1,955
Views
16
CrossRef citations to date
0
Altmetric
Review

A review of clinical models for the evaluation of human TB vaccines

&
Pages 1177-1187 | Received 31 Aug 2015, Accepted 17 Dec 2015, Published online: 08 Apr 2016

References

  • Dye C, Garnett GP, Sleeman K, Williams BG. Prospects for worldwide tuberculosis control under the WHO DOTS strategy. Directly observed short-course therapy. Lancet 1998; 352:1886-91; PMID:9863786; http://dx.doi.org/10.1016/S0140-6736(98)03199-7
  • Dye C, Hosseini M, Watt C. Did we reach the 2005 targets for tuberculosis control? Bull World Health Organ 2007; 85:364-9; PMID:17639221; http://dx.doi.org/10.2471/BLT.06.037580
  • Partnership ST. The Global Plan to Stop TB 2011–2015. Geneva, Switzerland: World Health Organization, 2010
  • WHO. Global tuberculosis report 2014. Geneva, Switzerland: World Health Organization, 2014
  • Dye C, Glaziou P, Floyd K, Raviglione M. Prospects for tuberculosis elimination. Annu Rev Public Health 2013; 34:271-86; PMID:23244049; http://dx.doi.org/10.1146/annurev-publhealth-031912-114431
  • Dye C, Williams BG. Eliminating human tuberculosis in the twenty-first century. J R Soc Interface 2008; 5:653-62; PMID:17690054; http://dx.doi.org/10.1098/rsif.2007.1138
  • Tseng CL, Oxlade O, Menzies D, Aspler A, Schwartzman K. Cost-effectiveness of novel vaccines for tuberculosis control: a decision analysis study. BMC Public Health 2011; 11:55; PMID:21269503; http://dx.doi.org/10.1186/1471-2458-11-55
  • Abu-Raddad LJ, Sabatelli L, Achterberg JT, Sugimoto JD, Longini IM, Jr., Dye C, Halloran ME. Epidemiological benefits of more-effective tuberculosis vaccines, drugs, and diagnostics. Proc Natl Acad Sci U S A 2009; 106:13980-5.; PMID:19666590; http://dx.doi.org/10.1073/pnas.0901720106
  • Calmette A. Preventive Vaccination Against Tuberculosis with BCG. Proc R Soc Med 1931; 24:1481-90; PMID:19988326
  • BCG vaccine. WHO position paper. Wkly Epidemiol Rec 2004; 79:27-38; PMID:14768305
  • Trunz BB, Fine P, Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 2006; 367:1173-80; PMID:16616560; http://dx.doi.org/10.1016/S0140-6736(06)68507-3
  • Blok BA, Arts RJ, van Crevel R, Benn CS, Netea MG. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J Leukoc Biol 2015; 98(3):347-56
  • Roth A, Garly ML, Jensen H, Nielsen J, Aaby P. Bacillus Calmette-Guerin vaccination and infant mortality. Expert Rev Vaccines 2006; 5:277-93; PMID:16608427; http://dx.doi.org/10.1586/14760584.5.2.277
  • Hesseling AC, Marais BJ, Gie RP, Schaaf HS, Fine PE, Godfrey-Faussett P, Beyers N. The risk of disseminated Bacille Calmette-Guerin (BCG) disease in HIV-infected children. Vaccine 2007; 25:14-8; PMID:16959383; http://dx.doi.org/10.1016/j.vaccine.2006.07.020
  • Revised BCG vaccination guidelines for infants at risk for HIV infection. Wkly Epidemiol Rec 2007; 82:193-6
  • Andersen P, Kaufmann SH. Novel vaccination strategies against tuberculosis. Cold Spring Harb Perspect Med 2014; 4; pii: a018523; PMID:24890836.
  • Abubakar I, Pimpin L, Ariti C, Beynon R, Mangtani P, Sterne JA, Fine PE, Smith PG, Lipman M, Elliman D, et al. Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette-Guerin vaccination against tuberculosis. Health Technol Assess 2013; 17:1-372, v-vi; PMID:24021245
  • Andersen P, Doherty TM. The success and failure of BCG - implications for a novel tuberculosis vaccine. Nat Rev Microbiol 2005; 3:656-62; PMID:16012514; http://dx.doi.org/10.1038/nrmicro1211
  • Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, Fineberg HV, Mosteller F. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. Jama 1994; 271:698-702; PMID:8309034; http://dx.doi.org/10.1001/jama.1994.03510330076038
  • Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet 1995; 346:1339-45; PMID:7475776; http://dx.doi.org/10.1016/S0140-6736(95)92348-9
  • Colditz GA, Berkey CS, Mosteller F, Brewer TF, Wilson ME, Burdick E, Fineberg HV. The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: meta-analyses of the published literature. Pediatrics 1995; 96:29-35; PMID:7596718
  • Gallant CJ, Cobat A, Simkin L, Black GF, Stanley K, Hughes J, Doherty TM, Hanekom WA, Eley B, Beyers N, et al. Impact of age and sex on mycobacterial immunity in an area of high tuberculosis incidence. Int J Tuberc Lung Dis 2010; 14:952-9; PMID:20626938
  • Checkley AM, McShane H. Tuberculosis vaccines: progress and challenges. Trends Pharmacol Sci 2011; 32:601-6; PMID:21803435; http://dx.doi.org/10.1016/j.tips.2011.06.003
