited by a low level of primary adenovirus receptors on tumour cells. Eur J Cancer 2002; 38:1917-26; PMID:12204675; http://dx.doi.org/10.1016/S0959-8049(02)00131-4
  • Tao N, Gao GP, Parr M, Johnston J, Baradet T, Wilson JM, Barsoum J, Fawell SE. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther 2001; 3:28-35; PMID:11162308; http://dx.doi.org/10.1006/mthe.2000.0227
  • Alemany R, Curiel DT. CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Ther 2001; 8:1347-53; PMID:11571572; http://dx.doi.org/10.1038/sj.gt.3301515
  • Smith T, Idamakanti N, Kylefjord H, Rollence M, King L, Kaloss M, Kaleko M, Stevenson SC. In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus-adenovirus receptor. Mol Ther 2002; 5:770-9; PMID:12027562; http://dx.doi.org/10.1006/mthe.2002.0613
  • Alba R, Bradshaw AC, Coughlan L, Denby L, McDonald RA, Waddington SN, Buckley SM, Greig JA, Parker AL, Miller AM, et al. Biodistribution and retargeting of FX-binding ablated adenovirus serotype 5 vectors. Blood 2010; 116:2656-64; PMID:20610817; http://dx.doi.org/10.1182/blood-2009-12-260026
  • Short JJ, Rivera AA, Wu H, Walter MR, Yamamoto M, Mathis JM, Curiel DT. Substitution of adenovirus serotype 3 hexon onto a serotype 5 oncolytic adenovirus reduces factor × binding, decreases liver tropism, and improves antitumor efficacy. Mol Cancer Ther 2010; 9:2536-44; PMID:20736345; http://dx.doi.org/10.1158/1535-7163.MCT-10-0332
  • Coughlan L, Alba R, Parker AL, Bradshaw AC, McNeish IA, Nicklin SA, Baker AH. Tropism-modification strategies for targeted gene delivery using adenoviral vectors. Viruses 2010; 2:2290-355; PMID:21994621; http://dx.doi.org/10.3390/v2102290
  • Hemminki O, Diaconu I, Cerullo V, Pesonen SK, Kanerva A, Joensuu T, Kairemo K, Laasonen L, Partanen K, Kangasniemi L, et al. Ad3-hTERT-E1A, a fully serotype 3 oncolytic adenovirus, in patients with chemotherapy refractory cancer. Mol Ther 2012; 20:1821-30; PMID:22871667; http://dx.doi.org/10.1038/mt.2012.115
  • Belousova N, Mikheeva G, Xiong C, Soghomonian S, Young D, Le Roux L, Naff K, Bidaut L, Wei W, Li C, et al. Development of a targeted gene vector platform based on simian adenovirus serotype 24. J Virol 2010; 84:10087-101; PMID:20631120; http://dx.doi.org/10.1128/JVI.02425-09
  • Sharma A, Bangari DS, Tandon M, Pandey A, HogenEsch H, Mittal SK. Comparative analysis of vector biodistribution, persistence and gene expression following intravenous delivery of bovine, porcine and human adenoviral vectors in a mouse model. Virology 2009; 386:44-54; PMID:19211122; http://dx.doi.org/10.1016/j.virol.2009.01.008
  • Kuhn I, Harden P, Bauzon M, Chartier C, Nye J, Thorne S, Reid T, Ni S, Lieber A, Fisher K, et al. Directed evolution generates a novel oncolytic virus for the treatment of colon cancer. PLoS One 2008; 3:e2409; PMID:18560559; http://dx.doi.org/10.1371/journal.pone.0002409
  • Miura Y, Yamasaki S, Davydova J, Brown E, Aoki K, Vickers S, Yamamoto M. Infectivity-selective oncolytic adenovirus developed by high-throughput screening of adenovirus-formatted library. Mol Ther 2013; 21:139-48; PMID:23032977; http://dx.doi.org/10.1038/mt.2012.205
  • Reid T, Galanis E, Abbruzzese J, Sze D, Wein LM, Andrews J, Randlev B, Heise C, Uprichard M, Hatfield M, et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res 2002; 62:6070-9; PMID:12414631
  • Kimball KJ, Preuss MA, Barnes MN, Wang M, Siegal GP, Wan W, Kuo H, Saddekni S, Stockard CR, Grizzle WE, et al. A phase I study of a tropism-modified conditionally replicative adenovirus for recurrent malignant gynecologic diseases. Clin Cancer Res 2010; 16:5277-87; PMID:20978148; http://dx.doi.org/10.1158/1078-0432.CCR-10-0791
