5,321
Views
162
CrossRef citations to date
0
Altmetric
Reviews

PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity

, , , &
Pages 1056-1069 | Received 24 Aug 2015, Accepted 02 Nov 2015, Published online: 22 Mar 2016

References

  • Leleux J, Roy K. Micro and nanoparticle-based delivery systems for vaccine immunotherapy: an immunological and materials perspective. Adv Healthc Mater 2013; 2:72-94; PMID:23225517; http://dx.doi.org/10.1002/adhm.201200268
  • Bazin H. A brief history of the prevention of infectious diseases by immunisations. Comp Immunol Microbiol Infect Dis 2003; 26:293-308; PMID:12818618; http://dx.doi.org/10.1016/S0147-9571(03)00016-X
  • Parrino J, Graham BS. Smallpox vaccines: Past, present, and future. J Allergy Clin Immunol 2006; 118:1320-6; PMID:17157663; http://dx.doi.org/10.1016/j.jaci.2006.09.037
  • O'Hagan DT, Rappuoli R. Novel approaches to vaccine delivery. Pharm Res 2004; 21:1519-30; PMID:15497674; http://dx.doi.org/10.1023/B:PHAM.0000041443.17935.33
  • Salvador A, Igartua M, Hernandez RM, Pedraz JL. An overview on the field of micro- and nanotechnologies for synthetic Peptide-based vaccines. J Drug Deliv 2011; 2011:181646; PMID:21773041; http://dx.doi.org/10.1155/2011/181646
  • Vandana P, Priyanka P. Potential of Nanocarriers in Antigen Delivery: The Path to Successful Vaccine Delivery. Nanocarriers 2014; 1:10-45
  • Demento SL, Siefert AL, Bandyopadhyay A, Sharp FA, Fahmy TM. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol 2011; 29:294-306; PMID:21459467; http://dx.doi.org/10.1016/j.tibtech.2011.02.004
  • Black M, Trent A, Tirrell M, Olive C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev Vaccines 2010; 9:157-73; PMID:20109027; http://dx.doi.org/10.1586/erv.09.160
  • Demento SL, Cui W, Criscione JM, Stern E, Tulipan J, Kaech SM, Fahmy TM. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials 2012; 33:4957-64; PMID:22484047; http://dx.doi.org/10.1016/j.biomaterials.2012.03.041
  • Elamanchili P, Lutsiak CM, Hamdy S, Diwan M, Samuel J. “Pathogen-mimicking” nanoparticles for vaccine delivery to dendritic cells. J Immunother 2007; 30:378-95; PMID:17457213; http://dx.doi.org/10.1097/CJI.0b013e31802cf3e3
  • Cruz LJ, Rosalia RA, Kleinovink JW, Rueda F, Lowik CW, Ossendorp F. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. J Control Release 2014; 192:209-18; PMID:25068703; http://dx.doi.org/10.1016/j.jconrel.2014.07.040
  • Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, Torensma R, Figdor CG. Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release 2010; 144:118-26; PMID:20156497; http://dx.doi.org/10.1016/j.jconrel.2010.02.013
  • van den Boorn JG, Hartmann G. Turning tumors into vaccines: co-opting the innate immune system. Immunity 2013; 39:27-37; PMID:23890061; http://dx.doi.org/10.1016/j.immuni.2013.07.011
  • Rosalia RA, Cruz LJ, van Duikeren S, Tromp AT, Silva AL, Jiskoot W, de Gruijl T, Lowik C, Oostendorp J, van der Burg SH, et al. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials 2015; 40:88-97; PMID:25465442; http://dx.doi.org/10.1016/j.biomaterials.2014.10.053
  • Zwaveling S, Ferreira Mota SC, Nouta J, Johnson M, Lipford GB, Offringa R, van der Burg SH, Melief CJ. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J Immunol 2002; 169:350-8; PMID:12077264; http://dx.doi.org/10.4049/jimmunol.169.1.350
  • Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, Edelson RL, Saltzman WM, Hanlon DJ. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 2006; 117:78-88; PMID:16423043; http://dx.doi.org/10.1111/j.1365-2567.2005.02268.x
  • Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J Control Release 2008; 125:193-209; PMID:18083265; http://dx.doi.org/10.1016/j.jconrel.2007.09.013