  • Kaufmann SH, Lange C, Rao M, Balaji KN, Lotze M, Schito M, Zumla AI, Maeurer M. Progress in tuberculosis vaccine development and host-directed therapies–a state of the art review. Lancet Respir Med 2014; 2:301-20; PMID:24717627; http://dx.doi.org/10.1016/S2213-2600(14)70033-5
  • Orme IM. Vaccine development for tuberculosis: current progress. Drugs 2013; 73:1015-24; PMID:23794129; http://dx.doi.org/10.1007/s40265-013-0081-8
  • Orme IM. Tuberculosis vaccine types and timings. Clin Vaccine Immunol 2015; 22:249-57; PMID:25540272; http://dx.doi.org/10.1128/CVI.00718-14
  • Frick M. The Tuberculosis Vaccines Pipeline: A New Path to the Same Destination? London, UK HIV i-Base/Treatment Action Group, 2015
  • da Costa C, Walker B, Bonavia A. Tuberculosis vaccines–state of the art, and novel approaches to vaccine development. Int J Infect Dis 2015; 32:5-12; PMID:25809749; http://dx.doi.org/10.1016/j.ijid.2014.11.026
  • Groschel MI, Prabowo SA, Cardona PJ, Stanford JL, van der Werf TS. Therapeutic vaccines for tuberculosis–a systematic review. Vaccine 2014; 32:3162-8; PMID:24726245; http://dx.doi.org/10.1016/j.vaccine.2014.03.047
  • McShane H, Pathan AA, Sander CR, Keating SM, Gilbert SC, Huygen K, Fletcher HA, Hill AV. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat Med 2004; 10:1240-4; PMID:15502839; http://dx.doi.org/10.1038/nm1128
  • Carpenter C, Sidney J, Kolla R, Nayak K, Tomiyama H, Tomiyama C, Padilla OA, Rozot V, Ahamed SF, Ponte C, et al. A side-by-side comparison of T cell reactivity to fifty-nine Mycobacterium tuberculosis antigens in diverse populations from five continents. Tuberculosis (Edinb) 2015; 95(6):713-21; PMID:26277695
  • Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, Shea JE, McClain JB, Hussey GD, Hanekom WA, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 2013; 381:1021-8; PMID:23391465; http://dx.doi.org/10.1016/S0140-6736(13)60177-4
  • Goonetilleke NP, McShane H, Hannan CM, Anderson RJ, Brookes RH, Hill AV. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette-Guerin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J Immunol 2003; 171:1602-9; PMID:12874255; http://dx.doi.org/10.4049/jimmunol.171.3.1602
  • Verreck FA, Vervenne RA, Kondova I, van Kralingen KW, Remarque EJ, Braskamp G, van der Werff NM, Kersbergen A, Ottenhoff TH, Heidt PJ, et al. MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PloS One 2009; 4:e5264; PMID:19367339; http://dx.doi.org/10.1371/journal.pone.0005264
  • Vordermeier HM, Villarreal-Ramos B, Cockle PJ, McAulay M, Rhodes SG, Thacker T, Gilbert SC, McShane H, Hill AV, Xing Z, et al. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect Immun 2009; 77:3364-73; PMID:19487476; http://dx.doi.org/10.1128/IAI.00287-09
  • Williams A, Goonetilleke NP, McShane H, Clark SO, Hatch G, Gilbert SC, Hill AV. Boosting with poxviruses enhances Mycobacterium bovis BCG efficacy against tuberculosis in guinea pigs. Infect Immun 2005; 73:3814-6; PMID:15908420; http://dx.doi.org/10.1128/IAI.73.6.3814-3816.2005
  • McShane H, Williams A. A review of preclinical animal models utilised for TB vaccine evaluation in the context of recent human efficacy data. Tuberculosis (Edinb) 2014; 94:105-10; PMID:24369986; http://dx.doi.org/10.1016/j.tube.2013.11.003
  • Beveridge NE, Price DA, Casazza JP, Pathan AA, Sander CR, Asher TE, Ambrozak DR, Precopio ML, Scheinberg P, Alder NC, et al. Immunisation with BCG and recombinant MVA85A induces long-lasting, polyfunctional Mycobacterium tuberculosis-specific CD4+ memory T lymphocyte populations. Eur J Immunol 2007; 37:3089-100; PMID:17948267; http://dx.doi.org/10.1002/eji.200737504
  • Brookes RH, Hill PC, Owiafe PK, Ibanga HB, Jeffries DJ, Donkor SA, Fletcher HA, Hammond AS, Lienhardt C, Adegbola RA, et al. Safety and immunogenicity of the candidate tuberculosis vaccine MVA85A in West Africa. PloS One 2008; 3:e2921; PMID:18698342; http://dx.doi.org/10.1371/journal.pone.0002921
  • Hawkridge T, Scriba TJ, Gelderbloem S, Smit E, Tameris M, Moyo S, Lang T, Veldsman A, Hatherill M, Merwe L, et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa. J Infect Dis 2008; 198:544-52; PMID:18582195; http://dx.doi.org/10.1086/590185
  • Minassian AM, Rowland R, Beveridge NE, Poulton ID, Satti I, Harris S, Poyntz H, Hamill M, Griffiths K, Sander CR, et al. A Phase I study evaluating the safety and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults. BMJ Open 2011; 1:e000223; PMID:22102640; http://dx.doi.org/10.1136/bmjopen-2011-000223
  • Odutola AA, Owolabi OA, Owiafe PK, McShane H, Ota MO. A new TB vaccine, MVA85A, induces durable antigen-specific responses 14 months after vaccination in African infants. Vaccine 2012; 30:5591-4; PMID:22749600; http://dx.doi.org/10.1016/j.vaccine.2012.06.054