  • Pesonen S, Diaconu I, Cerullo V, Escutenaire S, Raki M, Kangasniemi L, Nokisalmi P, Dotti G, Guse K, Laasonen L, et al. Integrin targeted oncolytic adenoviruses Ad5-D24-RGD and Ad5-RGD-D24-GMCSF for treatment of patients with advanced chemotherapy refractory solid tumors. Int J Cancer 2012; 130:1937-47; PMID:21630267; http://dx.doi.org/10.1002/ijc.26216
  • Pesonen S, Nokisalmi P, Escutenaire S, Sarkioja M, Raki M, Cerullo V, Kangasniemi L, Laasonen L, Ribacka C, Guse K, et al. Prolonged systemic circulation of chimeric oncolytic adenovirus Ad5/3-Cox2L-D24 in patients with metastatic and refractory solid tumors. Gene Ther 2010; 17:892-904; PMID:20237509; http://dx.doi.org/10.1038/gt.2010.17
  • Raki M, Sarkioja M, Escutenaire S, Kangasniemi L, Haavisto E, Kanerva A, Cerullo V, Joensuu T, Oksanen M, Pesonen S, et al. Switching the fiber knob of oncolytic adenoviruses to avoid neutralizing antibodies in human cancer patients. J Gene Med 2011; 13:253-61; PMID:21520358; http://dx.doi.org/10.1002/jgm.1565
  • Bramante S, Koski A, Kipar A, Diaconu I, Liikanen I, Hemminki O, Vassilev L, Parviainen S, Cerullo V, Pesonen SK, et al. Serotype chimeric oncolytic adenovirus coding for GM-CSF for treatment of sarcoma in rodents and humans. Int J Cancer. 2014 Aug 1; 135(3):720-30.
  • Kim KH, Dmitriev IP, Saddekni S, Kashentseva EA, Harris RD, Aurigemma R, Bae S, Singh KP, Siegal GP, Curiel DT, et al. A phase I clinical trial of Ad5/3-Delta24, a novel serotype-chimeric, infectivity-enhanced, conditionally-replicative adenovirus (CRAd), in patients with recurrent ovarian cancer. Gynecol Oncol 2013; 130:518-24; PMID:23756180; http://dx.doi.org/10.1016/j.ygyno.2013.06.003
  • Blanc C, Calvo E, Martin MG, Machiels JP, Rottey S, Carbonero RG, McNeish IA, Ellis C, Fisher K, Beadle J. Review of the current status of phase I clinical studies of Enadenotucirev (ColoAd1), an Ad11/Ad3 chimeric group B adenovirus, in patients with metastatic epithelial solid tumors. 8th International Conference on Oncolytic Virus Therapeutics 2014
  • Nemunaitis J, Tong AW, Nemunaitis M, Senzer N, Phadke AP, Bedell C, Adams N, Zhang YA, Maples PB, Chen S, et al. A phase I study of telomerase-specific replication competent oncolytic adenovirus (telomelysin) for various solid tumors. Mol Ther 2010; 18:429-34; PMID:19935775; http://dx.doi.org/10.1038/mt.2009.262
  • Gimenez-Alejandre M, Rodriguez-Garcia A, Moreno-Olie R, Condom i Mundó E, Nadal M, Bazan-Peregrino M, Alemany R, Cascallo M. Chemosensitization to gemcitabine by VCN-01, a tumor-targeted oncolytic adenovirus armed with hyaluronidase: from bench to bedside. 8th International Conference on Oncolytic Virus Therapeutics 2014
  • Chiocca EA, Smith KM, McKinney B, Palmer CA, Rosenfeld S, Lillehei K, Hamilton A, DeMasters BK, Judy K, Kirn D. A phase I trial of Ad.hIFN-beta gene therapy for glioma. Mol Ther 2008; 16:618-26; PMID:18180770; http://dx.doi.org/10.1038/sj.mt.6300396
  • Keedy V, Wang W, Schiller J, Chada S, Slovis B, Coffee K, Worrell J, Thet LA, Johnson DH, Carbone DP. Phase I study of adenovirus p53 administered by bronchoalveolar lavage in patients with bronchioloalveolar cell lung carcinoma: ECOG 6597. J Clin Oncol 2008; 26:4166-71; PMID:18757331; http://dx.doi.org/10.1200/JCO.2007.15.6927
  • Tian G, Liu J, Zhou JS, Chen W. Multiple hepatic arterial injections of recombinant adenovirus p53 and 5-fluorouracil after transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: a pilot phase II trial. Anticancer Drugs 2009; 20:389-95; PMID:19287305; http://dx.doi.org/10.1097/CAD.0b013e32832a2df9
  • Xu F, Li S, Li XL, Guo Y, Zou BY, Xu R, Liao H, Zhao HY, Zhang Y, Guan ZZ, et al. Phase I and biodistribution study of recombinant adenovirus vector-mediated herpes simplex virus thymidine kinase gene and ganciclovir administration in patients with head and neck cancer and other malignant tumors. Cancer Gene Ther 2009; 16:723-30; PMID:19363470; http://dx.doi.org/10.1038/cgt.2009.19
