2,971
Views
61
CrossRef citations to date
0
Altmetric
Reviews

Current therapeutic vaccination and immunotherapy strategies for HPV-related diseases

, , , &
Pages 1418-1429 | Received 04 Nov 2015, Accepted 20 Dec 2015, Published online: 06 Apr 2016

References

  • Dunne EF, Unger ER, Sternberg M, McQuillan G, Swan DC, Patel SS, Markowitz LE. Prevalence of HPV infection among females in the United States. Jama-J Am Med Assoc 2007; 297:813-9; http://dx.doi.org/10.1001/jama.297.8.813
  • Koutsky L. Epidemiology of genital human papillomavirus infection. Am J Med 1997; 102:3-8; PMID:9217656; http://dx.doi.org/10.1016/S0002-9343(97)00177-0
  • Satterwhite CL, Torrone E, Meites E, Dunne EF, Mahajan R, Ocfemia MC, Su J, Xu F, Weinstock H. Sexually transmitted infections among US women and men: prevalence and incidence estimates, 2008. Sex Transm Dis 2013; 40:187-93; PMID:23403598; http://dx.doi.org/10.1097/OLQ.0b013e318286bb53
  • Franco EL, Villa LL, Sobrinho JP, Prado JM, Rousseau MC, Desy M, Rohan TE. Epidemiology of acquisition and clearance of cervical human papillomavirus infection in women from a high-risk area for cervical cancer. J Infect Dis 1999; 180:1415-23; PMID:10515798; http://dx.doi.org/10.1086/315086
  • Ho GY, Burk RD, Klein S, Kadish AS, Chang CJ, Palan P, Basu J, Tachezy R, Lewis R, Romney S. Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia. J Natl Cancer Inst 1995; 87:1365-71; PMID:7658497; http://dx.doi.org/10.1093/jnci/87.18.1365
  • Moscicki AB. Impact of HPV infection in adolescent populations. J Adolesc Health 2005; 37:S3-9; PMID:16310138; http://dx.doi.org/10.1016/j.jadohealth.2005.09.011
  • Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999; 189:12-9; PMID:10451482; http://dx.doi.org/10.1002/(SICI)1096-9896(199909)189:1%3c12::AID-PATH431%3e3.0.CO;2-F
  • Bosch FX, Manos MM, Munoz N, Sherman M, Jansen AM, Peto J, Schiffman MH, Moreno V, Kurman R, Shah KV. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst 1995; 87:796-802; PMID:7791229; http://dx.doi.org/10.1093/jnci/87.11.796
  • Ghittoni R, Accardi R, Chiocca S, Tommasino M. Role of human papillomaviruses in carcinogenesis. Ecancermedicalscience 2015; 9:526; PMID:25987895; http://dx.doi.org/10.3332/ecancer.2015.526
  • Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, Vignat J, Ferlay J, Bray F, Plummer M, et al. Global burden of human papillomavirus and related diseases. Vaccine 2012; 30 Suppl 5:F12-23; PMID:23199955; http://dx.doi.org/10.1016/j.vaccine.2012.07.055
  • Ferlay J SI, Ervik M, Dikshit R, Esser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013, 2013.
  • Watson M, Saraiya M, Benard V, Coughlin SS, Flowers L, Cokkinides V, Schwenn M, Huang Y, Giuliano A. Burden of cervical cancer in the United States, 1998-2003. Cancer 2008; 113:2855-64; PMID:18980204; http://dx.doi.org/10.1002/cncr.23756
  • Smith JS. Ethnic disparities in cervical cancer illness burden and subsequent care: a prospective view in managed care. The American journal of managed care 2008; 14:S193-9; PMID:18611087
  • Mehanna H, Beech T, Nicholson T, El-Hariry I, McConkey C, Paleri V, Roberts S. Prevalence of human papillomavirus in oropharyngeal and nonoropharyngeal head and neck cancer–systematic review and meta-analysis of trends by time and region. Head Neck 2013; 35:747-55; PMID:22267298; http://dx.doi.org/10.1002/hed.22015
  • Ragin CC, Taioli E. Survival of squamous cell carcinoma of the head and neck in relation to human papillomavirus infection: review and meta-analysis. Int J Cancer 2007; 121:1813-20; PMID:17546592; http://dx.doi.org/10.1002/ijc.22851
  • Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, Jiang B, Goodman MT, Sibug-Saber M, Cozen W, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 2011; 29:4294-301; PMID:21969503; http://dx.doi.org/10.1200/JCO.2011.36.4596
  • Ganguly N, Parihar SP. Human papillomavirus E6 and E7 oncoproteins as risk factors for tumorigenesis. J Biosci 2009; 34:113-23; PMID:19430123; http://dx.doi.org/10.1007/s12038-009-0013-7
  • Buck CB, Thompson CD, Pang YY, Lowy DR, Schiller JT. Maturation of papillomavirus capsids. J Virol 2005; 79:2839-46; PMID:15709003; http://dx.doi.org/10.1128/JVI.79.5.2839-2846.2005
  • Hafner N, Driesch C, Gajda M, Jansen L, Kirchmayr R, Runnebaum IB, Durst M. Integration of the HPV16 genome does not invariably result in high levels of viral oncogene transcripts. Oncogene 2008; 27:1610-7; PMID:17828299; http://dx.doi.org/10.1038/sj.onc.1210791
  • zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2002; 2:342-50; PMID:12044010; http://dx.doi.org/10.1038/nrc798
  • Group TFIS. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med 2007; 356:1915-27; PMID:17494925; http://dx.doi.org/10.1056/NEJMoa061741
  • FDA licensure of quadrivalent human papillomavirus vaccine (HPV4, Gardasil) for use in males and guidance from the Advisory Committee on Immunization Practices (ACIP). MMWR Morbidity and mortality weekly report 2010; 59:630-2; PMID:20508594
  • Kirby T. FDA approves new upgraded Gardasil 9. The Lancet Oncology 2015; 16:e56; PMID:25532625; http://dx.doi.org/10.1016/S1470-2045(14)71191-X
  • Joura EA, Giuliano AR, Iversen OE, Bouchard C, Mao C, Mehlsen J, Moreira ED, Jr., Ngan Y, Petersen LK, Lazcano-Ponce E, et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med 2015; 372:711-23; PMID:25693011; http://dx.doi.org/10.1056/NEJMoa1405044
  • Stokley S, Jeyarajah J, Yankey D, Cano M, Gee J, Roark J, Curtis RC, Markowitz L. Human papillomavirus vaccination coverage among adolescents, 2007-2013, and postlicensure vaccine safety monitoring, 2006-2014–United States. MMWR Morbidity and mortality weekly report 2014; 63:620-4; PMID:25055185
  • Reagan-Steiner S, Yankey D, Jeyarajah J, Elam-Evans LD, Singleton JA, Curtis CR, MacNeil J, Markowitz LE, Stokley S. National, Regional, State, and Selected Local Area Vaccination Coverage Among Adolescents Aged 13-17 Years–United States, 2014. MMWR Morb Mortal Wkly Rep 2015; 64:784-92; PMID:26225476; http://dx.doi.org/10.15585/mmwr.mm6429a3
  • Saslow D, Solomon D, Lawson HW, Killackey M, Kulasingam SL, Cain J, Garcia FA, Moriarty AT, Waxman AG, Wilbur DC, et al. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. Am J Clin Pathol 2012; 137:516-42; PMID:22431528; http://dx.doi.org/10.1309/AJCPTGD94EVRSJCG
  • Administration USFaD. FDA approves first human papillomavirus test for primary cervical cancer screening. 2014.
  • Stoler MH, Wright TC, Jr., Sharma A, Apple R, Gutekunst K, Wright TL, Group AHS. High-risk human papillomavirus testing in women with ASC-US cytology: results from the ATHENA HPV study. Am J Clin Pathol 2011; 135:468-75; PMID:21350104; http://dx.doi.org/10.1309/AJCPZ5JY6FCVNMOT
  • Wright TC, Jr., Stoler MH, Sharma A, Zhang G, Behrens C, Wright TL. Evaluation of HPV-16 and HPV-18 genotyping for the triage of women with high-risk HPV+ cytology-negative results. American journal of clinical pathology 2011; 136:578-86; PMID:21917680; http://dx.doi.org/10.1309/AJCPTUS5EXAS6DKZ
  • Schmiedeskamp MR, Kockler DR. Human papillomavirus vaccines. Ann Pharmacother 2006; 40:1344-52; PMID:16849621; http://dx.doi.org/10.1345/aph.1G723
  • Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A 1992; 89:12180-4; PMID:1334560; http://dx.doi.org/10.1073/pnas.89.24.12180
  • Stanley M. Immune responses to human papillomavirus. Vaccine 2006; 24 Suppl 1:S16-22; PMID:16219398; http://dx.doi.org/10.1016/j.vaccine.2005.09.002
  • Centers for Disease C, Prevention. Recommendations on the use of quadrivalent human papillomavirus vaccine in males–Advisory Committee on Immunization Practices (ACIP), 2011. MMWR Morbidity and mortality weekly report 2011; 60:1705-8; PMID:22189893
  • Markowitz LE, Dunne EF, Saraiya M, Lawson HW, Chesson H, Unger ER, Centers for Disease C, Prevention, Advisory Committee on Immunization P. Quadrivalent Human Papillomavirus Vaccine: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2007; 56:1-24; PMID:17380109
  • Barr E, Tamms G. Quadrivalent human papillomavirus vaccine. Clin Infect Dis 2007; 45:609-7; PMID:17682997; http://dx.doi.org/10.1086/520654
  • Harper DM, Franco EL, Wheeler CM, Moscicki AB, Romanowski B, Roteli-Martins CM, Jenkins D, Schuind A, Costa Clemens SA, Dubin G, et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 2006; 367:1247-55; PMID:16631880; http://dx.doi.org/10.1016/S0140-6736(06)68439-0
  • Ault KA, Group FIS. Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neoplasia grade 2, grade 3, and adenocarcinoma in situ: a combined analysis of four randomised clinical trials. Lancet 2007; 369:1861-8; PMID:17544766; http://dx.doi.org/10.1016/S0140-6736(07)60852-6
