2,500
Views
15
CrossRef citations to date
0
Altmetric
Review

Multifunctional nanoparticles for cancer immunotherapy

&
Pages 1863-1875 | Received 16 Nov 2015, Accepted 25 Jan 2016, Published online: 08 Apr 2016

References

  • Saraswathy M, Gong S. Different strategies to overcome multidrug resistance in cancer. Biotechnol Adv 2013; 31:1397-407; PMID:23800690; http://dx.doi.org/10.1016/j.biotechadv.2013.06.004
  • Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today 2012; 17:1044-52; PMID:22652342; http://dx.doi.org/10.1016/j.drudis.2012.05.010
  • Schuster M, Nechansky A, Kircheis R. Cancer immunotherapy. Biotechnol J 2006; 1:138-47; PMID:16892244; http://dx.doi.org/10.1002/biot.200500044
  • Berzofsky JA, Terabe M, Oh S, Belyakov IM, Ahlers JD, Janik JE, Morris JC. Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Invest 2004; 113:1515-25; PMID:15173875; http://dx.doi.org/10.1172/JCI21926
  • Shapira A, Livney YD, Broxterman HJ, Assaraf YG. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist updates 2011; 14:150-63; http://dx.doi.org/10.1016/j.drup.2011.01.003
  • Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev 2015; 115(19):11109-46; PMID:26154342.
  • Blattman JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses. Science 2004; 305:200-205; PMID:15247469; http://dx.doi.org/10.1126/science.1100369
  • Fan Y, Moon JJ. Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy. Vaccines 2015; 3:662-85; PMID:26350600; http://dx.doi.org/10.3390/vaccines3030662
  • Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013; 39:1-10; PMID:23890059; http://dx.doi.org/10.1016/j.immuni.2013.07.012
  • Schuler G. Dendritic cells in cancer immunotherapy. Eur J Immunol 2010; 40:2123-30; PMID:20853498; http://dx.doi.org/10.1002/eji.201040630
  • Krishnamachari Y, Geary SM, Lemke CD, Salem AK. Nanoparticle delivery systems in cancer vaccines. Pharmaceut Res 2011; 28:215-36; http://dx.doi.org/10.1007/s11095-010-0241-4
  • Paulis LE, Mandal S, Kreutz M, Figdor CG. Dendritic cell-based nanovaccines for cancer immunotherapy. Curr Opin Immunol 2013; 25:389-95; PMID:23571027; http://dx.doi.org/10.1016/j.coi.2013.03.001
  • Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol 2006; 27:573-79; PMID:17049307; http://dx.doi.org/10.1016/j.it.2006.10.005
  • Hamdy S, Haddadi A, Hung RW, Lavasanifar A. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 2011; 63:943-55; PMID:21679733; http://dx.doi.org/10.1016/j.addr.2011.05.021
  • Engleman EG. Dendritic cell-based cancer immunotherapy. Semin Oncol 2003; 30:23-29; PMID:12881809; http://dx.doi.org/10.1016/S0093-7754(03)00229-X
  • Lu Y-C, Robbins PF. Cancer immunotherapy targeting neoantigens. Semin Immunol 2015; S1044-5323(15):00073-1; PMID:26653770
  • Hacohen N, Fritsch EF, Carter TA, Lander ES, Wu CJ. Getting personal with neoantigen-based therapeutic cancer vaccines. Cancer Immunol Res 2013: 1:11-5; PMID:24777245; http://dx.doi.org/10.1158/2326-6066.CIR-13-0022
  • Dewitte H, Verbeke R, Breckpot K, De Smedt SC, Lentacker I. Nanoparticle design to induce tumor immunity and challenge the suppressive tumor microenvironment. Nano Today 2014; 9:743-58; http://dx.doi.org/10.1016/j.nantod.2014.10.001
  • Davis ME, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7:771-82; PMID:18758474; http://dx.doi.org/10.1038/nrd2614