  • O'Hagan DT, Jeffery H, Roberts MJ, McGee JP, Davis SS. Controlled release microparticles for vaccine development. Vaccine 1991; 9:768-71; PMID:1759495; http://dx.doi.org/10.1016/0264-410X(91)90295-H
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000; 21:2475-90; PMID:11055295; http://dx.doi.org/10.1016/S0142-9612(00)00115-0
  • Ignjatovic NL, Ajdukovic ZR, Savic VP, Uskokovic DP. Size effect of calcium phosphate coated with poly-DL-lactide- co-glycolide on healing processes in bone reconstruction. J Biomed Mater Res Part B Appl Biomater 2010; 94:108-17; PMID:20524184
  • Shive M, Anderson J. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997; 28:5-24; PMID:10837562; http://dx.doi.org/10.1016/S0169-409X(97)00048-3
  • Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed 2006; 17:247-89; PMID:16689015; http://dx.doi.org/10.1163/156856206775997322
  • Mohammadi-Samani S, Taghipour B. PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches. Pharm Dev Technol 2014; 20(4):385-93; PMID:24483777
  • Silva JM, Videira M, Gaspar R, Preat V, Florindo HF. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J Control Release 2013; 168:179-99; PMID:23524187; http://dx.doi.org/10.1016/j.jconrel.2013.03.010
  • Sorkin A, Von Zastrow M. Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 2002; 3:600-14; PMID:12154371; http://dx.doi.org/10.1038/nrm883
  • Zolnik BS, Burgess DJ. Effect of acidic pH on PLGA microsphere degradation and release. J Control Release 2007; 122:338-44; PMID:17644208; http://dx.doi.org/10.1016/j.jconrel.2007.05.034
  • Yoo JY, Kim JM, Seo KS, Jeong YK, Lee HB, Khang G. Characterization of degradation behavior for PLGA in various pH condition by simple liquid chromatography method. Biomed Mater Eng 2005; 15:279-88; PMID:16010036
  • Fahmy TM, Demento SL, Caplan MJ, Mellman I, Saltzman WM. Design opportunities for actively targeted nanoparticle vaccines. Nanomedicine (Lond) 2008; 3:343-55; PMID:18510429; http://dx.doi.org/10.2217/17435889.3.3.343
  • Jain S, O'Hagan DT, Singh M. The long-term potential of biodegradable poly(lactide-co-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Rev Vaccines 2011; 10:1731-42; PMID:22085176; http://dx.doi.org/10.1586/erv.11.126
  • Samadi N, Abbadessa A, Di Stefano A, van Nostrum CF, Vermonden T, Rahimian S, Teunissen EA, van Steenbergen MJ, Amidi M, Hennink WE. The effect of lauryl capping group on protein release and degradation of poly(D,L-lactic-co-glycolic acid) particles. J Control Release 2013; 172:436-43; PMID:23751568; http://dx.doi.org/10.1016/j.jconrel.2013.05.034
  • Bala I, Hariharan S, Kumar MN. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst 2004; 21:387-422; PMID:15719481; http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i5.20
  • Jawahar N, Meyyanathan S. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int J Health Allied Sci 2012; 1:217-23; http://dx.doi.org/10.4103/2278-344X.107832
  • Johansen P, Storni T, Rettig L, Qiu Z, Der-Sarkissian A, Smith KA, Manolova V, Lang KS, Senti G, Mullhaupt B, et al. Antigen kinetics determines immune reactivity. Proc Natl Acad Sci U S A 2008; 105:5189-94; PMID:18362362; http://dx.doi.org/10.1073/pnas.0706296105
  • Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine delivery systems: size matters. AAPS J 2013; 15:85-94; PMID:23054976; http://dx.doi.org/10.1208/s12248-012-9418-6
  • Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines 2010; 9:1095-107; PMID:20822351; http://dx.doi.org/10.1586/erv.10.89