  • Page JG, Tian B, Schweikart K, Tomaszewski J, Harris R, Broadt T, Polley-Nelson J, Noker PE, Wang M, Makhija S, et al. Identifying the safety profile of a novel infectivity-enhanced conditionally replicative adenovirus, Ad5-delta24-RGD, in anticipation of a phase I trial for recurrent ovarian cancer. Am J Obstet Gynecol 2007; 196:389.e1-9; discussion .e9–10; PMID:17403430; http://dx.doi.org/10.1016/j.ajog.2006.12.016
  • Griscelli F, Opolon P, Saulnier P, Mami-Chouaib F, Gautier E, Echchakir H, Angevin E, Le Chevalier T, Bataille V, Squiban P, et al. Recombinant adenovirus shedding after intratumoral gene transfer in lung cancer patients. Gene Ther 2003; 10:386-95; PMID:12601393; http://dx.doi.org/10.1038/sj.gt.3301928
  • Schenk-Braat EA, van Mierlo MM, Wagemaker G, Bangma CH, Kaptein LC. An inventory of shedding data from clinical gene therapy trials. J Gene Med 2007; 9:910-21; PMID:17880045; http://dx.doi.org/10.1002/jgm.1096
  • Robinson CM, Rajaiya J, Walsh MP, Seto D, Dyer DW, Jones MS, Chodosh J. Computational analysis of human adenovirus type 22 provides evidence for recombination among species D human adenoviruses in the penton base gene. J Virol 2009; 83:8980-5; PMID:19553309; http://dx.doi.org/10.1128/JVI.00786-09
  • Walsh MP, Chintakuntlawar A, Robinson CM, Madisch I, Harrach B, Hudson NR, Schnurr D, Heim A, Chodosh J, Seto D, et al. Evidence of molecular evolution driven by recombination events influencing tropism in a novel human adenovirus that causes epidemic keratoconjunctivitis. PLoS One 2009; 4:e5635; PMID:19492050; http://dx.doi.org/10.1371/journal.pone.0005635
  • Singh G, Robinson CM, Dehghan S, Jones MS, Dyer DW, Seto D, Chodosh J. Homologous recombination in E3 genes of human adenovirus species D. J Virol 2013; 87:12481-8; PMID:24027303; http://dx.doi.org/10.1128/JVI.01927-13
  • Duke T, Mgone CS. Measles: not just another viral exanthem. Lancet 2003; 361:763-73; PMID:12620751; http://dx.doi.org/10.1016/S0140-6736(03)12661-X
  • Griffin DE, Pan CH. Measles: old vaccines, new vaccines. Curr Top Microbiol Immunol 2009; 330:191-212; PMID:19203111
  • Msaouel P, Iankov ID, Dispenzieri A, Galanis E. Attenuated oncolytic measles virus strains as cancer therapeutics. Curr Pharm Biotechnol 2012; 13:1732-41; PMID:21740361; http://dx.doi.org/10.2174/138920112800958896
  • Blechacz B, Russell SJ. Measles virus as an oncolytic vector platform. Curr Gene Ther 2008; 8:162-75; PMID:18537591; http://dx.doi.org/10.2174/156652308784746459
  • Msaouel P, Dispenzieri A, Galanis E. Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: an overview. Curr Opin Mol Ther 2009; 11:43-53; PMID:19169959
  • Galanis E, Hartmann LC, Cliby WA, Long HJ, Peethambaram PP, Barrette BA, Kaur JS, Haluska PJ, Jr., Aderca I, Zollman PJ, et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res 2010; 70:875-82; PMID:20103634; http://dx.doi.org/10.1158/0008-5472.CAN-09-2762
  • Russell SJ, Federspiel MJ, Peng KW, Tong C, Dingli D, Morice WG, Lowe V, O'Connor MK, Kyle RA, Leung N, et al. Remission of disseminated cancer after systemic oncolytic virotherapy. Mayo Clinic proceedings 2014
  • Evans AS. Pathogenicity and immunology of Newcastle disease virus (NVD) in man. Am J Public Health Nations Health 1955; 45:742-5; PMID:14376703; http://dx.doi.org/10.2105/AJPH.45.6.742
  • de Leeuw OS, Hartog L, Koch G, Peeters BP. Effect of fusion protein cleavage site mutations on virulence of Newcastle disease virus: non-virulent cleavage site mutants revert to virulence after one passage in chicken brain. J Gen Virol 2003; 84:475-84; PMID:12560582; http://dx.doi.org/10.1099/vir.0.18714-0