  • Kajitani N, Satsuka A, Kawate A, Sakai H. Productive Lifecycle of Human Papillomaviruses that Depends Upon Squamous Epithelial Differentiation. Front Microbiol 2012; 3:152; PMID:22536200; http://dx.doi.org/10.3389/fmicb.2012.00152
  • Hudson JB, Bedell MA, McCance DJ, Laiminis LA. Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18. J Virol 1990; 64:519-26; PMID:2153221
  • Tan S, de Vries EG, van der Zee AG, de Jong S. Anticancer drugs aimed at E6 and E7 activity in HPV-positive cervical cancer. Curr Cancer Drug Targets 2012; 12:170-84; PMID:22165971; http://dx.doi.org/10.2174/156800912799095135
  • Ganguly N. Human papillomavirus-16 E5 protein: oncogenic role and therapeutic value. Cell Oncol (Dordr) 2012; 35:67-76; PMID:22262402; http://dx.doi.org/10.1007/s13402-011-0069-x
  • Steller MA, Gurski KJ, Murakami M, Daniel RW, Shah KV, Celis E, Sette A, Trimble EL, Park RC, Marincola FM. Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin Cancer Res 1998; 4:2103-9; PMID:9748126
  • Kast WM, Brandt RM, Sidney J, Drijfhout JW, Kubo RT, Grey HM, Melief CJ, Sette A. Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. J Immunol 1994; 152:3904-12; PMID:7511661
  • Davidson EJ, Faulkner RL, Sehr P, Pawlita M, Smyth LJ, Burt DJ, Tomlinson AE, Hickling J, Kitchener HC, Stern PL. Effect of TA-CIN (HPV 16 L2E6E7) booster immunisation in vulval intraepithelial neoplasia patients previously vaccinated with TA-HPV (vaccinia virus encoding HPV 16/18 E6E7). Vaccine 2004; 22:2722-9; PMID:15246603; http://dx.doi.org/10.1016/j.vaccine.2004.01.049
  • Frazer IH, Quinn M, Nicklin JL, Tan J, Perrin LC, Ng P, O'Connor VM, White O, Wendt N, Martin J, et al. Phase 1 study of HPV16-specific immunotherapy with E6E7 fusion protein and ISCOMATRIX adjuvant in women with cervical intraepithelial neoplasia. Vaccine 2004; 23:172-81; PMID:15531034; http://dx.doi.org/10.1016/j.vaccine.2004.05.013
  • Einstein MH, Kadish AS, Burk RD, Kim MY, Wadler S, Streicher H, Goldberg GL, Runowicz CD. Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III. Gynecol Oncol 2007; 106:453-60; PMID:17586030; http://dx.doi.org/10.1016/j.ygyno.2007.04.038
  • de Jong A, O'Neill T, Khan AY, Kwappenberg KM, Chisholm SE, Whittle NR, Dobson JA, Jack LC, St Clair Roberts JA, Offringa R, et al. Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T-cell immunity in healthy volunteers through vaccination with TA-CIN, an HPV16 L2E7E6 fusion protein vaccine. Vaccine 2002; 20:3456-64; PMID:12297390; http://dx.doi.org/10.1016/S0264-410X(02)00350-X
  • Brinkman JA, Hughes SH, Stone P, Caffrey AS, Muderspach LI, Roman LD, Weber JS, Kast WM. Therapeutic vaccination for HPV induced cervical cancers. Dis Markers 2007; 23:337-52; PMID:17627067; http://dx.doi.org/10.1155/2007/245146
  • Berraondo P, Nouze C, Preville X, Ladant D, Leclerc C. Eradication of large tumors in mice by a tritherapy targeting the innate, adaptive, and regulatory components of the immune system. Cancer Research 2007; 67:8847-55; PMID:17875726; http://dx.doi.org/10.1158/0008-5472.CAN-07-0321
  • Zhou CM, Zhang GX, Ma XX. Characterization and evaluation of the immune responses elicited by a novel human papillomavirus (HPV) therapeutic vaccine: HPV 16E7-HBcAg-Hsp65 fusion protein. J Virol Methods 2014; 197:1-6; PMID:24291739; http://dx.doi.org/10.1016/j.jviromet.2013.10.033
  • Khallouf H, Grabowska AK, Riemer AB. Therapeutic Vaccine Strategies against Human Papillomavirus. Vaccines (Basel) 2014; 2:422-62; PMID:26344626; http://dx.doi.org/10.3390/vaccines2020422
  • Jang S, Kim YT, Chung HW, Lee KR, Lim JB, Lee K. Identification of novel immunogenic human leukocyte antigen-A 2402-binding epitopes of human papillomavirus type 16 E7 for immunotherapy against human cervical cancer. Cancer 2012; 118:2173-83; PMID:21918960; http://dx.doi.org/10.1002/cncr.26468
  • Kim S, Chung HW, Lee KR, Lim JB. Identification of novel epitopes from human papillomavirus type 18 E7 that can sensitize PBMCs of multiple HLA class I against human cervical cancer. J Transl Med 2014; 12:229; PMID:25141788; http://dx.doi.org/10.1186/s12967-014-0229-7
  • Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Drijfhout JW, Wafelman AR, Oostendorp J, Fleuren GJ, et al. Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res 2008; 14:169-77; PMID:18172268; http://dx.doi.org/10.1158/1078-0432.CCR-07-1881