  • Silva AL, Rosalia RA, Sazak A, Carstens MG, Ossendorp F, Oostendorp J, Jiskoot W. Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: low-burst release is crucial for efficient CD8(+) T cell activation. Eur J Pharm Biopharm 2013; 83:338-45; PMID:23201055; http://dx.doi.org/10.1016/j.ejpb.2012.11.006
  • Wang G, Uludag H. Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Expert Opin Drug Deliv 2008; 5:499-515; PMID:18491978; http://dx.doi.org/10.1517/17425247.5.5.499
  • Link A, Zabel F, Schnetzler Y, Titz A, Brombacher F, Bachmann MF. Innate immunity mediates follicular transport of particulate but not soluble protein antigen. J Immunol 2012; 188:3724-33; PMID:22427639; http://dx.doi.org/10.4049/jimmunol.1103312
  • Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 2008; 38:1404-13; PMID:18389478; http://dx.doi.org/10.1002/eji.200737984
  • Simon LC, Sabliov CM. The effect of nanoparticle properties, detection method, delivery route and animal model on poly(lactic-co-glycolic) acid nanoparticles biodistribution in mice and rats. Drug Metab Rev 2013; PMID:24303927
  • Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, McKenzie IF, Plebanski M. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 2004; 173:3148-54; PMID:15322175; http://dx.doi.org/10.4049/jimmunol.173.5.3148
  • Gutierro I, Hernandez RM, Igartua M, Gascon AR, Pedraz JL. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 2002; 21:67-77; PMID:12443664; http://dx.doi.org/10.1016/S0264-410X(02)00435-8
  • Tran KK, Shen H. The role of phagosomal pH on the size-dependent efficiency of cross-presentation by dendritic cells. Biomaterials 2009; 30:1356-62; PMID:19091401; http://dx.doi.org/10.1016/j.biomaterials.2008.11.034
  • Xiang SD, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram PL, Plebanski M. Pathogen recognition and development of particulate vaccines: does size matter? Methods 2006; 40:1-9; PMID:16997708; http://dx.doi.org/10.1016/j.ymeth.2006.05.016
  • Sharp FA, Ruane D, Claass B, Creagh E, Harris J, Malyala P, Singh M, O'Hagan DT, Petrilli V, Tschopp J, et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci U S A 2009; 106:870-5; PMID:19139407; http://dx.doi.org/10.1073/pnas.0804897106
  • Joshi MD, Unger WJ, Storm G, van Kooyk Y, Mastrobattista E. Targeting tumor antigens to dendritic cells using particulate carriers. J Control Release 2012; 161:25-37; PMID:22580109; http://dx.doi.org/10.1016/j.jconrel.2012.05.010
  • Silva AL, Rosalia RA, Varypataki E, Sibuea S, Ossendorp F, Jiskoot W. Poly-(lactic-co-glycolic-acid)-based particulate vaccines: Particle uptake by dendritic cells is a key parameter for immune activation. Vaccine 2015; 33(7):847-54
  • Katare YK, Muthukumaran T, Panda AK. Influence of particle size, antigen load, dose and additional adjuvant on the immune response from antigen loaded PLA microparticles. Int J Pharm 2005; 301:149-60; PMID:16023313; http://dx.doi.org/10.1016/j.ijpharm.2005.05.028
  • Thomas C, Gupta V, Ahsan F. Particle size influences the immune response produced by hepatitis B vaccine formulated in inhalable particles. Pharm Res 2010; 27:905-19; PMID:20232117; http://dx.doi.org/10.1007/s11095-010-0094-x
  • Kanchan V, Panda AK. Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials 2007; 28:5344-57; PMID:17825905; http://dx.doi.org/10.1016/j.biomaterials.2007.08.015
  • Raghuvanshi RS, Katare YK, Lalwani K, Ali MM, Singh O, Panda AK. Improved immune response from biodegradable polymer particles entrapping tetanus toxoid by use of different immunization protocol and adjuvants. Int J Pharm 2002; 245:109-21; PMID:12270248; http://dx.doi.org/10.1016/S0378-5173(02)00342-3
  • Lee YR, Lee YH, Im SA, Kim K, Lee CK. Formulation and characterization of antigen-loaded PLGA nanoparticles for efficient cross-priming of the antigen. Immune Netw 2011; 11:163-8.