  • Sinkovics JG, Horvath JC. Newcastle disease virus (NDV): brief history of its oncolytic strains. J Clin Virol 2000; 16:1-15; PMID:10680736; http://dx.doi.org/10.1016/S1386-6532(99)00072-4
  • Vigil A, Park MS, Martinez O, Chua MA, Xiao S, Cros JF, Martinez-Sobrido L, Woo SL, Garcia-Sastre A. Use of reverse genetics to enhance the oncolytic properties of Newcastle disease virus. Cancer Res 2007; 67:8285-92; PMID:17804743; http://dx.doi.org/10.1158/0008-5472.CAN-07-1025
  • Zamarin D, Vigil A, Kelly K, Garcia-Sastre A, Fong Y. Genetically engineered Newcastle disease virus for malignant melanoma therapy. Gene Ther 2009; 16:796-804; PMID:19242529; http://dx.doi.org/10.1038/gt.2009.14
  • Zamarin D, Martinez-Sobrido L, Kelly K, Mansour M, Sheng G, Vigil A, Garcia-Sastre A, Palese P, Fong Y. Enhancement of oncolytic properties of recombinant newcastle disease virus through antagonism of cellular innate immune responses. Mol Ther 2009; 17:697-706; PMID:19209145; http://dx.doi.org/10.1038/mt.2008.286
  • Altomonte J, Marozin S, Schmid RM, Ebert O. Engineered newcastle disease virus as an improved oncolytic agent against hepatocellular carcinoma. Mol Ther 2010; 18:275-84; PMID:19809404; http://dx.doi.org/10.1038/mt.2009.231
  • Silberhumer GR, Brader P, Wong J, Serganova IS, Gonen M, Gonzalez SJ, Blasberg R, Zamarin D, Fong Y. Genetically engineered oncolytic Newcastle disease virus effectively induces sustained remission of malignant pleural mesothelioma. Mol Cancer Ther 2010; 9:2761-9; PMID:20858727; http://dx.doi.org/10.1158/1535-7163.MCT-10-0090
  • Li P, Chen CH, Li S, Givi B, Yu Z, Zamarin D, Palese P, Fong Y, Wong RJ. Therapeutic effects of a fusogenic newcastle disease virus in treating head and neck cancer. Head Neck 2011; 33:1394-9; PMID:21928411; http://dx.doi.org/10.1002/hed.21609
  • Zamarin D, Holmgaard RB, Subudhi SK, Park JS, Mansour M, Palese P, Merghoub T, Wolchok JD, Allison JP. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 2014; 6:226ra32; PMID:24598590; http://dx.doi.org/10.1126/scitranslmed.3008095
  • Buijs P, van Nieuwkoop S, Van Eijck C, Fouchier R, Van den Hoogen B. Recombinant oncolytic Newcastle disease virus for treatment of pancreatic adenocarcinoma. 8th International Conference on Oncolytic Virus Therapeutics 2014
  • Buijs PR, van Eijck CH, Hofland LJ, Fouchier RA, van den Hoogen BG. Different responses of human pancreatic adenocarcinoma cell lines to oncolytic Newcastle disease virus infection. Cancer Gene Ther 2014; 21:24-30; PMID:24384773; http://dx.doi.org/10.1038/cgt.2013.78
  • Buijs PR, van Amerongen G, van Nieuwkoop S, Bestebroer TM, van Run PR, Kuiken T, Fouchier RA, van Eijck CH, van den Hoogen BG. Intravenously injected Newcastle disease virus in non-human primates is safe to use for oncolytic virotherapy. Cancer Gene Ther 2014; 21(11):463-71; PMID:25257305; http://dx.doi.org/10.1038/cgt.2014.51
  • Hastie E, Grdzelishvili VZ. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J Gen Virol 2012; 93:2529-45; PMID:23052398; http://dx.doi.org/10.1099/vir.0.046672-0
  • Quiroz E, Moreno N, Peralta PH, Tesh RB. A human case of encephalitis associated with vesicular stomatitis virus (Indiana serotype) infection. Am J Trop Med Hyg 1988; 39:312-4; PMID:2845825
  • Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N, Bell JC. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 2000; 6:821-5; PMID:10888934; http://dx.doi.org/10.1038/77558
  • Barber GN. VSV-tumor selective replication and protein translation. Oncogene 2005; 24:7710-9; PMID:16299531; http://dx.doi.org/10.1038/sj.onc.1209042
  • Oliere S, Arguello M, Mesplede T, Tumilasci V, Nakhaei P, Stojdl D, Sonenberg N, Bell J, Hiscott J. Vesicular stomatitis virus oncolysis of T lymphocytes requires cell cycle entry and translation initiation. J Virol 2008; 82:5735-49; PMID:18417567; http://dx.doi.org/10.1128/JVI.02601-07