  • Ota MO, Odutola AA, Owiafe PK, Donkor S, Owolabi OA, Brittain NJ, Williams N, Rowland-Jones S, Hill AV, Adegbola RA, et al. Immunogenicity of the tuberculosis vaccine MVA85A is reduced by coadministration with EPI vaccines in a randomized controlled trial in Gambian infants. Sci Transl Med 2011; 3:88ra56; PMID:21697532; http://dx.doi.org/10.1126/scitranslmed.3002461
  • Pathan AA, Minassian AM, Sander CR, Rowland R, Porter DW, Poulton ID, Hill AV, Fletcher HA, McShane H. Effect of vaccine dose on the safety and immunogenicity of a candidate TB vaccine, MVA85A, in BCG vaccinated UK adults. Vaccine 2012; 30:5616-24; PMID:22789508; http://dx.doi.org/10.1016/j.vaccine.2012.06.084
  • Sander CR, Pathan AA, Beveridge NE, Poulton I, Minassian A, Alder N, Van Wijgerden J, Hill AV, Gleeson FV, Davies RJ, et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in Mycobacterium tuberculosis-infected individuals. Am J Respir Crit Care Med 2009; 179:724-33; PMID:19151191; http://dx.doi.org/10.1164/rccm.200809-1486OC
  • Scriba TJ, Tameris M, Mansoor N, Smit E, van der Merwe L, Isaacs F, Keyser A, Moyo S, Brittain N, Lawrie A, et al. Modified vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur J Immunol 2010; 40:279-90; PMID:20017188; http://dx.doi.org/10.1002/eji.200939754
  • Scriba TJ, Tameris M, Mansoor N, Smit E, van der Merwe L, Mauff K, Hughes EJ, Moyo S, Brittain N, Lawrie A, et al. Dose-finding study of the novel tuberculosis vaccine, MVA85A, in healthy BCG-vaccinated infants. J Infect Dis 2011; 203:1832-43; PMID:21606542; http://dx.doi.org/10.1093/infdis/jir195
  • Scriba TJ, Tameris M, Smit E, van der Merwe L, Hughes EJ, Kadira B, Mauff K, Moyo S, Brittain N, Lawrie A, et al. A phase IIa trial of the new tuberculosis vaccine, MVA85A, in HIV- and/or Mycobacterium tuberculosis-infected adults. Am J Respir Crit Care Med 2012; 185:769-78; PMID:22281831; http://dx.doi.org/10.1164/rccm.201108-1548OC
  • Ndiaye BP, Thienemann F, Ota M, Landry BS, Camara M, Dieye S, Dieye TN, Esmail H, Goliath R, Huygen K, et al. Safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial. Lancet Respir Med 2015; 3:190-200; PMID:25726088; http://dx.doi.org/10.1016/S2213-2600(15)00037-5
  • McMurray DN. Disease model: pulmonary tuberculosis. Trends Mol Med 2001; 7:135-7; PMID:11286786; http://dx.doi.org/10.1016/S1471-4914(00)01901-8
  • Flynn JL, Gideon HP, Mattila JT, Lin PL. Immunology studies in non-human primate models of tuberculosis. Immunol Rev 2015; 264:60-73; PMID:25703552; http://dx.doi.org/10.1111/imr.12258
  • Graves AJ, Hokey DA. Tuberculosis vaccine development: Shifting focus amid increasing development challenges. Hum Vaccin Immunother 2015; 11:1910-6; PMID:26125249; http://dx.doi.org/10.1080/21645515.2015.1040955
  • Fennelly KP, Jones-Lopez EC, Ayakaka I, Kim S, Menyha H, Kirenga B, Muchwa C, Joloba M, Dryden-Peterson S, Reilly N, et al. Variability of infectious aerosols produced during coughing by patients with pulmonary tuberculosis. Am J Respir Crit Care Med 2012; 186:450-7; PMID:22798319; http://dx.doi.org/10.1164/rccm.201203-0444OC
  • Henao-Tamayo M, Shanley CA, Verma D, Zilavy A, Stapleton MC, Furney SK, Podell B, Orme IM. The Efficacy of the BCG Vaccine against Newly Emerging Clinical Strains of Mycobacterium tuberculosis. PloS One 2015; 10:e0136500; PMID:26368806; http://dx.doi.org/10.1371/journal.pone.0136500
  • Ellis RD, Hatherill M, Tait D, Snowden M, Churchyard G, Hanekom W, Evans T, Ginsberg AM. Innovative clinical trial designs to rationalize TB vaccine development. Tuberculosis (Edinb) 2015; 95:352-7; PMID:25802031; http://dx.doi.org/10.1016/j.tube.2015.02.036
  • Bennett AR, Gorak-Stolinska P, Ben-Smith A, Floyd S, de Lara CM, Weir RE, Lalor MK, Makamo K, Msiska GK, Crampin AC, et al. The PPD-specific T-cell clonal response in UK and Malawian subjects following BCG vaccination: a new repertoire evolves over 12 months. Vaccine 2006; 24:2617-26; PMID:16414159; http://dx.doi.org/10.1016/j.vaccine.2005.12.011
  • Black GF, Fine PEM, Warndorff DK, Floyd S, Weir RE, Blackwell JM, Bliss L, Sichali L, Mwaungulu L, Chaguluka S, et al. Relationship between IFN-gamma and skin test responsiveness to Mycobacterium tuberculosis PPD in healthy, non-BCG-vaccinated young adults in Northern Malawi. Int J Tuberc Lung Dis 2001; 5:664-72; PMID:11467373