  • Aguado MT. Future approaches to vaccine development: single-dose vaccines using controlled-release delivery systems. Vaccine 1993; 11:596-7; PMID:8488720; http://dx.doi.org/10.1016/0264-410X(93)90241-O
  • Preis I, Langer RS. A single-step immunization by sustained antigen release. J Immunol Methods 1979; 28:193-7; PMID:469267; http://dx.doi.org/10.1016/0022-1759(79)90341-7
  • Correia-Pinto JF, Csaba N, Alonso MJ. Vaccine delivery carriers: insights and future perspectives. Int J Pharm 2013; 440:27-38; PMID:22561794; http://dx.doi.org/10.1016/j.ijpharm.2012.04.047
  • Dailey L. New poly (lactic-co-glycolic acid) derivatives: Modular polymers with tailored properties. Drug Discov Today Technol 2005; 2(1):7-13; PMID:24981749
  • Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res 2004; 27:1-12; PMID:14969330; http://dx.doi.org/10.1007/BF02980037
  • Sah H, Toddywala R, Chien YW. Continuous release of proteins from biodegradable microcapsules and in vivo evaluation of their potential as a vaccine adjuvant. J Controlled Release 1995; 35:137-44; http://dx.doi.org/10.1016/0168-3659(95)00029-8
  • Sah H, Toddywala R, Chien YW. The influence of biodegradable microcapsule formulations on the controlled release of a protein. J Controlled Release 1994; 30:201-11; http://dx.doi.org/10.1016/0168-3659(94)90026-4
  • Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL, Levy RJ, Labhasetwar V. Polymer degradation and in vitro release of a model protein from poly(d,l-lactide-co-glycolide) nano- and microparticles. J Controlled Release 2003; 92:173-87; http://dx.doi.org/10.1016/S0168-3659(03)00328-6
  • Leelarasamee N, Howard SA, Malanga CJ, Luzzi LA, Hogan TF, Kandzari SJ, Ma JK. Kinetics of drug release from polylactic acid-hydrocortisone microcapsules. J Microencapsul 1986; 3:171-9; PMID:3508185; http://dx.doi.org/10.3109/02652048609031571
  • Zhang Y, Zale S, Sawyer L, Bernstein H. Effects of metal salts on poly(DL-lactide-co-glycolide) polymer hydrolysis. J Biomed Mater Res 1997; 34:531-8; PMID:9054536; http://dx.doi.org/10.1002/(SICI)1097-4636(19970315)34:4<531::AID-JBM13>3.0.CO;2-F
  • Mansour HM, Sohn M, Al-Ghananeem A, Deluca PP. Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects. Int J Mol Sci 2010; 11:3298-322; PMID:20957095; http://dx.doi.org/10.3390/ijms11093298
  • Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release 1999; 57:171-85; PMID:9971898; http://dx.doi.org/10.1016/S0168-3659(98)00116-3
  • Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang XF, Dorta-Estremera SM, Greeley NR, Nitti G, Peng W, et al. Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat Med 2013; 19:465-72; PMID:23455713; http://dx.doi.org/10.1038/nm.3105
  • Kanchan V, Katare YK, Panda AK. Memory antibody response from antigen loaded polymer particles and the effect of antigen release kinetics. Biomaterials 2009; 30:4763-76; PMID:19540583; http://dx.doi.org/10.1016/j.biomaterials.2009.05.075