  • Rudolf MP, Man S, Melief CJ, Sette A, Kast WM. Human T-cell responses to HLA-A-restricted high binding affinity peptides of human papillomavirus type 18 proteins E6 and E7. Clin Cancer Res 2001; 7:788s-95s; PMID:11300474
  • Solares AM, Baladron I, Ramos T, Valenzuela C, Borbon Z, Fanjull S, Gonzalez L, Castillo D, Esmir J, Granadillo M, et al. Safety and Immunogenicity of a Human Papillomavirus Peptide Vaccine (CIGB-228) in Women with High-Grade Cervical Intraepithelial Neoplasia: First-in-Human, Proof-of-Concept Trial. ISRN Obstet Gynecol 2011; 2011:292951; PMID:21748025; http://dx.doi.org/10.5402/2011/292951
  • Muderspach L, Wilczynski S, Roman L, Bade L, Felix J, Small LA, Kast WM, Fascio G, Marty V, Weber J. A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin Cancer Res 2000; 6:3406-16; PMID:10999722
  • van Driel WJ, Ressing ME, Kenter GG, Brandt RM, Krul EJ, van Rossum AB, Schuuring E, Offringa R, Bauknecht T, Tamm-Hermelink A, et al. Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: clinical evaluation of a phase I-II trial. Eur J Cancer 1999; 35:946-52; PMID:10533477; http://dx.doi.org/10.1016/S0959-8049(99)00048-9
  • Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Essahsah F, Fathers LM, Offringa R, Drijfhout JW, et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 2009; 361:1838-47; PMID:19890126; http://dx.doi.org/10.1056/NEJMoa0810097
  • Wu CW, J; Hwang, K. Preclinical Efficacy and Safety Studies of PEK Fusion Protein in GPI-0100 Adjuvant for HPV-infectious Disease Immnotherapy. HPV 2015 - Lisbon 2015.
  • Paterson Y, Maciag PC. Listeria-based vaccines for cancer treatment. Curr Opin Mol Ther 2005; 7:454-60; PMID:16248280
  • Carleton HA. Pathogenic bacteria as vaccine vectors: teaching old bugs new tricks. Yale J Biol Med 2010; 83:217-22; PMID:21165341
  • van Duin D, Medzhitov R, Shaw AC. Triggering TLR signaling in vaccination. Trends Immunol 2006; 27:49-55; PMID:16310411; http://dx.doi.org/10.1016/j.it.2005.11.005
  • Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 2007; 7:179-90; PMID:17318230; http://dx.doi.org/10.1038/nri2038
  • Brandsma JL, Shlyankevich M, Zhang L, Slade MD, Goodwin EC, Peh W, Deisseroth AB. Vaccination of rabbits with an adenovirus vector expressing the papillomavirus E2 protein leads to clearance of papillomas and infection. J Virol 2004; 78:116-23; PMID:14671093; http://dx.doi.org/10.1128/JVI.78.1.116-123.2004
  • Borysiewicz LK, Fiander A, Nimako M, Man S, Wilkinson GW, Westmoreland D, Evans AS, Adams M, Stacey SN, Boursnell ME, et al. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 1996; 347:1523-7; PMID:8684105; http://dx.doi.org/10.1016/S0140-6736(96)90674-1
  • Brun JL, Dalstein V, Leveque J, Mathevet P, Raulic P, Baldauf JJ, Scholl S, Huynh B, Douvier S, Riethmuller D, et al. Regression of high-grade cervical intraepithelial neoplasia with TG4001 targeted immunotherapy. Am J Obstet Gynecol 2011; 204:169 e1-8; PMID:21284968; http://dx.doi.org/10.1016/j.ajog.2010.09.020
  • Gomez-Gutierrez JG, Elpek KG, Montes de Oca-Luna R, Shirwan H, Sam Zhou H, McMasters KM. Vaccination with an adenoviral vector expressing calreticulin-human papillomavirus 16 E7 fusion protein eradicates E7 expressing established tumors in mice. Cancer Immunol Immunother 2007; 56:997-1007; PMID:17146630; http://dx.doi.org/10.1007/s00262-006-0247-2
  • Roden RB, Ling M, Wu TC. Vaccination to prevent and treat cervical cancer. Hum Pathol 2004; 35:971-82; PMID:15297964; http://dx.doi.org/10.1016/j.humpath.2004.04.007
  • Nishimoto KP, Laust AK, Wang K, Kamrud KI, Hubby B, Smith JF, Nelson EL. Restricted and selective tropism of a Venezuelan equine encephalitis virus-derived replicon vector for human dendritic cells. Viral Immunol 2007; 20:88-104; PMID:17425424; http://dx.doi.org/10.1089/vim.2006.0090
  • Daemen T, Riezebos-Brilman A, Regts J, Dontje B, van der Zee A, Wilschut J. Superior therapeutic efficacy of alphavirus-mediated immunization against human papilloma virus type 16 antigens in a murine tumour model: effects of the route of immunization. Antivir Ther 2004; 9:733-42; PMID:15535411
  • Riezebos-Brilman A, Regts J, Freyschmidt EJ, Dontje B, Wilschut J, Daemen T. Induction of human papilloma virus E6/E7-specific cytotoxic T-lymphocyte activity in immune-tolerant, E6/E7-transgenic mice. Gene therapy 2005; 12:1410-4; PMID:15843807; http://dx.doi.org/10.1038/sj.gt.3302536