  • Black GF, Weir RE, Floyd S, Bliss L, Warndorff DK, Crampin AC, Ngwira B, Sichali L, Nazareth B, Blackwell JM, et al. BCG-induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet 2002; 359:1393-401; PMID:11978337; http://dx.doi.org/10.1016/S0140-6736(02)08353-8
  • Weir RE, Black GF, Nazareth B, Floyd S, Stenson S, Stanley C, Branson K, Sichali L, Chaguluka SD, Donovan L, et al. The influence of previous exposure to environmental mycobacteria on the interferon-gamma response to bacille Calmette-Guerin vaccination in southern England and northern Malawi. Clin Exp Immunol 2006; 146:390-9; PMID:17100757; http://dx.doi.org/10.1111/j.1365-2249.2006.03222.x
  • Mangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, Fine PE, Rodrigues LC, Smith PG, Lipman M, Whiting PF, et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis 2014; 58:470-80; PMID:24336911; http://dx.doi.org/10.1093/cid/cit790
  • Elias D, Akuffo H, Britton S. Helminthes could influence the outcome of vaccines against TB in the tropics. Parasite Immunol 2006; 28:507-13; PMID:16965286; http://dx.doi.org/10.1111/j.1365-3024.2006.00854.x
  • Elias D, Akuffo H, Pawlowski A, Haile M, Schon T, Britton S. Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine 2005; 23:1326-34; PMID:15661380; http://dx.doi.org/10.1016/j.vaccine.2004.09.038
  • Elias D, Britton S, Aseffa A, Engers H, Akuffo H. Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-β production. Vaccine 2008; 26:3897-902; PMID:18554755; http://dx.doi.org/10.1016/j.vaccine.2008.04.083
  • Elias D, Wolday D, Akuffo H, Petros B, Bronner U, Britton S. Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette-Guerin (BCG) vaccination. Clin Exp Immunol 2001; 123:219-25; PMID:11207651; http://dx.doi.org/10.1046/j.1365-2249.2001.01446.x
  • Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69:89-95; PMID:11240971; http://dx.doi.org/10.1067/mcp.2001.113989
  • Weiner J, Maertzdorf J, Kaufmann SH. The dual role of biomarkers for understanding basic principles and devising novel intervention strategies in tuberculosis. Ann N Y Acad Sci 2013; 1283:22-9; PMID:23181737; http://dx.doi.org/10.1111/j.1749-6632.2012.06802.x
  • Walzl G, Ronacher K, Hanekom W, Scriba TJ, Zumla A. Immunological biomarkers of tuberculosis. Nat Rev Immunol 2011; 11:343-54; PMID:21475309; http://dx.doi.org/10.1038/nri2960
  • Al-Muhsen S, Casanova JL. The genetic heterogeneity of mendelian susceptibility to mycobacterial diseases. J Allergy Clin Immunol 2008; 122:1043-51; quiz 52-3; PMID:19084105; http://dx.doi.org/10.1016/j.jaci.2008.10.037
  • Diedrich CR, Flynn JL. HIV-1/mycobacterium tuberculosis coinfection immunology: how does HIV-1 exacerbate tuberculosis? Infect Immun 2011; 79:1407-17; PMID:21245275; http://dx.doi.org/10.1128/IAI.01126-10
  • Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 1993; 178:2249-54; PMID:7504064; http://dx.doi.org/10.1084/jem.178.6.2249
  • Bhatt K, Verma S, Ellner JJ, Salgame P. Quest for correlates of protection against tuberculosis. Clin Vaccine Immunol 2015; 22:258-66; PMID:25589549; http://dx.doi.org/10.1128/CVI.00721-14
  • Nakaya HI, Pulendran B. Vaccinology in the era of high-throughput biology. Philos Trans R Soc Lond B Biol Sci 2015; 370; pii: 20140146; PMID:25964458; http://dx.doi.org/10.1098/rstb.2014.0146
  • Elias D, Akuffo H, Britton S. PPD induced in vitro interferon gamma production is not a reliable correlate of protection against Mycobacterium tuberculosis. Trans R Soc Trop Med Hyg 2005; 99:363-8; PMID:15780343; http://dx.doi.org/10.1016/j.trstmh.2004.08.006
  • Kagina BM, Abel B, Scriba TJ, Hughes EJ, Keyser A, Soares A, Gamieldien H, Sidibana M, Hatherill M, Gelderbloem S, et al. Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus Calmette-Guerin vaccination of newborns. Am J Respir Crit Care Med 2010; 182:1073-9; PMID:20558627; http://dx.doi.org/10.1164/rccm.201003-0334OC
  • Mittrucker HW, Steinhoff U, Kohler A, Krause M, Lazar D, Mex P, Miekley D, Kaufmann SH. Poor correlation between BCG vaccination-induced T cell responses and protection against tuberculosis. Proc Natl Acad Sci U S A 2007; 104:12434-9; PMID:17640915; http://dx.doi.org/10.1073/pnas.0703510104
  • Miller E, Salisbury D, Ramsay M. Planning, registration, and implementation of an immunisation campaign against meningococcal serogroup C disease in the UK: a success story. Vaccine 2001; 20 Suppl 1:S58-67; PMID:11587814; http://dx.doi.org/10.1016/S0264-410X(01)00299-7
  • Barry CE, 3rd, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 2009; 7:845-55; PMID:19855401
  • O'Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP. The immune response in tuberculosis. Annu Rev Immunol 2013; 31:475-527; PMID:23516984; http://dx.doi.org/10.1146/annurev-immunol-032712-095939