  • van Broekhoven CL, Parish CR, Demangel C, Britton WJ, Altin JG. Targeting Dendritic Cells with Antigen-Containing Liposomes A Highly Effective Procedure for Induction of Antitumor Immunity and for Tumor Immunotherapy. Cancer Res 2004; 64:4357-65; PMID:15205352; http://dx.doi.org/10.1158/0008-5472.CAN-04-0138
  • Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, Elhasi S, Samuel J, Lavasanifar A. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 2008; 26:5046-57; PMID:18680779; http://dx.doi.org/10.1016/j.vaccine.2008.07.035
  • Schneider T, Becker A, Ringe K, Reinhold A, Firsching R, Sabel BA. Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 2008; 195:21-27; PMID:18304655; http://dx.doi.org/10.1016/j.jneuroim.2007.12.005
  • Ma W, Chen M, Kaushal S, McElroy M, Zhang Y, Ozkan C, Bouvet M, Kruse C, Grotjahn D, Ichim T. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses. Int J Nanomedicine 2012; 7:1475-87; PMID:22619507; http://dx.doi.org/10.2147/IJN.S29506
  • Kim TH, Jin H, Kim HW, Cho M-H, Cho CS. Mannosylated chitosan nanoparticle–based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells. Mol Cancer Ther 2006; 5:1723-32; PMID:16891458; http://dx.doi.org/10.1158/1535-7163.MCT-05-0540
  • Wang Y, Gao S, Ye W-H, Yoon HS, Yang Y-Y. Co-delivery of drugs and DNA from cationic core–shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater 2006; 5:791-96; PMID:16998471; http://dx.doi.org/10.1038/nmat1737
  • Wang Y, Wang L-S, Goh S-H, Yang Y-Y. Synthesis and characterization of cationic micelles self-assembled from a biodegradable copolymer for gene delivery. Biomacromolecules 2007; 8:1028-37; PMID:17298094; http://dx.doi.org/10.1021/bm061051c
  • Conde J, Bao C, Tan Y, Cui D, Edelman ER, Azevedo HS, Byrne HJ, Artzi N, Tian F. Dual Targeted Immunotherapy via In Vivo Delivery of Biohybrid RNAi‐Peptide Nanoparticles to Tumor‐Associated Macrophages and Cancer Cells. Adv Func. Mater 2015; 25:4183-94.
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces 2010; 75:1-18; http://dx.doi.org/10.1016/j.colsurfb.2009.09.001
  • Pridgen EM, Langer R, Farokhzad OC. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Future Med 2007; 2(5):669-80.
  • Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother 2014; 10:321-32; PMID:24128651; http://dx.doi.org/10.4161/hv.26796
  • Andorko JI, Hess KL, Jewell CM. Harnessing biomaterials to engineer the lymph node microenvironment for immunity or tolerance. AAPS J 2014; 17:323-38; PMID:25533221; http://dx.doi.org/10.1208/s12248-014-9708-2
  • Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 2013; 3: 13-13; PMID:23532930; http://dx.doi.org/10.3389/fcimb.2013.00013
  • Li X, Sloat BR, Yanasarn N, Cui Z. Relationship between the size of nanoparticles and their adjuvant activity: data from a study with an improved experimental design. Eur J Pharm Biopharm 2011; 78: 107-16; PMID:21182941; http://dx.doi.org/10.1016/j.ejpb.2010.12.017
  • Oyewumi M, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines 2010; 9:1095-107; PMID:20822351; http://dx.doi.org/10.1586/erv.10.89
  • Fahmy TM, Demento SL, Caplan MJ, Mellman I, Saltzman WM. Design opportunities for actively targeted nanoparticle vaccines. Future Med 2008; 3(3):343-55.