  • Waeckerle-Men Y, Allmen EU, Gander B, Scandella E, Schlosser E, Schmidtke G, Merkle HP, Groettrup M. Encapsulation of proteins and peptides into biodegradable poly(D,L-lactide-co-glycolide) microspheres prolongs and enhances antigen presentation by human dendritic cells. Vaccine 2006; 24:1847-57; PMID:16288821; http://dx.doi.org/10.1016/j.vaccine.2005.10.032
  • Zhang W, Wang L, Liu Y, Chen X, Liu Q, Jia J, Yang T, Qiu S, Ma G. Immune responses to vaccines involving a combined antigen–nanoparticle mixture and nanoparticle-encapsulated antigen formulation. Biomaterials 2014; 35:6086-97; PMID:24780166; http://dx.doi.org/10.1016/j.biomaterials.2014.04.022
  • Thomas C, Gupta V, Ahsan F. Influence of surface charge of PLGA particles of recombinant hepatitis B surface antigen in enhancing systemic and mucosal immune responses. Int J Pharm 2009; 379:41-50; PMID:19524654; http://dx.doi.org/10.1016/j.ijpharm.2009.06.006
  • Skwarczynski M, Toth I. Recent advances in peptide-based subunit nanovaccines. Nanomedicine (Lond) 2014; 9:2657-69; PMID:25529569; http://dx.doi.org/10.2217/nnm.14.187
  • Fischer S, Uetz-von Allmen E, Waeckerle-Men Y, Groettrup M, Merkle HP, Gander B. The preservation of phenotype and functionality of dendritic cells upon phagocytosis of polyelectrolyte-coated PLGA microparticles. Biomaterials 2007; 28:994-1004; PMID:17118442; http://dx.doi.org/10.1016/j.biomaterials.2006.10.034
  • Wischke C, Borchert HH, Zimmermann J, Siebenbrodt I, Lorenzen DR. Stable cationic microparticles for enhanced model antigen delivery to dendritic cells. J Control Release 2006; 114:359-68; PMID:16889866; http://dx.doi.org/10.1016/j.jconrel.2006.06.020
  • Jaganathan KS, Vyas SP. Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine 2006; 24:4201-11; PMID:16446012; http://dx.doi.org/10.1016/j.vaccine.2006.01.011
  • Slutter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, Kaijzel E, van Eden W, Augustijns P, Lowik C, et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 2010; 28:6282-91; PMID:20638455; http://dx.doi.org/10.1016/j.vaccine.2010.06.121
  • Martinez Gomez JM, Csaba N, Fischer S, Sichelstiel A, Kundig TM, Gander B, Johansen P. Surface coating of PLGA microparticles with protamine enhances their immunological performance through facilitated phagocytosis. J Control Release 2008; 130:161-7; PMID:18588928; http://dx.doi.org/10.1016/j.jconrel.2008.06.003
  • Martinez Gomez JM, Fischer S, Csaba N, Kundig TM, Merkle HP, Gander B, Johansen P. A protective allergy vaccine based on CpG- and protamine-containing PLGA microparticles. Pharm Res 2007; 24:1927-35; PMID:17541735; http://dx.doi.org/10.1007/s11095-007-9318-0
  • Fischer S, Schlosser E, Mueller M, Csaba N, Merkle HP, Groettrup M, Gander B. Concomitant delivery of a CTL-restricted peptide antigen and CpG ODN by PLGA microparticles induces cellular immune response. J Drug Target 2009; 17:652-61; http://dx.doi.org/10.1080/10611860903119656
  • De Temmerman ML, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedt SC. Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today 2011; 16:569-82; PMID:21570475; http://dx.doi.org/10.1016/j.drudis.2011.04.006
  • Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B, Groettrup M. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine 2008; 26:1626-37; PMID:18295941; http://dx.doi.org/10.1016/j.vaccine.2008.01.030
  • Diwan M, Tafaghodi M, Samuel J. Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J Controlled Release 2002; 85:247-62; http://dx.doi.org/10.1016/S0168-3659(02)00275-4
  • San Román B, Irache JM, Gómez S, Tsapis N, Gamazo C, Espuelas MS. Co-encapsulation of an antigen and CpG oligonucleotides into PLGA microparticles by TROMS technology. Eur J Pharm Biopharm 2008; 70:98-108; http://dx.doi.org/10.1016/j.ejpb.2008.03.015
  • Heit A, Schmitz F, Haas T, Busch DH, Wagner H. Antigen co-encapsulated with adjuvants efficiently drive protective T cell immunity. Eur J Immunol 2007; 37:2063-74; PMID:17628858; http://dx.doi.org/10.1002/eji.200737169
  • Heit A, Schmitz F, O'Keeffe M, Staib C, Busch DH, Wagner H, Huster KM. Protective CD8 T cell immunity triggered by CpG-protein conjugates competes with the efficacy of live vaccines. J Immunol 2005; 174:4373-80; PMID:15778402; http://dx.doi.org/10.4049/jimmunol.174.7.4373
  • Wischke C, Zimmermann J, Wessinger B, Schendler A, Borchert HH, Peters JH, Nesselhut T, Lorenzen DR. Poly(I:C) coated PLGA microparticles induce dendritic cell maturation. Int J Pharm 2009; 365:61-8; PMID:18812217; http://dx.doi.org/10.1016/j.ijpharm.2008.08.039
  • Mueller M, Schlosser E, Gander B, Groettrup M. Tumor eradication by immunotherapy with biodegradable PLGA microspheres–an alternative to incomplete Freund's adjuvant. Int J Cancer 2011; 129:407-16; PMID:21207410; http://dx.doi.org/10.1002/ijc.25914
  • Lee YR, Lee YH, Im SA, Yang IH, Ahn GW, Kim K, Lee CK. Biodegradable nanoparticles containing TLR3 or TLR9 agonists together with antigen enhance MHC-restricted presentation of the antigen. Arch Pharm Res 2010; 33:1859-66; PMID:21116790; http://dx.doi.org/10.1007/s12272-010-1119-z
  • Newman KD, Samuel J, Kwon G. Ovalbumin peptide encapsulated in poly(d,l lactic-co-glycolic acid) microspheres is capable of inducing a T helper type 1 immune response. J Control Release 1998; 54:49-59; PMID:9741903; http://dx.doi.org/10.1016/S0168-3659(97)00142-9
  • Newman KD, Sosnowski DL, Kwon GS, Samuel J. Delivery of MUC1 mucin peptide by Poly(d,l-lactic-co-glycolic acid) microspheres induces type 1 T helper immune responses. J Pharm Sci 1998; 87:1421-7; PMID:9811500; http://dx.doi.org/10.1021/js980070s
  • Hamdy S, Elamanchili P, Alshamsan A, Molavi O, Satou T, Samuel J. Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D,L-lactic-co-glycolic acid) nanoparticles. J Biomed Materials Res Part A 2007; 81:652-62; http://dx.doi.org/10.1002/jbm.a.31019
  • Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, Elhasi S, Samuel J, Lavasanifar A. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 2008; 26:5046-57; PMID:18680779; http://dx.doi.org/10.1016/j.vaccine.2008.07.035
  • Chong CSW, Cao M, Wong WW, Fischer KP, Addison WR, Kwon GS, Tyrrell DL, Samuel J. Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J Controlled Rel 2005; 102:85-99; http://dx.doi.org/10.1016/j.jconrel.2004.09.014