  • Esmail H, Barry CE, 3rd, Wilkinson RJ. Understanding latent tuberculosis: the key to improved diagnostic and novel treatment strategies. Drug Discov Today 2012; 17:514-21; PMID:22198298; http://dx.doi.org/10.1016/j.drudis.2011.12.013
  • Esmail H, Barry CE, 3rd, Young DB, Wilkinson RJ. The ongoing challenge of latent tuberculosis. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130437; PMID:24821923; http://dx.doi.org/10.1098/rstb.2013.0437
  • Mooney M, McWeeney S, Sekaly RP. Systems immunogenetics of vaccines. Semin Immunol 2013; 25:124-9; PMID:23886894; http://dx.doi.org/10.1016/j.smim.2013.06.003
  • Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol 2011; 12:509-17; PMID:21739679; http://dx.doi.org/10.1038/ni.2039
  • Pulendran B, Li S, Nakaya HI. Systems vaccinology. Immunity 2010; 33:516-29; PMID:21029962; http://dx.doi.org/10.1016/j.immuni.2010.10.006
  • Zak DE, Aderem A. Systems biology of innate immunity. Immunol Rev 2009; 227:264-82; PMID:19120490; http://dx.doi.org/10.1111/j.1600-065X.2008.00721.x
  • Gaucher D, Therrien R, Kettaf N, Angermann BR, Boucher G, Filali-Mouhim A, Moser JM, Mehta RS, Drake DR, 3rd, Castro E, et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J Exp Med 2008; 205:3119-31; PMID:19047440; http://dx.doi.org/10.1084/jem.20082292
  • Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, Pirani A, Gernert K, Deng J, Marzolf B, et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 2009; 10:116-25; PMID:19029902; http://dx.doi.org/10.1038/ni.1688
  • Maertzdorf J, Kaufmann SH, Weiner J, 3rd. Molecular signatures for vaccine development. Vaccine 2015; 33(40):5256-61
  • Nakaya HI, Li S, Pulendran B. Systems vaccinology: learning to compute the behavior of vaccine induced immunity. Wiley Interdiscip Rev Syst Biol Med 2012; 4:193-205; PMID:22012654; http://dx.doi.org/10.1002/wsbm.163
  • Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S, Haining WN, Means AR, Kasturi SP, Khan N, Li GM, et al. Systems biology of vaccination for seasonal influenza in humans. Nat Immunol 2011; 12:786-95; PMID:21743478; http://dx.doi.org/10.1038/ni.2067
  • Ulrichs T, Kaufmann SH. New insights into the function of granulomas in human tuberculosis. J Pathol 2006; 208:261-9; PMID:16362982; http://dx.doi.org/10.1002/path.1906
  • Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010; 466:973-7; PMID:20725040; http://dx.doi.org/10.1038/nature09247
  • Jacobsen M, Mattow J, Repsilber D, Kaufmann SH. Novel strategies to identify biomarkers in tuberculosis. Biol Chem 2008; 389:487-95; PMID:18953715; http://dx.doi.org/10.1515/BC.2008.053
  • Jacobsen M, Repsilber D, Gutschmidt A, Neher A, Feldmann K, Mollenkopf HJ, Ziegler A, Kaufmann SH. Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. J Mol Med (Berl) 2007; 85:613-21; PMID:17318616; http://dx.doi.org/10.1007/s00109-007-0157-6
  • Lesho E, Forestiero FJ, Hirata MH, Hirata RD, Cecon L, Melo FF, Paik SH, Murata Y, Ferguson EW, Wang Z, et al. Transcriptional responses of host peripheral blood cells to tuberculosis infection. Tuberculosis (Edinb) 2011; 91:390-9; PMID:21835698; http://dx.doi.org/10.1016/j.tube.2011.07.002
  • Lu C, Wu J, Wang H, Wang S, Diao N, Wang F, Gao Y, Chen J, Shao L, Weng X, et al. Novel biomarkers distinguishing active tuberculosis from latent infection identified by gene expression profile of peripheral blood mononuclear cells. PloS One 2011; 6:e24290; PMID:21904626; http://dx.doi.org/10.1371/journal.pone.0024290
  • Maertzdorf J, Ota M, Repsilber D, Mollenkopf HJ, Weiner J, Hill PC, Kaufmann SH. Functional correlations of pathogenesis-driven gene expression signatures in tuberculosis. PloS One 2011; 6:e26938; PMID:22046420; http://dx.doi.org/10.1371/journal.pone.0026938
  • Maertzdorf J, Repsilber D, Parida SK, Stanley K, Roberts T, Black G, Walzl G, Kaufmann SH. Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun 2011; 12:15-22; PMID:20861863; http://dx.doi.org/10.1038/gene.2010.51
  • Maertzdorf J, Weiner J, 3rd, Mollenkopf HJ, Bauer T, Prasse A, Muller-Quernheim J, Kaufmann SH. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc Natl Acad Sci U S A 2012; 109:7853-8; PMID:22547807; http://dx.doi.org/10.1073/pnas.1121072109
  • Mistry R, Cliff JM, Clayton CL, Beyers N, Mohamed YS, Wilson PA, Dockrell HM, Wallace DM, van Helden PD, Duncan K, et al. Gene-expression patterns in whole blood identify subjects at risk for recurrent tuberculosis. J Infect Dis 2007; 195:357-65; PMID:17205474; http://dx.doi.org/10.1086/510397
