2,019
Views
26
CrossRef citations to date
0
Altmetric
Reviews

Pancreatic cancer: Update on immunotherapies and algenpantucel-L

, , , , &
Pages 563-575 | Received 08 Jun 2015, Accepted 07 Sep 2015, Published online: 05 May 2016

References

  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5):E359-86; PMID:25220842; http://dx.doi.org/10.1002/ijc.29210
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015; 65(1):5-29; PMID:25559415; http://dx.doi.org/10.3322/caac.21254
  • Bosetti C, Bertuccio P, Malvezzi M, Levi F, Chatenoud L, Negri E, La Vecchia C. Cancer mortality in Europe, 2005-2009, and an overview of trends since 1980. Ann Oncol 2013; 24(10):2657-71; PMID:23921790; http://dx.doi.org/10.1093/annonc/mdt301
  • Oettle H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Ridwelski K, Niedergethmann M, Zulke C, Fahlke J, Arning MB, et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA 2013; 310(14):1473-81; PMID:24104372; http://dx.doi.org/10.1001/jama.2013.279201
  • Burris HA, 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997; 15(6):2403-13; PMID:9196156
  • Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardiere C, et al. FOLFIRINOX vs. gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011; 364(19):1817-25; PMID:21561347; http://dx.doi.org/10.1056/NEJMoa1011923
  • Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013; 369(18):1691-703; PMID:24131140; http://dx.doi.org/10.1056/NEJMoa1304369
  • Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno, A, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321(5897):1801-6; PMID:18772397; http://dx.doi.org/10.1126/science.1164368
  • Schmitz-Winnenthal FH, Volk C, Z'Graggen K, Galindo L, Nummer D, Ziouta Y, Bucur M, Weitz J, Schirrmacher V, Buchler MW, Beckhove P. High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res 2005; 65:10079-87; PMID:16267034; http://dx.doi.org/10.1158/0008-5472.CAN-05-1098
  • Fukunaga A, Miyamoto M, Cho Y, Murakami S, Kawarada Y, Oshikiri T, Kato K, Kurokawa T, Suzuoki M, Nakakubo Y, et al. CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas 2004; 28, e26-31; PMID:14707745; http://dx.doi.org/10.1097/00006676-200401000-00023
  • Zhang Y, Yan W, Mathew E, Bednar F, Wan S, Collins MA, Evans RA, Welling TH, Vonderheide RH, Pasca di Magliano M. CD4+ T lymphocyte ablation prevents pancreatic carcinogenesis in mice. Cancer Immunol Res 2014; 2(5):423-35; PMID:24795355; http://dx.doi.org/10.1158/2326-6066.CIR-14-0016-T
  • Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 2006; 12(18):5423-34; PMID:17000676; http://dx.doi.org/10.1158/1078-0432.CCR-06-0369
  • Esposito I, Menicagli M, Funel N, Bergmann F, Boggi U, Mosca F, Bevilacqua G, Campani D. Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol 2004; 57(6):630-636; PMID:15166270; http://dx.doi.org/10.1136/jcp.2003.014498
  • Dodson LF, Hawkins WG, Goedegebuure P. Potential targets for pancreatic cancer immunotherapeutics. Immunotherapy 2011; 3(4):517-37; PMID:21463193; http://dx.doi.org/10.2217/imt.11.10
  • Sideras K, Braat H, Kwekkeboom J, van Eijck CH, Peppelenbosch MP, Sleijfer S, Bruno, M. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies. Cancer Treat Rev 2014; 40(4):513-22; PMID:24315741; http://dx.doi.org/10.1016/j.ctrv.2013.11.005