  • Cassetti MC, McElhiney SP, Shahabi V, Pullen JK, Le Poole IC, Eiben GL, Smith LR, Kast WM. Antitumor efficacy of Venezuelan equine encephalitis virus replicon particles encoding mutated HPV16 E6 and E7 genes. Vaccine 2004; 22:520-7; PMID:14670335; http://dx.doi.org/10.1016/j.vaccine.2003.07.003
  • Song S, Han M, Zhang H, Wang Y, Jiang H. Full screening and accurate subtyping of HLA-A*02 alleles through group-specific amplification and mono-allelic sequencing. Cell Mol Immunol 2013; 10:490-6; PMID:23954948; http://dx.doi.org/10.1038/cmi.2013.33
  • Moniz M, Ling M, Hung CF, Wu TC. HPV DNA vaccines. Frontiers in bioscience : a journal and virtual library 2003; 8:d55-68; PMID:12456324; http://dx.doi.org/10.2741/936
  • Ohlschlager P, Pes M, Osen W, Durst M, Schneider A, Gissmann L, Kaufmann AM. An improved rearranged Human Papillomavirus Type 16 E7 DNA vaccine candidate (HPV-16 E7SH) induces an E7 wildtype-specific T cell response. Vaccine 2006; 24:2880-93; PMID:16472545; http://dx.doi.org/10.1016/j.vaccine.2005.12.061
  • Brinkman JA, Xu X, Kast WM. The efficacy of a DNA vaccine containing inserted and replicated regions of the E7 gene for treatment of HPV-16 induced tumors. Vaccine 2007; 25:3437-44; PMID:17241713; http://dx.doi.org/10.1016/j.vaccine.2006.12.045
  • Peng S, Ji H, Trimble C, He L, Tsai YC, Yeatermeyer J, Boyd DA, Hung CF, Wu TC. Development of a DNA vaccine targeting human papillomavirus type 16 oncoprotein E6. J Virol 2004; 78:8468-76; PMID:15280455; http://dx.doi.org/10.1128/JVI.78.16.8468-8476.2004
  • Trimble CL, Peng S, Kos F, Gravitt P, Viscidi R, Sugar E, Pardoll D, Wu TC. A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin Cancer Res 2009; 15:361-7; PMID:19118066; http://dx.doi.org/10.1158/1078-0432.CCR-08-1725
  • Garcia F, Petry KU, Muderspach L, Gold MA, Braly P, Crum CP, Magill M, Silverman M, Urban RG, Hedley ML, et al. ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol 2004; 103:317-26; PMID:14754702; http://dx.doi.org/10.1097/01.AOG.0000110246.93627.17
  • Bagarazzi ML, Yan J, Morrow MP, Shen X, Parker RL, Lee JC, Giffear M, Pankhong P, Khan AS, Broderick KE, et al. Immunotherapy against HPV16/18 generates potent TH1 and cytotoxic cellular immune responses. Sci Transl Med 2012; 4:155ra38; http://dx.doi.org/10.1126/scitranslmed.3004414
  • Kim TJ, Jin HT, Hur SY, Yang HG, Seo YB, Hong SR, Lee CW, Kim S, Woo JW, Park KS, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun 2014; 5:5317; PMID:25354725; http://dx.doi.org/10.1038/ncomms6317
  • Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, Edwards L, Parker RL, Denny L, Giffear M, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet 2015; 386:2078-88; PMID:26386540; http://dx.doi.org/10.1016/S0140-6736(15)00239-1
  • Yang B, Yang A, Peng S, Pang X, Roden RB, Wu TC, Hung CF. Co-administration with DNA encoding papillomavirus capsid proteins enhances the antitumor effects generated by therapeutic HPV DNA vaccination. Cell Biosci 2015; 5:35; PMID:26113972; http://dx.doi.org/10.1186/s13578-015-0025-y
  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12:265-77; PMID:22437871; http://dx.doi.org/10.1038/nrc3258
  • Ferrara A, Nonn M, Sehr P, Schreckenberger C, Pawlita M, Durst M, Schneider A, Kaufmann AM. Dendritic cell-based tumor vaccine for cervical cancer II: results of a clinical pilot study in 15 individual patients. J Cancer Res Clin Oncol 2003; 129:521-30; PMID:12898233; http://dx.doi.org/10.1007/s00432-003-0463-5
  • Santin AD, Bellone S, Palmieri M, Ravaggi A, Romani C, Tassi R, Roman JJ, Burnett A, Pecorelli S, Cannon MJ. HPV16/18 E7-pulsed dendritic cell vaccination in cervical cancer patients with recurrent disease refractory to standard treatment modalities. Gynecol Oncol 2006; 100:469-78; PMID:16249018; http://dx.doi.org/10.1016/j.ygyno.2005.09.040
  • Kang TH, Lee JH, Bae HC, Noh KH, Kim JH, Song CK, Shin BC, Hung CF, Wu TC, Park JS, et al. Enhancement of dendritic cell-based vaccine potency by targeting antigen to endosomal/lysosomal compartments. Immunol Lett 2006; 106:126-34; PMID:16844231; http://dx.doi.org/10.1016/j.imlet.2006.05.004
  • Tillman BW, Hayes TL, DeGruijl TD, Douglas JT, Curiel DT. Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model. Cancer Research 2000; 60:5456-63; PMID:11034088
  • Zhou ZX, Li D, Guan SS, Zhao C, Li ZL, Zeng Y. Immunotherapeutic Effects of Dendritic Cells Pulsed with a Coden-optimized HPV 16 E6 and E7 Fusion Gene in Vivo and in Vitro. Asian Pac J Cancer Prev 2015; 16:3843-7; PMID:25987047; http://dx.doi.org/10.7314/APJCP.2015.16.9.3843