  • Sutherland JS, Loxton AG, Haks MC, Kassa D, Ambrose L, Lee JS, Ran L, van Baarle D, Maertzdorf J, Howe R, et al. Differential gene expression of activating Fcgamma receptor classifies active tuberculosis regardless of human immunodeficiency virus status or ethnicity. Clin Microbiol Infect 2014; 20:O230-8; PMID:24205913; http://dx.doi.org/10.1111/1469-0691.12383
  • Kaforou M, Wright VJ, Oni T, French N, Anderson ST, Bangani N, Banwell CM, Brent AJ, Crampin AC, Dockrell HM, et al. Detection of tuberculosis in HIV-infected and -uninfected African adults using whole blood RNA expression signatures: a case-control study. PLoS Med 2013; 10:e1001538; PMID:24167453; http://dx.doi.org/10.1371/journal.pmed.1001538
  • Cliff JM, Lee JS, Constantinou N, Cho JE, Clark TG, Ronacher K, King EC, Lukey PT, Duncan K, Van Helden PD, et al. Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response. J Infect Dis 2013; 207:18-29; PMID:22872737; http://dx.doi.org/10.1093/infdis/jis499
  • Joosten SA, Fletcher HA, Ottenhoff TH. A helicopter perspective on TB biomarkers: pathway and process based analysis of gene expression data provides new insight into TB pathogenesis. PloS One 2013; 8:e73230; PMID:24066041; http://dx.doi.org/10.1371/journal.pone.0073230
  • Maertzdorf J, Weiner J, 3rd, Kaufmann SH. Enabling biomarkers for tuberculosis control. Int J Tuberc Lung Dis 2012; 16:1140-8; PMID:22871324; http://dx.doi.org/10.5588/ijtld.12.0246
  • Fu Y, Yi Z, Wu X, Li J, Xu F. Circulating microRNAs in patients with active pulmonary tuberculosis. J Clin Microbiol 2011; 49:4246-51; PMID:21998423; http://dx.doi.org/10.1128/JCM.05459-11
  • Iannaccone M, Dorhoi A, Kaufmann SH. Host-directed therapy of tuberculosis: what is in it for microRNA? Expert Opin Ther Targets 2014; 18:491-4; PMID:24641181; http://dx.doi.org/10.1517/14728222.2014.897696
  • Liu Y, Wang X, Jiang J, Cao Z, Yang B, Cheng X. Modulation of T cell cytokine production by miR-144* with elevated expression in patients with pulmonary tuberculosis. Mol Immunol 2011; 48:1084-90; PMID:21367459; http://dx.doi.org/10.1016/j.molimm.2011.02.001
  • Wang C, Yang S, Sun G, Tang X, Lu S, Neyrolles O, Gao Q. Comparative miRNA expression profiles in individuals with latent and active tuberculosis. PloS One 2011; 6:e25832; PMID:22003408; http://dx.doi.org/10.1371/journal.pone.0025832
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10:57-63; PMID:19015660; http://dx.doi.org/10.1038/nrg2484
  • Wu J, Lu C, Diao N, Zhang S, Wang S, Wang F, Gao Y, Chen J, Shao L, Lu J, et al. Analysis of microRNA expression profiling identifies miR-155 and miR-155* as potential diagnostic markers for active tuberculosis: a preliminary study. Hum Immunol 2012; 73:31-7; PMID:22037148; http://dx.doi.org/10.1016/j.humimm.2011.10.003
  • Wu LS, Lee SW, Huang KY, Lee TY, Hsu PW, Weng JT. Systematic expression profiling analysis identifies specific microRNA-gene interactions that may differentiate between active and latent tuberculosis infection. Biomed Res Int 2014; 2014:895179; PMID:25276827
  • Agranoff D, Fernandez-Reyes D, Papadopoulos MC, Rojas SA, Herbster M, Loosemore A, Tarelli E, Sheldon J, Schwenk A, Pollok R, et al. Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum. Lancet 2006; 368:1012-21; PMID:16980117; http://dx.doi.org/10.1016/S0140-6736(06)69342-2
  • Deng C, Lin M, Hu C, Li Y, Gao Y, Cheng X, Zhang F, Dong M, Li Y. Establishing a serologic decision tree model of extrapulmonary tuberculosis by MALDI-TOF MS analysis. Diagn Microbiol Infect Dis 2011; 71:144-50; PMID:21855247; http://dx.doi.org/10.1016/j.diagmicrobio.2011.06.021
  • Kunnath-Velayudhan S, Salamon H, Wang HY, Davidow AL, Molina DM, Huynh VT, Cirillo DM, Michel G, Talbot EA, Perkins MD, et al. Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc Natl Acad Sci U S A 2010; 107:14703-8; PMID:20668240; http://dx.doi.org/10.1073/pnas.1009080107
  • Liu Q, Chen X, Hu C, Zhang R, Yue J, Wu G, Li X, Wu Y, Wen F. Serum protein profiling of smear-positive and smear-negative pulmonary tuberculosis using SELDI-TOF mass spectrometry. Lung 2010; 188:15-23; PMID:20012079; http://dx.doi.org/10.1007/s00408-009-9199-6
  • Sartain MJ, Slayden RA, Singh KK, Laal S, Belisle JT. Disease state differentiation and identification of tuberculosis biomarkers via native antigen array profiling. Mol Cell Proteomics 2006; 5:2102-13; http://dx.doi.org/10.1074/mcp.M600089-MCP200
  • Yu Y, Jin D, Hu S, Zhang Y, Zheng X, Zheng J, Liao M, Chen X, Graner M, Liu H, et al. A novel tuberculosis antigen identified from human tuberculosis granulomas. Mol Cell Proteomics 2015; 14:1093-103; http://dx.doi.org/10.1074/mcp.M114.045237