  • LeBlanc AK, Naik S, Galyon GD, Jenks N, Steele M, Peng KW, Federspiel MJ, Donnell R, Russell SJ. Safety studies on intravenous administration of oncolytic recombinant vesicular stomatitis virus in purpose-bred beagle dogs. Hum Gene Ther Clin Dev 2013; 24:174-81; PMID:24219832; http://dx.doi.org/10.1089/humc.2013.165
  • Jenks N, Myers R, Greiner SM, Thompson J, Mader EK, Greenslade A, Griesmann GE, Federspiel MJ, Rakela J, Borad MJ, et al. Safety studies on intrahepatic or intratumoral injection of oncolytic vesicular stomatitis virus expressing interferon-beta in rodents and nonhuman primates. Hum Gene Ther 2010; 21:451-62; PMID:19911974; http://dx.doi.org/10.1089/hum.2009.111
  • Naik S, LeBlanc AK, Galyon GD, Frazier S, Jenks N, Steele M, Peng KW, Federspiel M, Donnell R, Russell SJ. Early findings from a comparative oncology study evaluating systemic VSV therapy in client owned dogs with spontaneous hematologic malignancies. 8th International Conference on Oncolytic Virus Therapeutics 2014
  • Stanifer ML, Cureton DK, Whelan SP. A recombinant vesicular stomatitis virus bearing a lethal mutation in the glycoprotein gene uncovers a second site suppressor that restores fusion. J Virol 2011; 85:8105-15; PMID:21680501; http://dx.doi.org/10.1128/JVI.00735-11
  • Harouaka D, Wertz GW. Second-site mutations selected in transcriptional regulatory sequences compensate for engineered mutations in the vesicular stomatitis virus nucleocapsid protein. J Virol 2012; 86:11266-75; PMID:22875970; http://dx.doi.org/10.1128/JVI.01238-12
  • Quinones-Kochs MI, Schnell MJ, Buonocore L, Rose JK. Mechanisms of loss of foreign gene expression in recombinant vesicular stomatitis viruses. Virology 2001; 287:427-35; PMID:11531419; http://dx.doi.org/10.1006/viro.2001.1058
  • Gao Y, Whitaker-Dowling P, Watkins SC, Griffin JA, Bergman I. Rapid adaptation of a recombinant vesicular stomatitis virus to a targeted cell line. J Virol 2006; 80:8603-12; PMID:16912309; http://dx.doi.org/10.1128/JVI.00142-06
  • Dinh PX, Panda D, Das PB, Das SC, Das A, Pattnaik AK. A single amino acid change resulting in loss of fluorescence of eGFP in a viral fusion protein confers fitness and growth advantage to the recombinant vesicular stomatitis virus. Virology 2012; 432:460-9; PMID:22832124; http://dx.doi.org/10.1016/j.virol.2012.07.004
  • Sarma N. Hand, foot, and mouth disease: current scenario and Indian perspective. Indian J Dermatol Venereol Leprol 2013; 79:165-75; PMID:23442455; http://dx.doi.org/10.4103/0378-6323.107631
  • Hughes PJ, North C, Minor PD, Stanway G. The complete nucleotide sequence of coxsackievirus A21. J Gen Virol 1989; 70(Pt 11):2943-52; PMID:2584950; http://dx.doi.org/10.1099/0022-1317-70-11-2943
  • Shafren DR, Dorahy DJ, Ingham RA, Burns GF, Barry RD. Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. J Virol 1997; 71:4736-43; PMID:9151867
  • Shafren DR, Au GG, Nguyen T, Newcombe NG, Haley ES, Beagley L, Johansson ES, Hersey P, Barry RD. Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, coxsackievirus a21. Clin Cancer Res 2004; 10:53-60; PMID:14734451; http://dx.doi.org/10.1158/1078-0432.CCR-0690-3
  • Andtbacka RHI, Au GG, Weisberg JI, Post L, Shafren DR. CAVATAK-mediated oncolytic immunotherapy in advanced melanoma patients. 8th International Conference on Oncolytic Virus Therapeutics 2014
  • Mendelsohn CL, Wimmer E, Racaniello VR. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 1989; 56:855-65; PMID:2538245; http://dx.doi.org/10.1016/0092-8674(89)90690-9
  • Merrill MK, Bernhardt G, Sampson JH, Wikstrand CJ, Bigner DD, Gromeier M. Poliovirus receptor CD155-targeted oncolysis of glioma. Neuro Oncol 2004; 6:208-17; PMID:15279713; http://dx.doi.org/10.1215/S1152851703000577