  • Houot R, Schultz LM, Marabelle A, Kohrt H. T-cell-based Immunotherapy: Adoptive Cell Transfer and Checkpoint Inhibition. Cancer Immunol Res 2015; 3:1115-22; PMID:26438444; http://dx.doi.org/10.1158/2326-6066.CIR-15-0190
  • Stevanovic S, Draper LM, Langhan MM, Campbell TE, Kwong ML, Wunderlich JR, Dudley ME, Yang JC, Sherry RM, Kammula US, et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J Clin Oncol 2015; 33:1543-50; PMID:25823737; http://dx.doi.org/10.1200/JCO.2014.58.9093
  • Scholten KB, Schreurs MW, Ruizendaal JJ, Kueter EW, Kramer D, Veenbergen S, Meijer CJ, Hooijberg E. Preservation and redirection of HPV16E7-specific T cell receptors for immunotherapy of cervical cancer. Clinical Immunology 2005; 114:119-29; PMID:15639645; http://dx.doi.org/10.1016/j.clim.2004.11.005
  • Draper LM, Kwong ML, Gros A, Stevanovic S, Tran E, Kerkar S, Raffeld M, Rosenberg SA, Hinrichs CS. Targeting of HPV-16+ Epithelial Cancer Cells by TCR Gene Engineered T Cells Directed against E6. Clin Cancer Res 2015; 21:4431-9; PMID:26429982; http://dx.doi.org/10.1158/1078-0432.CCR-14-3341
  • Luxton JC, Rowe AJ, Cridland JC, Coletart T, Wilson P, Shepherd PS. Proliferative T cell responses to the human papillomavirus type 16 E7 protein in women with cervical dysplasia and cervical carcinoma and in healthy individuals. J Gen Virol 1996; 77 (Pt 7):1585-93; PMID:8758003; http://dx.doi.org/10.1099/0022-1317-77-7-1585
  • Einstein MH, Kadish AS, Burk RD, Kim MY, Wadler S, Streicher H, Goldberg GL, Runowicz CD. Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III. Gynecol Oncol 2007; 106:453-60; PMID:17586030; http://dx.doi.org/10.1016/j.ygyno.2007.04.038
  • Petit RG, Mehta A, Jain M, Gupta S, Nagarkar R, Kumar V, Premkumar S, Neve R, John S, Basu P. ADXS11-001 immunotherapy targeting HPV-E7: final results from a Phase II study in Indian women with recurrent cervical cancer. Journal for ImmunoTherapy of Cancer 2014; 2 (Suppl 3):92; http://dx.doi.org/10.1186/2051-1426-2-S3-P92
  • Berezhnaya NM. Interaction between tumor and immune system: the role of tumor cell biology. Exp Oncol 2010; 32:159-66; PMID:21403611
  • Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol 2002; 2:116-26; PMID:11910893; http://dx.doi.org/10.1038/nri727
  • Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, Honjo T. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 1996; 8:765-72; PMID:8671665; http://dx.doi.org/10.1093/intimm/8.5.765
  • Callahan MK, Postow MA, Wolchok JD. CTLA-4 and PD-1 Pathway Blockade: Combinations in the Clinic. Front Oncol 2014; 4:385; PMID:25642417
  • Sansom DM, Walker LS. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev 2006; 212:131-48; PMID:16903911; http://dx.doi.org/10.1111/j.0105-2896.2006.00419.x
  • Teft WA, Kirchhof MG, Madrenas J. A molecular perspective of CTLA-4 function. Annu Rev Immunol 2006; 24:65-97; PMID:16551244; http://dx.doi.org/10.1146/annurev.immunol.24.021605.090535
  • Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995; 182:459-65; PMID:7543139; http://dx.doi.org/10.1084/jem.182.2.459
  • Ukpo OC, Thorstad WL, Lewis JS, Jr. B7-H1 expression model for immune evasion in human papillomavirus-related oropharyngeal squamous cell carcinoma. Head Neck Pathol 2013; 7:113-21; PMID:23179191; http://dx.doi.org/10.1007/s12105-012-0406-z
  • Lyford-Pike S, Peng S, Young GD, Taube JM, Westra WH, Akpeng B, Bruno TC, Richmon JD, Wang H, Bishop JA, et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer research 2013; 73:1733-41; PMID:23288508; http://dx.doi.org/10.1158/0008-5472.CAN-12-2384
  • Lu B, Finn OJ. T-cell death and cancer immune tolerance. Cell Death Differ 2008; 15:70-9; PMID:18007660; http://dx.doi.org/10.1038/sj.cdd.4402274
  • Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192:1027-34; PMID:11015443; http://dx.doi.org/10.1084/jem.192.7.1027
  • Eppihimer MJ, Gunn J, Freeman GJ, Greenfield EA, Chernova T, Erickson J, Leonard JP. Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation 2002; 9:133-45; PMID:11932780; http://dx.doi.org/10.1080/713774061
  • La-Beck NM, Jean GW, Huynh C, Alzghari SK, Lowe DB. Immune Checkpoint Inhibitors: New Insights and Current Place in Cancer Therapy. Pharmacotherapy 2015; 35:963-76; PMID:26497482; http://dx.doi.org/10.1002/phar.1643