  • Ikemoto T, Yamaguchi T, Morine Y, Imura S, Soejima Y, Fujii M, Maekawa Y, Yasutomo K, Shimada M. Clinical roles of increased populations of Foxp3+CD4+ T cells in peripheral blood from advanced pancreatic cancer patients. Pancreas 2006; 33:386-90; PMID:17079944; http://dx.doi.org/10.1097/01.mpa.0000240275.68279.13
  • Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 2011; 60(10):1419-30; PMID:21644036; http://dx.doi.org/10.1007/s00262-011-1028-0
  • Bellone G, Turletti A, Artusio E, Mareschi K, Carbone A, Tibaudi D, Robecchi A, Emanuelli G, Rodeck U. Tumor-associated transforming growth factor-β and interleukin-10 contribute to a systemic Th2 immune phenotype in pancreatic carcinoma patients. Amer J Pathol 1999; 155:537-47; http://dx.doi.org/10.1016/S0002-9440(10)65149-8
  • Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 2006; 176:6752-61; PMID:16709834; http://dx.doi.org/10.4049/jimmunol.176.11.6752
  • Geng L, Huang D, Liu J, Qian Y, Deng J, Li D, Hu Z, Zhang J, Jiang G, Zheng S. B7-H1 up-regulated expression in human pancreatic carcinoma tissue associates with tumor progression. J Cancer Res Clin Oncol 2008; 134:1021-27; PMID:18347814; http://dx.doi.org/10.1007/s00432-008-0364-8
  • Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Enomoto K, Yagita H, Azuma M, Nakajima Y. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 2007; 13:2151-57; PMID:17404099; http://dx.doi.org/10.1158/1078-0432.CCR-06-2746
  • Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, Rivera A, Ji B, Evans DB, Logsdon CD. Cancer-Associated Stromal Fibroblasts Promote Pancreatic Tumor Progression. Cancer Res 2008; 68(3):918-26; PMID:18245495; http://dx.doi.org/10.1158/0008-5472.CAN-07-5714
  • Erez N, Truitt M, Olson P, Arron ST, Hanahan D. Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-kappaB-Dependent Manner. Cancer Cell 2010; 17:135-47; PMID:20138012; http://dx.doi.org/10.1016/j.ccr.2009.12.041
  • Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO, Gopinathan A, Tuveson DA, Fearon DT. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science 2010; 330:827-30; PMID:21051638; http://dx.doi.org/10.1126/science.1195300
  • Feig C, Jones JO, Kraman M, Wells RJB, Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PDL1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci 2013; 110:20212-7; http://dx.doi.org/10.1073/pnas.1320318110
  • Fearon DT. The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol Res 2014; 2(3):187-93; PMID:24778314; http://dx.doi.org/10.1158/2326-6066.CIR-14-0002
  • Hardacre JM, Mulcahy M, Small W, Talamonti M, Obel J, Krishnamurthi S, Rocha-Lima CS, Safran H, Lenz HJ, Chiorean EG. Addition of algenpantucel-L immunotherapy to standard adjuvant therapy for pancreatic cancer: a phase 2 study. J Gastrointest Surg 2013; 17:94-100; PMID:23229886; http://dx.doi.org/10.1007/s11605-012-2064-6
  • Macher BA, Galili U. The Galalpha1,3Galbeta1,4GlcNAc-R (α-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim Biophys Acta 2008; 1780:75-88; PMID:18047841; http://dx.doi.org/10.1016/j.bbagen.2007.11.003
  • Galili U, Anaraki F, Thall A, Hill-Black C, Radic M. One percent of human circulating B lymphocytes are capable of producing the natural anti-Gal antibody. Blood 1993; 82:2485-93; PMID:7691263
  • Rother RP, Squinto SP. The α-galactosyl epitope: a sugar coating that makes viruses and cells unpalatable. Cell 1996; 86:185-8; PMID:8706123; http://dx.doi.org/10.1016/S0092-8674(00)80090-2