  • Goetz C, Everson RG, Zhang LC, Gromeier M. MAPK signal-integrating kinase controls cap-independent translation and cell type-specific cytotoxicity of an oncolytic poliovirus. Mol Ther 2010; 18:1937-46; PMID:20648000; http://dx.doi.org/10.1038/mt.2010.145
  • Gromeier M, Bossert B, Arita M, Nomoto A, Wimmer E. Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J Virol 1999; 73:958-64; PMID:9882296
  • Dobrikova EY, Broadt T, Poiley-Nelson J, Yang X, Soman G, Giardina S, Harris R, Gromeier M. Recombinant oncolytic poliovirus eliminates glioma in vivo without genetic adaptation to a pathogenic phenotype. Mol Ther 2008; 16:1865-72; PMID:18766173; http://dx.doi.org/10.1038/mt.2008.184
  • Gromeier M, Dobrikova E, Dobrikov M, Brown M, Desjardins A, Friedman H, Sampson JH, Friedman A, Bigner DD. Oncolytic poliovirus immunotherapy of glioblastoma. 8th International Conference on Oncolytic Virus Therapeutics 2014
  • Dobrikova EY, Goetz C, Walters RW, Lawson SK, Peggins JO, Muszynski K, Ruppel S, Poole K, Giardina SL, Vela EM, et al. Attenuation of neurovirulence, biodistribution, and shedding of a poliovirus:rhinovirus chimera after intrathalamic inoculation in Macaca fascicularis. J Virol 2012; 86:2750-9; PMID:22171271; http://dx.doi.org/10.1128/JVI.06427-11
  • Jahan N, Wimmer E, Mueller S. A host-specific, temperature-sensitive translation defect determines the attenuation phenotype of a human rhinovirus/poliovirus chimera, PV1(RIPO). J Virol 2011; 85:7225-35; PMID:21561914; http://dx.doi.org/10.1128/JVI.01804-09
  • Reddy PS, Burroughs KD, Hales LM, Ganesh S, Jones BH, Idamakanti N, Hay C, Li SS, Skele KL, Vasko AJ, et al. Seneca Valley virus, a systemically deliverable oncolytic picornavirus, and the treatment of neuroendocrine cancers. J Natl Cancer Inst 2007; 99:1623-33; PMID:17971529; http://dx.doi.org/10.1093/jnci/djm198
  • Poirier JT, Dobromilskaya I, Moriarty WF, Peacock CD, Hann CL, Rudin CM. Selective tropism of Seneca Valley virus for variant subtype small cell lung cancer. J Natl Cancer Inst 2013; 105:1059-65; PMID:23739064; http://dx.doi.org/10.1093/jnci/djt130
  • Morton CL, Houghton PJ, Kolb EA, Gorlick R, Reynolds CP, Kang MH, Maris JM, Keir ST, Wu J, Smith MA. Initial testing of the replication competent Seneca Valley virus (NTX-010) by the pediatric preclinical testing program. Pediatric Blood Cancer 2010; 55:295-303; PMID:20582972; http://dx.doi.org/10.1002/pbc.22535
  • Yu L, Baxter PA, Zhao X, Liu Z, Wadhwa L, Zhang Y, Su JM, Tan X, Yang J, Adesina A, et al. A single intravenous injection of oncolytic picornavirus SVV-001 eliminates medulloblastomas in primary tumor-based orthotopic xenograft mouse models. Neuro Oncol 2011; 13:14-27; PMID:21075780; http://dx.doi.org/10.1093/neuonc/noq148
  • Liu Z, Zhao X, Mao H, Baxter PA, Huang Y, Yu L, Wadhwa L, Su JM, Adesina A, Perlaky L, et al. Intravenous injection of oncolytic picornavirus SVV-001 prolongs animal survival in a panel of primary tumor-based orthotopic xenograft mouse models of pediatric glioma. Neuro Oncol 2013; 15:1173-85; PMID:23658322; http://dx.doi.org/10.1093/neuonc/not065
  • Rudin CM, Poirier JT, Senzer NN, Stephenson J, Jr., Loesch D, Burroughs KD, Reddy PS, Hann CL, Hallenbeck PL. Phase I clinical study of Seneca Valley Virus (SVV-001), a replication-competent picornavirus, in advanced solid tumors with neuroendocrine features. Clin Cancer Res 2011; 17:888-95; PMID:21304001; http://dx.doi.org/10.1158/1078-0432.CCR-10-1706
  • Burke MJ, Ahern C, Weigel BJ, Poirier JT, Rudin CM, Chen Y, Cripe TP, Bernhardt MB, Blaney SM. Phase I trial of seneca valley virus (NTX-010) in children with relapsed/refractory solid tumors: a report of the children's oncology group. Pediatr Blood Cancer. 2015 May; 62(5):743-50.