  • Banday KM, Pasikanti KK, Chan EC, Singla R, Rao KV, Chauhan VS, Nanda RK. Use of urine volatile organic compounds to discriminate tuberculosis patients from healthy subjects. Anal Chem 2011; 83:5526-34; PMID:21619052; http://dx.doi.org/10.1021/ac200265g
  • Mahapatra S, Hess AM, Johnson JL, Eisenach KD, DeGroote MA, Gitta P, Joloba ML, Kaplan G, Walzl G, Boom WH, et al. A metabolic biosignature of early response to anti-tuberculosis treatment. BMC Infect Dis 2014; 14:53; PMID:24484441; http://dx.doi.org/10.1186/1471-2334-14-53
  • Phillips M, Basa-Dalay V, Bothamley G, Cataneo RN, Lam PK, Natividad MP, Schmitt P, Wai J. Breath biomarkers of active pulmonary tuberculosis. Tuberculosis (Edinb) 2010; 90:145-51; PMID:20189456; http://dx.doi.org/10.1016/j.tube.2010.01.003
  • Weiner J, 3rd, Parida SK, Maertzdorf J, Black GF, Repsilber D, Telaar A, Mohney RP, Arndt-Sullivan C, Ganoza CA, Fae KC, et al. Biomarkers of inflammation, immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients. PloS one 2012; 7:e40221; PMID:22844400; http://dx.doi.org/10.1371/journal.pone.0040221
  • Tientcheu LD, Maertzdorf J, Weiner J, Adetifa IM, Mollenkopf HJ, Sutherland JS, Donkor S, Kampmann B, Kaufmann SH, Dockrell HM, et al. Differential transcriptomic and metabolic profiles of M. africanum- and M. tuberculosis-infected patients after, but not before, drug treatment. Genes Immu 2015; 16:347-55; PMID:26043170; http://dx.doi.org/10.1038/gene.2015.21
  • Weiner J, 3rd, Kaufmann SH, Maertzdorf J. High-throughput data analysis and data integration for vaccine trials. Vaccine 2015; 33(40):5249-55
  • Chaussabel D, Quinn C, Shen J, Patel P, Glaser C, Baldwin N, Stichweh D, Blankenship D, Li L, Munagala I, et al. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity 2008; 29:150-64; PMID:18631455; http://dx.doi.org/10.1016/j.immuni.2008.05.012
  • Banchereau R, Jordan-Villegas A, Ardura M, Mejias A, Baldwin N, Xu H, Saye E, Rossello-Urgell J, Nguyen P, Blankenship D, et al. Host immune transcriptional profiles reflect the variability in clinical disease manifestations in patients with Staphylococcus aureus infections. PloS One 2012; 7:e34390; PMID:22496797; http://dx.doi.org/10.1371/journal.pone.0034390
  • Chiche L, Jourde-Chiche N, Whalen E, Presnell S, Gersuk V, Dang K, Anguiano E, Quinn C, Burtey S, Berland Y, et al. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol 2014; 66:1583-95; http://dx.doi.org/10.1002/art.38628
  • Obermoser G, Presnell S, Domico K, Xu H, Wang Y, Anguiano E, Thompson-Snipes L, Ranganathan R, Zeitner B, Bjork A, et al. Systems scale interactive exploration reveals quantitative and qualitative differences in response to influenza and pneumococcal vaccines. Immunity 2013; 38:831-44; PMID:23601689; http://dx.doi.org/10.1016/j.immuni.2012.12.008
  • Dunachie S, Hill AV, Fletcher HA. Profiling the host response to malaria vaccination and malaria challenge. Vaccine 2015; 33(40):5316-20
  • Huang KY, Li CK, Clutterbuck E, Chui C, Wilkinson T, Gilbert A, Oxford J, Lambkin-Williams R, Lin TY, McMichael AJ, et al. Virus-specific antibody secreting cell, memory B-cell, and sero-antibody responses in the human influenza challenge model. J Infect Dis 2014; 209:1354-61; PMID:24415790; http://dx.doi.org/10.1093/infdis/jit650
  • Jones C, Darton TC, Pollard AJ. Why the development of effective typhoid control measures requires the use of human challenge studies. Front Microbiol 2014; 5:707; PMID:25566221; http://dx.doi.org/10.3389/fmicb.2014.00707
  • McArthur MA, Fresnay S, Magder LS, Darton TC, Jones C, Waddington CS, Blohmke CJ, Dougan G, Angus B, Levine MM, et al. Activation of Salmonella Typhi-specific regulatory T cells in typhoid disease in a wild-type S. Typhi challenge model. PLoS Pathog 2015; 11:e1004914; PMID:26001081; http://dx.doi.org/10.1371/journal.ppat.1004914
  • Memoli MJ, Czajkowski L, Reed S, Athota R, Bristol T, Proudfoot K, Fargis S, Stein M, Dunfee RL, Shaw PA, et al. Validation of the wild-type influenza A human challenge model H1N1pdMIST: an A(H1N1)pdm09 dose-finding investigational new drug study. Clin Infect Dis 2015; 60:693-702; PMID:25416753; http://dx.doi.org/10.1093/cid/ciu924
  • Shirley DA, McArthur MA. The utility of human challenge studies in vaccine development: lessons learned from cholera. Vaccine 2011; 2011:3-13; PMID:24482781
  • Spring M, Polhemus M, Ockenhouse C. Controlled human malaria infection. J Infect Dis 2014; 209 Suppl 2:S40-5; PMID:24872394; http://dx.doi.org/10.1093/infdis/jiu063