  • Link CJ Jr, Seregina T, Atchison R, Hall A, Muldoon R, Levy JP. Eliciting hyperacute xenograft response to treat human cancer: α(1,3) galactosyltransferase gene therapy. Anticancer Res 1998; 18:2301-8; PMID:9703870
  • Rossi GR, Mautino MR, Unfer RC, Seregina TM, Vahanian N, Link CJ. Effective treatment of preexisting melanoma with whole cell vaccines expressing α(1,3)-galactosyl epitopes. Cancer Res 2005; 65:10555-61; PMID:16288048; http://dx.doi.org/10.1158/0008-5472.CAN-05-0627
  • Hemstreet GP 3rd, Rossi GR, Pisarev VM, Enke CA, Helfner L, Hauke RJ, Tennant L, Ramsey WJ, Vahanian NN, Link CJ. Cellular immunotherapy study of prostate cancer patients and resulting IgG responses to peptide epitopes predicted from prostate tumor-associated autoantigens. J Immunother 2013; 36:57-65; PMID:23211622; http://dx.doi.org/10.1097/;CJI.0b013e3182780abc
  • Riker AI, Rossi GR, Masih P, Alsfeld LC, Denham F, Tennant L, Ramsey WJ, Vahanian NN, Link CJ. Combination immunotherapy for high-risk resected and metastatic melanoma patients. Ochsner J 2014; 14(2):164-74; PMID:24940124
  • Regine WF, Winter KA, Abrams R, Safran H, Hoffman JP, Konski A, Benson AB, Macdonald JS, Rich TA, Willett CG. Fluorouracil-based chemoradiation with either gemcitabine or fluorouracil chemotherapy after resection of pancreatic adenocarcinoma: 5-year analysis of the US. Intergroup/RTOG 9704 phase III trial. Ann Surg Oncol 2011; 18:1319-26; PMID:21499862; http://dx.doi.org/10.1245/s10434-011-1630-6
  • de Bruyn M, Wiersma VR, Helfrich W, Eggleton P, Bremer E. The ever-expanding immunomodulatory role of calreticulin in cancer immunity. Front Oncol 2015; 5:35; PMID:25750898; http://dx.doi.org/10.3389/fonc.2015.00035
  • Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Med 2007; 13:54-61; PMID:17187072; http://dx.doi.org/10.1038/nm1523
  • Rossi GR, Rocha Lima CM, Hardacre JM, Mulcahy MF, Talamonti MS, Obel JC, Safran H, Lenz HJ, Chiorean EG, Vahanian NN, et al. Anti-calreticulin antibody titers correlate with improved overall survival in a phase 2 clinical trial of algenpantucel-l immunotherapy for patients with resected pancreatic cancer. J Clin Oncol 2014; 32 5s Suppl: abstr 3029.
  • Rossi GR, Hardacre JM, Mulcahy MF, Talamonti MS, Obel JC, Rocha Lima CM, Safran H, Lenz HJ, Chiorean EG, Vahanian NN, et al. Algenpantucel-L immunotherapy for pancreatic cancer induces anti-mesothelin antibody titers that positively correlate with improved overall survival. J Clin Oncol 2013; 31 Suppl: abstr 3007.
  • Argani P, Iacobuzio-Donahue C, Ryu B, Rosty C, Goggins M, Wilentz RE, Murugesan SR, Leach SD, Jaffee E, Yeo CJ, et al. Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Ca Res 2001; 7(12):3862-68.
  • Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90:3539-43; PMID:8097319; http://dx.doi.org/10.1073/pnas.90.8.3539
  • Jaffee EM, Hruban RH, Biedrzycki B, Laheru D, Schepers K, Sauter PR, Goemann M, Coleman J, Grochow L, Donehower RC, et al. Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol 2001; 19:145-56; PMID:11134207
  • Lutz E, Yeo CJ, Lillemoe KD, Biedrzycki B, Kobrin B, Herman J, Sugar E, Piantadosi S, Cameron JL, Solt S, et al. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A Phase II trial of safety, efficacy, and immune activation. Ann Surg 2011; 253:328-35; PMID:21217520; http://dx.doi.org/10.1097/;SLA.0b013e3181fd271c
  • Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP, Bieler JG, Emens LA, Reilly RT, Jaffee EM. Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J Exp Med 2005; 201:1591-602; PMID:15883172; http://dx.doi.org/10.1084/jem.20042167
  • Laheru D, Lutz E, Burke J, Biedrzycki B, Solt S, Onners B, Tartakovsky I, Nemunaitis J, Le D, Sugar E, et al. Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Ca Res 2008; 14:1455-63; http://dx.doi.org/10.1158/1078-0432.CCR-07-0371
  • Le DT, Brockstedt DG, Nir-Paz R, Hampl J, Mathur S, Nemunaitis J, Sterman DH, Hassan R, Lutz E, Moyer B, et al. A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin Ca Res 2012; 18:858-68; http://dx.doi.org/10.1158/1078-0432.CCR-11-2121
  • Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T, Springett G, Morse M, Zeh H, Cohen D, Fine RL, et al. Safety and survival with GVAX pancreas prime and Listeria Monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol 2015; 33:1325-33; PMID:25584002; http://dx.doi.org/10.1200/;JCO.2014.57.4244
  • Gjertsen MK, Bakka A, Breivik J, Saeterdal I, Solheim BG, Soreide O, Thorsby E, Gaudernack G. Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation. Lancet 1995; 346:1399-400; PMID:7475823; http://dx.doi.org/10.1016/S0140-6736(95)92408-6
  • Gjertsen MK, Buanes T, Rosseland AR, Bakka A, Gladhaug I, Soreide O, Eriksen JA, Moller M, Baksaas I, Lothe RA, et al. Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: Clinical and immunological responses in patients with pancreatic adenocarcinoma. Int J Cancer 2001; 92:441-50; PMID:11291084; http://dx.doi.org/10.1002/ijc.1205
  • Weden S, Klemp M, Gladhaug IP, Moller M, Eriksen JA, Gaudernack G, Buanes T. Long-term follow-up of patients with resected pancreatic cancer following vaccination against mutant K-ras. Int J Cancer 2011; 128:1120-28; PMID:20473937; http://dx.doi.org/10.1002/ijc.25449
  • Abou-Alfa GK, Chapman PB, Feilchenfeldt J, Brennan MF, Capanu M, Gansukh B, Jacobs G, Levin A, Neville D, Kelsen DP, O'Reilly EM. Targeting mutated K-ras in pancreatic adenocarcinoma using an adjuvant vaccine. Am J Clin Oncol 2011; 34:321-5; PMID:20686403; http://dx.doi.org/10.1097/;COC.0b013e3181e84b1f
  • Cohn A, Morse MA, O'Neil B, et al. Treatment of ras mutation-bearing solid tumors using whole recombinant S cerevisiae yeast expressing mutated ras: preliminary safety and immunogenicity results from phase I trial. J Clin Oncol 2005; 23(16s):2571.
  • Muscarella P, Wilfong LS, Ross SB, Richards DA, Raynov J, Fisher WE, Flynn PJ, Whiting SH, Rosemurgy A, Harrell FE, et al. A randomized, placebo-controlled, double blind, multicenter phase II adjuvant trial of efficacy, immunogenicity, and safety of GI-4000 plus gemcitabine versus gemcitabine alone in patients with resected pancreas cancer with activating RAS mutations/survival and immunology assays of the R1 subgroup. J Clin Oncol 2012; 30 suppl; abstr e14501.
  • Coeshott C, Holmes T, Mattson A, et al. Immune responses to mutated ras – development of a yeast based immunotherapeutic. In AACR-RAS Oncogene Conference 2014. Mol Cancer Res 2014;12: abstract A28.
  • Hartley ML, Bade NA, Prins PA, Ampie L, Marshall JL. Pancreatic cancer, treatment options, and GI-4000. Human Vaccines Immunother 2014; 10(11):3347-53.