  • Miller JD, van der Most RG, Akondy RS, Glidewell JT, Albott S, Masopust D, Murali-Krishna K, Mahar PL, Edupuganti S, Lalor S, et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 2008; 28:710-22; PMID:18468462; http://dx.doi.org/10.1016/j.immuni.2008.02.020
  • Kirn DH, Wang Y, Liang W, Contag CH, Thorne SH. Enhancing poxvirus oncolytic effects through increased spread and immune evasion. Cancer Res 2008; 68:2071-5; PMID:18381410; http://dx.doi.org/10.1158/0008-5472.CAN-07-6515
  • Thorne SH, Hwang TH, O'Gorman WE, Bartlett DL, Sei S, Kanji F, Brown C, Werier J, Cho JH, Lee DE, et al. Rational strain selection and engineering creates a broad-spectrum, systemically effective oncolytic poxvirus, JX-963. J Clin Invest 2007; 117:3350-8; PMID:17965776; http://dx.doi.org/10.1172/JCI32727
  • Puhlmann M, Brown CK, Gnant M, Huang J, Libutti SK, Alexander HR, Bartlett DL. Vaccinia as a vector for tumor-directed gene therapy: biodistribution of a thymidine kinase-deleted mutant. Cancer Gene Ther 2000; 7:66-73; PMID:10678358; http://dx.doi.org/10.1038/sj.cgt.7700075
  • Kirn DH, Wang Y, Le Boeuf F, Bell J, Thorne SH. Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Med 2007; 4:e353; PMID:18162040; http://dx.doi.org/10.1371/journal.pmed.0040353
  • Shida H, Hinuma Y, Hatanaka M, Morita M, Kidokoro M, Suzuki K, Maruyama T, Takahashi-Nishimaki F, Sugimoto M, Kitamura R, et al. Effects and virulences of recombinant vaccinia viruses derived from attenuated strains that express the human T-cell leukemia virus type I envelope gene. J Virol 1988; 62:4474-80; PMID:3184271
  • Roenigk HH, Jr., Deodhar S, St Jacques R, Burdick K. Immunotherapy of malignant melanoma with vaccinia virus. Arch Dermatol 1974; 109:668-73; PMID:4828533; http://dx.doi.org/10.1001/archderm.1974.01630050014003
  • Lee SS, Eisenlohr LC, McCue PA, Mastrangelo MJ, Lattime EC. Intravesical gene therapy: in vivo gene transfer using recombinant vaccinia virus vectors. Cancer Res 1994; 54:3325-8; PMID:8012943
  • Lusky M, Erbs P, Foloppe J, Acres RB. Oncolytic vaccinia virus: a silver bullet? Expert Rev Vaccines 2010; 9:1353-6; PMID:21105770; http://dx.doi.org/10.1586/erv.10.137
  • Lauer UM, Beil J, Berchtold S, Zimmermann M, Koppenhöfer U, Bitzer M, Malek NP, Glatzle J, Königsrainer A, Möhle R, et al. Tracking of tumor cell colonization, in-patient replication, and oncolysis by GL-ONC1 employed in a phase I/II virotherapy study on patients with peritoneal carcinomatosis. 8th International Conference on Oncolytic Virus Therapeutics 2014
  • Reinboth J, Ralph C, Sciagalla P, Yu YA, Agular J, Chen N, Szalay AA, Melcher AA, West EJ. Oncolytic vaccinia virus GL-ONC1 treatment of colorectal cancer patients. 8th International Conference on Oncolytic Virus Therapeutics 2014
  • Cono J, Casey CG, Bell DM. Smallpox vaccination and adverse reactions. Guidance for clinicians. MMWR Recomm Rep 2003; 52:1-28; PMID:12617510
  • Breitbach CJ, Burke J, Jonker D, Stephenson J, Haas AR, Chow LQ, Nieva J, Hwang TH, Moon A, Patt R, et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 2011; 477:99-102; PMID:21886163; http://dx.doi.org/10.1038/nature10358
  • Qin L, Evans DH. Genome scale patterns of recombination between coinfecting vaccinia viruses. J Virol 2014; 88:5277-86; PMID:24574414; http://dx.doi.org/10.1128/JVI.00022-14
  • Rosen L, Evans HE, Spickard A. Reovirus infections in human volunteers. Am J Hyg 1963; 77:29-37; PMID:13974840
  • Tai JH, Williams JV, Edwards KM, Wright PF, Crowe JE, Jr., Dermody TS. Prevalence of reovirus-specific antibodies in young children in Nashville, Tennessee. J Infect Dis 2005; 191:1221-4; PMID:15776366; http://dx.doi.org/10.1086/428911
  • Maitra R, Ghalib MH, Goel S. Reovirus: a targeted therapeutic–progress and potential. Mol Cancer Res 2012; 10:1514-25; PMID:23038811; http://dx.doi.org/10.1158/1541-7786.MCR-12-0157