  • Gunther VJ, Putnak R, Eckels KH, Mammen MP, Scherer JM, Lyons A, Sztein MB, Sun W. A human challenge model for dengue infection reveals a possible protective role for sustained interferon gamma levels during the acute phase of illness. Vaccine 2011; 29:3895-904; PMID:21443963; http://dx.doi.org/10.1016/j.vaccine.2011.03.038
  • Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, et al. The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci U S A 2003; 100:7877-82; PMID:12788972; http://dx.doi.org/10.1073/pnas.1130426100
  • Minassian AM, Ronan EO, Poyntz H, Hill AV, McShane H. Preclinical development of an in vivo BCG challenge model for testing candidate TB vaccine efficacy. PloS One 2011; 6:e19840; PMID:21629699; http://dx.doi.org/10.1371/journal.pone.0019840
  • Villarreal-Ramos B, Berg S, Chamberlain L, McShane H, Hewinson RG, Clifford D, Vordermeier M. Development of a BCG challenge model for the testing of vaccine candidates against tuberculosis in cattle. Vaccine 2014; 32:5645-9; PMID:25138291; http://dx.doi.org/10.1016/j.vaccine.2014.08.009
  • Chen L, Wang J, Zganiacz A, Xing Z. Single intranasal mucosal Mycobacterium bovis BCG vaccination confers improved protection compared to subcutaneous vaccination against pulmonary tuberculosis. Infect Immun 2004; 72:238-46; PMID:14688101; http://dx.doi.org/10.1128/IAI.72.1.238-246.2004
  • Jeon BY, Derrick SC, Lim J, Kolibab K, Dheenadhayalan V, Yang AL, Kreiswirth B, Morris SL. Mycobacterium bovis BCG immunization induces protective immunity against nine different Mycobacterium tuberculosis strains in mice. Infect Immun 2008; 76:5173-80; PMID:18710860; http://dx.doi.org/10.1128/IAI.00019-08
  • Santosuosso M, McCormick S, Zhang X, Zganiacz A, Xing Z. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect Immun 2006; 74:4634-43; PMID:16861651; http://dx.doi.org/10.1128/IAI.00517-06
  • Minassian AM, Satti I, Poulton ID, Meyer J, Hill AV, McShane H. A human challenge model for Mycobacterium tuberculosis using Mycobacterium bovis bacille Calmette-Guerin. J Infect Dis 2012; 205:1035-42; PMID:22396610; http://dx.doi.org/10.1093/infdis/jis012
  • Harris SA, Meyer J, Satti I, Marsay L, Poulton ID, Tanner R, Minassian AM, Fletcher HA, McShane H. Evaluation of a human BCG challenge model to assess antimycobacterial immunity induced by BCG and a candidate tuberculosis vaccine, MVA85A, alone and in combination. J Infect Dis 2014; 209:1259-68; PMID:24273174; http://dx.doi.org/10.1093/infdis/jit647
  • Matsumiya M, Satti I, Chomka A, Harris SA, Stockdale L, Meyer J, Fletcher HA, McShane H. Gene expression and cytokine profile correlate with mycobacterial growth in a human BCG challenge model. J Infect Dis 2015; 211:1499-509; PMID:25381367; http://dx.doi.org/10.1093/infdis/jiu615
  • Satti I, Meyer J, Harris SA, Manjaly Thomas ZR, Griffiths K, Antrobus RD, Rowland R, Ramon RL, Smith M, Sheehan S, et al. Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial. Lancet Infect Dis 2014; 14:939-46; PMID:25151225; http://dx.doi.org/10.1016/S1473-3099(14)70845-X
  • Mahomed H, Ehrlich R, Hawkridge T, Hatherill M, Geiter L, Kafaar F, Abrahams DA, Mulenga H, Tameris M, Geldenhuys H, et al. TB incidence in an adolescent cohort in South Africa. PloS One 2013; 8:e59652; PMID:23533639; http://dx.doi.org/10.1371/journal.pone.0059652
  • Mahomed H, Hawkridge T, Verver S, Geiter L, Hatherill M, Abrahams DA, Ehrlich R, Hanekom WA, Hussey GD. Predictive factors for latent tuberculosis infection among adolescents in a high-burden area in South Africa. Int J Tuberc Lung Dis 2011; 15:331-6; PMID:21333099
  • Andrews JR, Hatherill M, Mahomed H, Hanekom WA, Campo M, Hawn TR, Wood R, Scriba TJ. The dynamics of QuantiFERON-TB gold in-tube conversion and reversion in a cohort of South African adolescents. Am J Respir Crit Care Med 2015; 191:584-91; PMID:25562578; http://dx.doi.org/10.1164/rccm.201409-1704OC
  • Machingaidze S, Verver S, Mulenga H, Abrahams DA, Hatherill M, Hanekom W, Hussey GD, Mahomed H. Predictive value of recent QuantiFERON conversion for tuberculosis disease in adolescents. Am J Respir Crit Care Med 2012; 186:1051-6; PMID:22955316; http://dx.doi.org/10.1164/rccm.201206-1134OC
  • Mahomed H, Hawkridge T, Verver S, Abrahams D, Geiter L, Hatherill M, Ehrlich R, Hanekom WA, Hussey GD. The tuberculin skin test versus QuantiFERON TB Gold(R) in predicting tuberculosis disease in an adolescent cohort study in South Africa. PloS One 2011; 6:e17984; PMID:21479236; http://dx.doi.org/10.1371/journal.pone.0017984