  • Hiyama E, Kodama T, Shinbara K, Iwao T, Itoh M, Hiyama K, Shay JW, Matsuura Y, Yokoyama T. Telomerase activity is detected in pancreatic cancer but not in benign tumors. Cancer Res 1997; 57:326-31; PMID:9000577
  • Suehara N, Mizumoto K, Kusumoto M, Niiyama H, Ogawa T, Yamaguchi K, Yokohata K, Tanaka M. Telomerase activity detected in pancreatic juice 19 months before a tumor is detected in a patient with pancreatic cancer. Amer J Gastroenterol 1998; 93:1967-71; http://dx.doi.org/10.1111/j.1572-0241.1998.00557.x
  • Bernhardt SL, Gjertsen MK, Trachsel S, Moller M, Eriksen JA, Meo M, Buanes T, Gaudernack G. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: A dose escalating phase I/;II study. Br J Cancer 2006; 95:1474-82; PMID:17060934; http://dx.doi.org/10.1038/sj.bjc.6603437
  • Middleton GW, Silcocks P, Cox T, Valle J, Wadsley J, Propper D, Coxon F, et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open label, randomized, Phase 3 trial. Lancet Oncol 2014; 15(8):829-40; PMID:24954781; http://dx.doi.org/10.1016/S1470-2045(14)70236-0
  • Gunturu KS, Rossi GR, Saif MW. Immunotherapy updates in pancreatic cancer: are we there yet? Ther Adv Med Oncol 2013; 5:81-9; PMID:23323149; http://dx.doi.org/10.1177/1758834012462463
  • Korc M. Pathways for aberrant angiogenesis in pancreatic cancer. Mol Cancer 2003; 2:8; PMID:12556241; http://dx.doi.org/10.1186/1476-4598-2-8
  • Okuyama R, Aruga A, Hatori T, Takeda K, Yamamoto M. Immunological responses to a multi-peptide vaccine targeting cancer-testis antigens and VEGFRs in advanced pancreatic cancer patients. Oncoimmunology 2013; 2:e27010; PMID:24498547; http://dx.doi.org/10.4161/onci.27010
  • Terashima T, Mizukoshi E, Arai K, Yamashita T, Yoshida M, Ota H, Onishi I, Kayahara M, Ohtsubo K, Kagaya T, et al. P53, hTERT, WT-1, and VEGFR2 are the most suitable targets for cancer vaccine therapy in HLA-A24 positive pancreatic adenocarcinoma. Cancer Immunol Immunother 2014; 63(5):479-89; PMID:24633336; http://dx.doi.org/10.1007/s00262-014-1529-8
  • Miyazawa M, Ohsawa R, Tsunoda T, Hirono S, Kawai M, Tani M, Nakamura Y, Yamaue H. Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer. Cancer Sci 2010; 101:433-9; PMID:19930156; http://dx.doi.org/10.1111/j.1349-7006.2009.01416.x
  • Schmitz-Winnenthal FH, Hohmann N, Niethammer AG, Friedrich T, Lubenau H, Springer M, Breiner KM, Mikus G, Ulrich A, Buechler MW, et al. Anti-angiogenic activity of VXM01, an oral T-cell vaccine against VEGF receptor 2, in patients with advanced pancreatic cancer: a randomized, placebo-controlled, phase 1 trial. Oncoimmunology 2015; 16: 4(4):e1001217; http://dx.doi.org/10.1080/;2162402X.2014.1001217
  • Satoh K, Kaneko K, Hirota M, Masamune A, Satoh A, Shimosegawa T. Expression of survivin is correlated with cancer cell apoptosis and is involved in the development of human pancreatic duct cell tumors. Cancer 2001; 92:271-8; PMID:11466679; http://dx.doi.org/10.1002/1097-0142(20010715)92:2%3c271::AID-CNCR1319%3e3.0.CO;2-0
  • Kameshima H, Tsuruma T, Kutomi G, Shima H, Iwayama Y, Kimura Y, Imamura M, Torigoe T, Takahashi A, Hirohashi Y, et al. Immunotherapeutic benefit of α-interferon (IFNalpha) in survivin2B-derived peptide vaccination for advanced pancreatic cancer patients. Cancer Sci 2013; 104:124-9; PMID:23078230; http://dx.doi.org/10.1111/cas.12046
  • Wobser M, Keikavoussi P, Kunzmann V, Weininger M, Andersen MH, Becker JC. Complete remission of liver metastasis of pancreatic cancer under vaccination with a HLA-A2 restricted peptide derived from the universal tumor antigen survivin. Cancer Immunol Immunother 2006; 55(10):1294-8; PMID:16315030; http://dx.doi.org/10.1007/s00262-005-0102-x