  • Shmulevitz M, Marcato P, Lee PW. Unshackling the links between reovirus oncolysis, Ras signaling, translational control and cancer. Oncogene 2005; 24:7720-8; PMID:16299532; http://dx.doi.org/10.1038/sj.onc.1209041
  • Lemay G, Tumilasci V, Hiscott J. Uncoating reo: uncovering the steps critical for oncolysis. Mol Ther 2007; 15:1406-7; PMID:17646836; http://dx.doi.org/10.1038/sj.mt.6300242
  • van Houdt WJ, Smakman N, van den Wollenberg DJ, Emmink BL, Veenendaal LM, van Diest PJ, Hoeben RC, Borel Rinkes IH, Kranenburg O. Transient infection of freshly isolated human colorectal tumor cells by reovirus T3D intermediate subviral particles. Cancer Gene Ther 2008; 15:284-92; PMID:18259212; http://dx.doi.org/10.1038/cgt.2008.2
  • van den Wollenberg DJ, Dautzenberg IJ, van den Hengel SK, Cramer SJ, de Groot RJ, Hoeben RC. Isolation of reovirus T3D mutants capable of infecting human tumor cells independent of junction adhesion molecule-A. PLoS One 2012; 7:e48064; PMID:23110175; http://dx.doi.org/10.1371/journal.pone.0048064
  • Van den Wollenberg DJ, Dautzenberg IJ, Van den Hengel SK, Ros W, Nadif S, Hoeben RC. Development of replication-competent, expanded-tropism oncolytic reovirus carrying a heterologous transgene. 8th International Conference on Oncolytic Virus Therapeutics 2014
  • Harrington KJ, Vile RG, Melcher A, Chester J, Pandha HS. Clinical trials with oncolytic reovirus: moving beyond phase I into combinations with standard therapeutics. Cytokine Growth Factor Rev 2010; 21:91-8; PMID:20223697; http://dx.doi.org/10.1016/j.cytogfr.2010.02.006
  • Chakrabarty R, Tran H, Fortin Y, Yu Z, Shen SH, Kolman J, Onions D, Voyer R, Hagerman A, Serl S, et al. Evaluation of homogeneity and genetic stability of REOLYSIN (pelareorep) by complete genome sequencing of reovirus after large scale production. Appl Microbiol Biotechnol 2014; 98:1763-70; PMID:24419798; http://dx.doi.org/10.1007/s00253-013-5499-0
  • Jolly DJ, Ibanez CE, Ostertag D, Robbins JM, Kasahara N, Pertschuk D, Gruber HE. Toca 511: update on the use of Retroviral Replicating Vector as an anti-tumor agent in preclinical and clinical trials. 8th International Conference on Oncolytic Virus Therapeutics 2014
  • Solly SK, Trajcevski S, Frisen C, Holzer GW, Nelson E, Clerc B, Abordo-Adesida E, Castro M, Lowenstein P, Klatzmann D. Replicative retroviral vectors for cancer gene therapy. Cancer Gene Ther 2003; 10:30-9; PMID:12489026; http://dx.doi.org/10.1038/sj.cgt.7700521
  • Logg CR, Logg A, Tai CK, Cannon PM, Kasahara N. Genomic stability of murine leukemia viruses containing insertions at the Env-3' untranslated region boundary. J Virol 2001; 75:6989-98; PMID:11435579; http://dx.doi.org/10.1128/JVI.75.15.6989-6998.2001
  • Hlavaty J, Jandl G, Liszt M, Petznek H, Konig-Schuster M, Sedlak J, Egerbacher M, Weissenberger J, Salmons B, Gunzburg WH, et al. Comparative evaluation of preclinical in vivo models for the assessment of replicating retroviral vectors for the treatment of glioblastoma. J Neurooncol 2011; 102:59-69; PMID:20623247; http://dx.doi.org/10.1007/s11060-010-0295-5
  • Perez OD, Logg CR, Hiraoka K, Diago O, Burnett R, Inagaki A, Jolson D, Amundson K, Buckley T, Lohse D, et al. Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression. Mol Ther 2012; 20:1689-98; PMID:22547150; http://dx.doi.org/10.1038/mt.2012.83
  • Kawasaki Y, Tamamoto A, Takagi-Kimura M, Maeyama Y, Yamaoka N, Terada N, Okamura H, Kasahara N, Kubo S. Replication-competent retrovirus vector-mediated prodrug activator gene therapy in experimental models of human malignant mesothelioma. Cancer Gene Ther 2011; 18:571-8; PMID:21660062; http://dx.doi.org/10.1038/cgt.2011.25

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.