  • Lutsiak ME, Kwon GS, Samuel J. Biodegradable nanoparticle delivery of a Th2-biased peptide for induction of Th1 immune responses. J Pharm Pharmacol 2006; 58:739-47; PMID:16734975; http://dx.doi.org/10.1211/jpp.58.6.0004
  • Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M, Reinhold B, Keskin DB, Reinherz EL, Sasada T. Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 2011; 32:3666-78; PMID:21345488; http://dx.doi.org/10.1016/j.biomaterials.2011.01.067
  • Kazzaz J, Singh M, Ugozzoli M, Chesko J, Soenawan E, O'Hagan DT. Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J Control Release 2006; 110:566-73; PMID:16360956; http://dx.doi.org/10.1016/j.jconrel.2005.10.010
  • Nixon DF, Hioe C, Chen PD, Bian Z, Kuebler P, Li ML, Qiu H, Li XM, Singh M, Richardson J, et al. Synthetic peptides entrapped in microparticles can elicit cytotoxic T cell activity. Vaccine 1996; 14:1523-30; PMID:9014294; http://dx.doi.org/10.1016/S0264-410X(96)00099-0
  • Rosalia RA. Co-encapsulation of synthetic long peptide antigen and Toll like receptor 2 ligand in poly-(lactic-co-glycolic-acid) particles results in sustained MHC class I cross-presentation by dendritic cells. In: Department of Immunohematology FoMLUMCL, Leiden University, ed. Particulate based vaccines for cancer immunotherapy: Leiden University, 2014:95-121
  • Khan S, Bijker MS, Weterings JJ, Tanke HJ, Adema GJ, van Hall T, Drijfhout JW, Melief CJ, Overkleeft HS, van der Marel GA, et al. Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells. J Biol Chem 2007; 282:21145-59; PMID:17462991; http://dx.doi.org/10.1074/jbc.M701705200
  • Khan S, Weterings JJ, Britten CM, de Jong AR, Graafland D, Melief CJ, van der Burg SH, van der Marel G, Overkleeft HS, Filippov DV, et al. Chirality of TLR-2 ligand Pam3CysSK4 in fully synthetic peptide conjugates critically influences the induction of specific CD8+ T-cells. Mol Immunol 2009; 46:1084-91; PMID:19027958; http://dx.doi.org/10.1016/j.molimm.2008.10.006
  • Zom GG, Khan S, Filippov DV, Ossendorp F. TLR ligand-peptide conjugate vaccines: toward clinical application. Adv Immunol 2012; 114:177-201; PMID:22449782; http://dx.doi.org/10.1016/B978-0-12-396548-6.00007-X
  • Zom GG, Khan S, Britten CM, Sommandas V, Camps MG, Loof NM, Budden CF, Meeuwenoord NJ, Filippov DV, van der Marel GA, et al. Efficient induction of antitumor immunity by synthetic toll-like receptor ligand-peptide conjugates. Cancer Immunol Res 2014; 2:756-64.; PMID:24950688;PMID:24950688; http://dx.doi.org/10.1158/2326-6066.CIR-13-0223
  • Singh M, Kazzaz J, Ugozzoli M, Malyala P, Chesko J, O'Hagan DT. Polylactide-co-glycolide microparticles with surface adsorbed antigens as vaccine delivery systems. Curr Drug Delivery 2006; 3:115-20; http://dx.doi.org/10.2174/156720106775197565
  • Singh M, Ott G, Kazzaz J, Ugozzoli M, Briones M, Donnelly J, O'Hagan DT. Cationic microparticles are an effective delivery system for immune stimulatory cpG DNA. Pharm Res 2001; 18:1476-9.