  • Peggs KS, Quezada SA, Korman AJ, Allison JP. Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr Opin Immunol 2006; 18:206-13; PMID:16464564; http://dx.doi.org/10.1016/j.coi.2006.01.011
  • Blank C, Mackensen A. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 2007; 56:739-45; PMID:17195077; http://dx.doi.org/10.1007/s00262-006-0272-1
  • Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer research 2012; 72:917-27; PMID:22186141; http://dx.doi.org/10.1158/0008-5472.CAN-11-1620
  • Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 2010; 207:2187-94; PMID:20819927; http://dx.doi.org/10.1084/jem.20100643
  • Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 2010; 207:2175-86; PMID:20819923; http://dx.doi.org/10.1084/jem.20100637
  • Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 2014; 26:923-37; PMID:25465800; http://dx.doi.org/10.1016/j.ccell.2014.10.018
  • Derre L, Rivals JP, Jandus C, Pastor S, Rimoldi D, Romero P, Michielin O, Olive D, Speiser DE. BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest 2010; 120:157-67; PMID:20038811; http://dx.doi.org/10.1172/JCI40070
  • Flacher V, Bouschbacher M, Verronese E, Massacrier C, Sisirak V, Berthier-Vergnes O, de Saint-Vis B, Caux C, Dezutter-Dambuyant C, Lebecque S, et al. Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. J Immunol 2006; 177:7959-67; PMID:17114468; http://dx.doi.org/10.4049/jimmunol.177.11.7959
  • Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 2008; 8:935-47; PMID:19029989; http://dx.doi.org/10.1038/nri2455
  • Domingos-Pereira S, Decrausaz L, Derre L, Bobst M, Romero P, Schiller JT, Jichlinski P, Nardelli-Haefliger D. Intravaginal TLR agonists increase local vaccine-specific CD8 T cells and human papillomavirus-associated genital-tumor regression in mice. Mucosal Immunol 2013; 6:393-404; PMID:22968420; http://dx.doi.org/10.1038/mi.2012.83
  • Da Silva DM, Woodham AW, Skeate JG, Rijkee LK, Taylor JR, Brand HE, Muderspach LI, Roman LD, Yessaian AA, Pham HQ, et al. Langerhans cells from women with cervical precancerous lesions become functionally responsive against human papillomavirus after activation with stabilized Poly-I:C. Clinical Immunology 2015; 161:197-208; PMID:26360252; http://dx.doi.org/10.1016/j.clim.2015.09.003
  • Da Silva DM, Woodham AW, Rijkee LK, Skeate JG, Taylor JR, Koopman ME, Brand HE, Wong MK, McKee GM, Salazar AM, et al. Human papillomavirus-exposed Langerhans cells are activated by stabilized Poly-I:C. Papillomavirus Research 2015; 1:12-21; PMID:26665182
  • Fahey LM, Raff AB, Da Silva DM, Kast WM. Reversal of human papillomavirus-specific T cell immune suppression through TLR agonist treatment of Langerhans cells exposed to human papillomavirus type 16. J Immunol 2009; 182:2919-28; PMID:19234187; http://dx.doi.org/10.4049/jimmunol.0803645
  • Da Silva DM, Woodham AW, Naylor PH, Egan JE, L. BN, Kast WM. Immunostimulatory activity of the cytokine-based biologic IRX-2 on human papillomavirus-exposed Langerhans cells Journal of Interferon and Cytokine Research In Press.
  • Kanodia S, Fahey LM, Kast WM. Mechanisms used by human papillomaviruses to escape the host immune response. Curr Cancer Drug Targets 2007; 7:79-89; PMID:17305480; http://dx.doi.org/10.2174/156800907780006869
  • Ashrafi GH, Haghshenas M, Marchetti B, Campo MS. E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int J Cancer 2006; 119:2105-12; PMID:16823848; http://dx.doi.org/10.1002/ijc.22089
  • Fahey LM, Raff AB, Da Silva DM, Kast WM. A major role for the minor capsid protein of human papillomavirus type 16 in immune escape. J Immunol 2009; 183:6151-6; PMID:19864613; http://dx.doi.org/10.4049/jimmunol.0902145
  • Da Silva DM, Movius CA, Raff AB, Brand HE, Skeate JG, Wong MK, Kast WM. Suppression of Langerhans cell activation is conserved amongst human papillomavirus alpha and beta genotypes, but not a micro genotype. Virology 2014; 452-453:279-86; PMID:24606705; http://dx.doi.org/10.1016/j.virol.2014.01.031
  • Woodham AW, Raff AB, Raff LM, Da Silva DM, Yan L, Skeate JG, Wong MK, Lin YG, Kast WM. Inhibition of Langerhans Cell Maturation by Human Papillomavirus Type 16: A Novel Role for the Annexin A2 Heterotetramer in Immune Suppression. J Immunol 2014; 192(10):4748-57; PMID:24719459