  • Monstein HJ, Ohlsson B, Axelson J. Differential expression of gastrin, cholecystokinin-A, and cholecystokinin-B receptor mRNA in human pancreatic cancer cell lines. Scand J Gastroenterol 2001; 36:738-43; PMID:11444473; http://dx.doi.org/10.1080/003655201300192003
  • Gilliam AD, Broome P, Topuzov EG, Garin AM, Pulay I, Humphreys J, Whitehead A, Takhar A, Rowlands BJ, Beckingham IJ. An international multicenter randomized controlled trial of G17DT in patients with pancreatic cancer. Pancreas 2012; 41, 374-9; PMID:22228104; http://dx.doi.org/10.1097/;MPA.0b013e31822ade7e
  • Oki Y, Younes A. Heat shock protein-based cancer vaccines. Expert Rev Vaccines 2004; 3:403-11; PMID:15270645; http://dx.doi.org/10.1586/14760584.3.4.403
  • Maki RG, Livingston PO, Lewis JJ, Janetzki S, Klimstra D, Desantis D, Srivastava PK, Brennan MF. A phase I pilot study of autologous heat shock protein vaccine HSPPC-96 in patients with resected pancreatic adenocarcinoma. Dig Dis Sci 2007; 52:1964-72; PMID:17420942; http://dx.doi.org/10.1007/s10620-006-9205-2
  • Rong Y, Qin X, Jin D, Lou W, Wu L, Wang D, Wu W, Ni X, Mao Z, Kuang T, Zang YQ. A phase I pilot trial of MUC1-peptide-pulsed dendritic cells in the treatment of advanced pancreatic cancer. Clin Exper Med 2012; 12:173-80; http://dx.doi.org/10.1007/s10238-011-0159-0
  • Kotera Y, Fontenot JD, Pecher G, Metzgar RS, Finn OJ. Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients. Cancer Res 1994; 54:2856-60; PMID:7514493
  • Pecher G, Haring A, Kaiser L, Thiel E. Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a phase I/;II clinical trial. Cancer Immunol Immunother 2002; 51:669-73; PMID:12439613; http://dx.doi.org/10.1007/s00262-002-0317-z
  • Lepisto AJ, Moser AJ, Zeh H, Lee K, Bartlett D, McKolanis JR, Geller BA, Schmotzer A, Potter DP, Whiteside T, et al. A phase I/;II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther 2008; 6:955-64; PMID:19129927
  • Kimura Y, Tsukada J, Tomoda T, Takahashi H, Imai K, Shimamura K, Sunamura M, Yonemitsu Y, Shimodaira S, Koido S, et al. Clinical and immunologic evaluation of dendritic cell-based immunotherapy in combination with gemcitabine and/or S-1 in patients with advanced pancreatic carcinoma. Pancreas 2012; 41:195-205; PMID:21792083; http://dx.doi.org/10.1097/;MPA.0b013e31822398c6
  • Morse MA, Nair SK, Boczkowski D, Tyler D, Hurwitz HI, Proia A, Clay TM, Schlom J, Gilboa E, Lyerly HK. The feasibility and safety of immunotherapy with dendritic cells loaded with CEA mRNA following neoadjuvant chemoradiotherapy and resection of pancreatic cancer. Int J Gastrointest Cancer 2002; 32:1-6; PMID:12630764; http://dx.doi.org/10.1385/;IJGC:32:1:1
  • Kaufman HL, Kim-Schulze S, Manson K, DeRaffele G, Mitcham J, Seo KS, Kim DW, Marshall J. Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer. J Transl Med 2007; 5:60; PMID:18039393; http://dx.doi.org/10.1186/1479-5876-5-60
  • Dalgleish AG, The IMAGE I Trial Investigators. A multicenter randomized, open-label, proof-of-concept, phase II trial comparing gemcitabine with and without IMM-101 in advanced pancreatic cancer. J Clin Oncol 2015; 33 3 Suppl:abstr 336.
  • Dalgleish AG, The IMAGE I Trial Investigators. Long term survival in IMAGE 1, a randomized, open-label phase II trial comparing gemcitabine with and without IMM-101 in advanced pancreatic cancer. J Clin Oncol 2015; 33 Suppl:abstr 3051.
  • Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kammula US, Sherry RM, Topalian SL, Yang JC, Lowy I, Rosenberg SA. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 2010; 33:828-33; PMID:20842054; http://dx.doi.org/10.1097/;CJI.0b013e3181eec14c
  • Aglietta M, Barone C, Sawyer MB, Moore MJ, Miller WH, Jr, Bagala C, Colombi F, Cagnazzo C, Gioeni L, Wang E, et al. A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann Oncol 2014; 25:1750-5; PMID:24907635; http://dx.doi.org/10.1093/annonc/mdu205
  • Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S, Zheng L, Diaz LA Jr, Donehower RC, Jaffee EM, Laheru DA. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother 2013; 36:382-9; PMID:23924790; http://dx.doi.org/10.1097/;CJI.0b013e31829fb7a2
  • Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/;CD40L engagement in the immune system. Immunol Rev. 2009; 229(1):152-72; PMID:19426221; http://dx.doi.org/10.1111/j.1600-065X.2009.00782.x
  • Beatty GL, Torigian DA, Chiorean EG, Saboury B, Brothers A, Alavi A, Troxel AB, Sun W, Teitelbaum UR, Vonderheide RH, O'Dwyer PJ. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Ca Res 2013; 19:6286-95; http://dx.doi.org/10.1158/1078-0432.CCR-13-1320
  • Zippelius A, Schreiner J, Herzig P, Muller P. Induced PD-L1 expression mediates acquired resistance to agonistic anti-CD40 treatment. Cancer Immunol Res 2015; 3:236-44; PMID:25623164; http://dx.doi.org/10.1158/2326-6066.CIR-14-0226
  • Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998; 281:1191-3; PMID:9712583; http://dx.doi.org/10.1126/science.281.5380.1191
  • Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, Marshall B, Chandler P, Antonia AJ, Burgess R, Slingluff CL, Mellor AL. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002; 297:1867-70; PMID:12228717; http://dx.doi.org/10.1126/science.1073514
  • Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004; 103:4619-21; PMID:15001472; http://dx.doi.org/10.1182/blood-2003-11-3909
  • Witkiewicz A, Williams TK, Cozzitorto J, Durkan B, Showalter SL, Yeo CJ, Brody JR. Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection. J Am Coll Surg 2008; 206:849-6; PMID:18471709; http://dx.doi.org/10.1016/j.jamcollsurg.2007.12.014
  • Manuel ER, Chen J, D'Apuzzo M, Lampa MG, Kaltcheva TI, Thompson CB, Ludwig T, Chung V, Diamond DJ. Salmonella-based therapy targeting indoleamine 2,3-dioxygenase coupled with enzymatic depletion of tumor hyaluronan induces complete regression of aggressive pancreatic tumors. Cancer Immunol Res 2015; 3(9):1096-1107. PMID:26134178
  • Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med 2013; 210:1389-402; PMID:23752227; http://dx.doi.org/10.1084/jem.20130066
  • Hedvat M, Huszar D, Herrmann A, Gozgit JM, Schroeder A, Sheehy A, Buettner R, Proia D, Kowolik CM, Xin H, et al. The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 2009; 16:487-97; PMID:19962667; http://dx.doi.org/10.1016/j.ccr.2009.10.015
  • Lesina M, Kurkowski MU, Ludes K, Rose-John S, Treiber M, Kloppel G, Yoshimura A, Reindl W, Sipos B, Akira S, et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 2011; 19:456-69; PMID:21481788; http://dx.doi.org/10.1016/j.ccr.2011.03.009
  • Gilabert M, Calvo E, Airoldi A, Hamidi T, Moutardier V, Turrini O, Iovanna J. Pancreatic cancer-induced cachexia is Jak2-dependent in mice. J Cell Physiol 2014; 229:1437-43; PMID:24648112; http://dx.doi.org/10.1002/jcp.24580
  • Hurwitz H, Uppal N, Wagner SA, et al. A randomized double-blind phase 2 study of ruxolitinib or placebo with capecitabine as second-line therapy in patients with metastatic pancreatic cancer. J Clin Oncol 2014; 32(5s) Suppl:abstr 4000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.