  • Sah H, Thoma LA, Desu HR, Sah E, Wood GC. Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int J Nano Med 2013; 8:747-65; http://dx.doi.org/10.2147/IJN.S40579
  • Hamdy S, Haddadi A, Hung RW, Lavasanifar A. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 2011; 63:943-55; PMID:21679733; http://dx.doi.org/10.1016/j.addr.2011.05.021
  • Rajapaksa TE, Stover-Hamer M, Fernandez X, Eckelhoefer HA, Lo DD. Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery. J Controlled Release 2010; 142:196-205; http://dx.doi.org/10.1016/j.jconrel.2009.10.033
  • Gupta PN, Khatri K, Goyal AK, Mishra N, Vyas SP. M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J Drug Target 2007; 15:701-13; http://dx.doi.org/10.1080/10611860701637982
  • Garinot M, Fievez V, Pourcelle V, Stoffelbach F, des Rieux A, Plapied L, Theate I, Freichels H, Jerome C, Marchand-Brynaert J, et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 2007; 120:195-204; PMID:17586081; http://dx.doi.org/10.1016/j.jconrel.2007.04.021
  • Brandhonneur N, Chevanne F, Vie V, Frisch B, Primault R, Le Potier MF, Le Corre P. Specific and non-specific phagocytosis of ligand-grafted PLGA microspheres by macrophages. Eur J Pharm Sci 2009; 36:474-85; PMID:19110055; http://dx.doi.org/10.1016/j.ejps.2008.11.013
  • Mata E, Igartua M, Patarroyo ME, Pedraz JL, Hernandez RM. Enhancing immunogenicity to PLGA microparticulate systems by incorporation of alginate and RGD-modified alginate. Eur J Pharm Sci 2011; 44:32-40; PMID:21699977; http://dx.doi.org/10.1016/j.ejps.2011.05.015
  • Tacken PJ, Torensma R, Figdor CG. Targeting antigens to dendritic cells in vivo. Immunobiology 2006; 211:599-608; PMID:16920498; http://dx.doi.org/10.1016/j.imbio.2006.05.021
  • Haddadi A, Hamdy S, Ghotbi Z, Samuel J, Lavasanifar A. Immunoadjuvant activity of the nanoparticles' surface modified with mannan. Nanotechnology 2014; 25:355101; PMID:25119543; http://dx.doi.org/10.1088/0957-4484/25/35/355101
  • Tacken PJ, de Vries IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 2007; 7:790-802; PMID:17853902; http://dx.doi.org/10.1038/nri2173
  • Hamdy S, Haddadi A, Shayeganpour A, Samuel J, Lavasanifar A. Activation of antigen-specific T cell-responses by mannan-decorated PLGA nanoparticles. Pharm Res 2011; 28:2288-301; PMID:21560020; http://dx.doi.org/10.1007/s11095-011-0459-9
  • Ghotbi Z, Haddadi A, Hamdy S, Hung RW, Samuel J, Lavasanifar A. Active targeting of dendritic cells with mannan-decorated PLGA nanoparticles. J Drug Target 2010; 19(4):281-92.
  • Apostolopoulos V, Pietersz GA, Gordon S, Martinez-Pomares L, McKenzie IF. Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway. Eur J Immunol 2000; 30:1714-23; PMID:10898509; http://dx.doi.org/10.1002/1521-4141(200006)30:6<1714::AID-IMMU1714>3.0.CO;2-C
  • Apostolopoulos V, Pietersz GA, Loveland BE, Sandrin MS, McKenzie IF. Oxidative/reductive conjugation of mannan to antigen selects for T1 or T2 immune responses. Proc Natl Acad Sci U S A 1995; 92:10128-32; PMID:7479739; http://dx.doi.org/10.1073/pnas.92.22.10128
  • Raghuwanshi D, Mishra V, Suresh MR, Kaur K. A simple approach for enhanced immune response using engineered dendritic cell targeted nanoparticles. Vaccine 2012; 30:7292-9; PMID:23022399; http://dx.doi.org/10.1016/j.vaccine.2012.09.036
  • Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H, Brimnes MK, Moltedo B, Moran TM, Steinman RM. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199:815-24; PMID:15024047; http://dx.doi.org/10.1084/jem.20032220
  • Macho-Fernandez E, Cruz LJ, Ghinnagow R, Fontaine J, Bialecki E, Frisch B, Trottein F, Faveeuw C. Targeted delivery of alpha-galactosylceramide to CD8alpha+ dendritic cells optimizes type I NKT cell-based antitumor responses. J Immunol 2014; 193:961-9.
  • Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 2010; 10:787-96.; PMID:20948547; http://dx.doi.org/10.1038/nri2868