  • Trimble CL, Clark RA, Thoburn C, Hanson NC, Tassello J, Frosina D, Kos F, Teague J, Jiang Y, Barat NC, et al. Human papillomavirus 16-associated cervical intraepithelial neoplasia in humans excludes CD8 T cells from dysplastic epithelium. J Immunol 2010; 185:7107-14; PMID:21037100; http://dx.doi.org/10.4049/jimmunol.1002756
  • Yang W, Song Y, Lu YL, Sun JZ, Wang HW. Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia. Immunology 2013; 139:513-22; PMID:23521696; http://dx.doi.org/10.1111/imm.12101
  • Bais AG, Beckmann I, Lindemans J, Ewing PC, Meijer CJ, Snijders PJ, Helmerhorst TJ. A shift to a peripheral Th2-type cytokine pattern during the carcinogenesis of cervical cancer becomes manifest in CIN III lesions. J Clin Pathol 2005; 58:1096-100; PMID:16189158; http://dx.doi.org/10.1136/jcp.2004.025072
  • Peghini BC, Abdalla DR, Barcelos AC, Teodoro L, Murta EF, Michelin MA. Local cytokine profiles of patients with cervical intraepithelial and invasive neoplasia. Hum Immunol 2012; 73:920-6; PMID:22749886; http://dx.doi.org/10.1016/j.humimm.2012.06.003
  • Scott ME, Shvetsov YB, Thompson PJ, Hernandez BY, Zhu X, Wilkens LR, Killeen J, Vo DD, Moscicki AB, Goodman MT. Cervical cytokines and clearance of incident human papillomavirus infection: Hawaii HPV cohort study. Int J Cancer 2013; 133:1187-96; PMID:23436563; http://dx.doi.org/10.1002/ijc.28119
  • Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10:942-9; PMID:15322536; http://dx.doi.org/10.1038/nm1093
  • Lukesova E, Boucek J, Rotnaglova E, Salakova M, Koslabova E, Grega M, Eckschlager T, Rihova B, Prochazka B, Klozar J, et al. High level of Tregs is a positive prognostic marker in patients with HPV-positive oral and oropharyngeal squamous cell carcinomas. Biomed Res Int 2014; 2014:303929; PMID:24864233; http://dx.doi.org/10.1155/2014/303929
  • Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 2007; 13:828-35; PMID:17603493; http://dx.doi.org/10.1038/nm1609
  • Stone SC, Rossetti RA, Lima AM, Lepique AP. HPV associated tumor cells control tumor microenvironment and leukocytosis in experimental models. Immun Inflamm Dis 2014; 2:63-75; PMID:25400927; http://dx.doi.org/10.1002/iid3.21
  • Yue FY, Dummer R, Geertsen R, Hofbauer G, Laine E, Manolio S, Burg G. Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int J Cancer 1997; 71:630-7; PMID:9178819; http://dx.doi.org/10.1002/(SICI)1097-0215(19970516)71:4%3c630::AID-IJC20%3e3.0.CO;2-E
  • Bolpetti A, Silva JS, Villa LL, Lepique AP. Interleukin-10 production by tumor infiltrating macrophages plays a role in Human Papillomavirus 16 tumor growth. BMC Immunol 2010; 11:27; PMID:20525400; http://dx.doi.org/10.1186/1471-2172-11-27
  • Alcocer-Gonzalez JM, Berumen J, Tamez-Guerra R, Bermudez-Morales V, Peralta-Zaragoza O, Hernandez-Pando R, Moreno J, Gariglio P, Madrid-Marina V. In vivo expression of immunosuppressive cytokines in human papillomavirus-transformed cervical cancer cells. Viral Immunol 2006; 19:481-91; PMID:16987066; http://dx.doi.org/10.1089/vim.2006.19.481
  • Steele JC, Mann CH, Rookes S, Rollason T, Murphy D, Freeth MG, Gallimore PH, Roberts S. T-cell responses to human papillomavirus type 16 among women with different grades of cervical neoplasia. Br J Cancer 2005; 93:248-59; PMID:15986031; http://dx.doi.org/10.1038/sj.bjc.6602679
  • Trimble CL, Peng S, Thoburn C, Kos F, Wu TC. Naturally occurring systemic immune responses to HPV antigens do not predict regression of CIN2/3. Cancer Immunol Immunother 2010; 59:799-803; PMID:20012604; http://dx.doi.org/10.1007/s00262-009-0806-4
  • Stevanovic S, Draper LM, Langhan MM, Campbell TE, Kwong ML, Wunderlich JR, Dudley ME, Yang JC, Sherry RM, Kammula US, et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J Clin Oncol 2015; 33:1543-50; PMID:25823737; http://dx.doi.org/10.1200/JCO.2014.58.9093
  • Khallouf H, Grabowska AK, Riemer AB. Therapeutic Vaccine Strategies against Human Papillomavirus. Vaccines (Basel) 2014; 2:422-62; PMID:26344626; http://dx.doi.org/10.3390/vaccines2020422
  • Corona Gutierrez CM, Tinoco A, Navarro T, Contreras ML, Cortes RR, Calzado P, Reyes L, Posternak R, Morosoli G, Verde ML, et al. Therapeutic vaccination with MVA E2 can eliminate precancerous lesions (CIN 1, CIN 2, and CIN 3) associated with infection by oncogenic human papillomavirus. Hum Gene Ther 2004; 15:421-31; PMID:15144573; http://dx.doi.org/10.1089/10430340460745757

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.