  • Saleh T, Bolhassani A, Shojaosadati SA, Aghasadeghi MR. MPG-based nanoparticle: An efficient delivery system for enhancing the potency of DNA vaccine expressing HPV16E7. Vaccine 2015; 33:3164-70; PMID:26001433; http://dx.doi.org/10.1016/j.vaccine.2015.05.015
  • Zhuang Y, Ma Y, Wang C, Hai L, Yan C, Zhang Y, Liu F, Cai L. PEGylated cationic liposomes robustly augment vaccine-induced immune responses: Role of lymphatic trafficking and biodistribution. J Control Release 2012; 159:135-42; PMID:22226776; http://dx.doi.org/10.1016/j.jconrel.2011.12.017
  • Zinkernagel RM, Ehl S, Aichele P, Oehen S, Kündig T, Hengartner H. Antigen localisation regulates immune responses in a dose‐and time‐dependent fashion: a geographical view of immune reactivity. Immunol Rev 1997; 156:199-209; PMID:9176709; http://dx.doi.org/10.1111/j.1600-065X.1997.tb00969.x
  • Ochsenbein AF, Klenerman P, Karrer U, Ludewig B, Pericin M, Hengartner H, Zinkernagel RM. Immune surveillance against a solid tumor fails because of immunological ignorance. Proc Natl Acad Sci U S A 1999; 96:2233-8; PMID:10051624; http://dx.doi.org/10.1073/pnas.96.5.2233
  • Dileo J, Banerjee R, Whitmore M, Nayak JV, Falo LD, Huang L. Lipid–protamine–DNA-mediated antigen delivery to antigen-presenting cells results in enhanced anti-tumor immune responses. Mol Ther 2003; 7:640-8; PMID:12718907; http://dx.doi.org/10.1016/S1525-0016(03)00064-9
  • Cui Z, Han S-J, Huang L. Coating of mannan on LPD particles containing HPV E7 peptide significantly enhances immunity against HPV-positive tumor. Pharmaceut Res 2004; 21:1018-25; http://dx.doi.org/10.1023/B:PHAM.0000029292.66792.4f
  • Joshi MD, Unger WJ, Storm G, van Kooyk Y, Mastrobattista E. Targeting tumor antigens to dendritic cells using particulate carriers. J Control Release 2012; 161:25-37; PMID:22580109; http://dx.doi.org/10.1016/j.jconrel.2012.05.010
  • Birkholz K, Schwenkert M, Kellner C, Gross S, Fey G, Schuler-Thurner B, Schuler G, Schaft N, Dörrie J. Targeting of DEC-205 on human dendritic cells results in efficient MHC class II–restricted antigen presentation. Blood 2010; 116:2277-85; PMID:20566893; http://dx.doi.org/10.1182/blood-2010-02-268425
  • Kwon YJ, James E, Shastri N, Fréchet JM. In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc Natl Acad Sci U S A 2005; 102:18264-8; PMID:16344458; http://dx.doi.org/10.1073/pnas.0509541102
  • Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, Van Egeren DS, Park C, Irvine DJ. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 2014; 507:519-22; PMID:24531764; http://dx.doi.org/10.1038/nature12978
  • Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly (propylene sulfide) nanoparticles. J Control Release 2006; 112:26-34; PMID:16529839; http://dx.doi.org/10.1016/j.jconrel.2006.01.006
  • Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O'Neil CP, Lee LK, Swartz MA, Hubbell JA. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 2007; 25:1159-64; PMID:17873867; http://dx.doi.org/10.1038/nbt1332
  • Kouchakzadeh H, Safavi MS, Shojaosadati SA. Chapter Four-Efficient Delivery of Therapeutic Agents by Using Targeted Albumin Nanoparticles. Adv Protein Chem Struct Biol. 2015; 98:121-43; PMID:25819278; http://dx.doi.org/10.1016/bs.apcsb.2014.11.002
  • Elsadek B, Kratz F. Impact of albumin on drug delivery—New applications on the horizon. J Control Release 2012; 157:4-28; PMID:21959118; http://dx.doi.org/10.1016/j.jconrel.2011.09.069
  • Kouchakzadeh H, Shojaosadati SA, Tahmasebi F, Shokri F. Optimization of an anti-HER2 monoclonal antibody targeted delivery system using PEGylated human serum albumin nanoparticles. Int J Pharm 2013; 447:62-9; PMID:23454849; http://dx.doi.org/10.1016/j.ijpharm.2013.02.043
  • Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 2012; 157:168-82; PMID:21839127; http://dx.doi.org/10.1016/j.jconrel.2011.07.031
  • Bunschoten A, Buckle T, Kuil J, Luker GD, Luker KE, Nieweg OE, van Leeuwen FW. Targeted non-covalent self-assembled nanoparticles based on human serum albumin. Biomaterials 2012; 33:867-75; PMID:22024362; http://dx.doi.org/10.1016/j.biomaterials.2011.10.005
  • Bolhassani A, Saleh T. Challenges in Advancing the Field of Cancer Gene Therapy: An Overview of the Multi-Functional Nanocarriers. Intech Open Access Publisher 2013.
  • Nguyen DN, Green JJ, Chan JM, Langer R, Anderson DG. Polymeric materials for gene delivery and DNA vaccination. Adv Mater 2009; 21:847-67; http://dx.doi.org/10.1002/adma.200801478
  • Melief CJ, van der Burg SH. Immunotherapy of established (pre) malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 2008; 8:351-60; PMID:18418403.
  • Fahmy TM, Demento SL, Caplan MJ, Mellman I, Saltzman WM. Design opportunities for actively targeted nanoparticle vaccines. Fut Med 2008; 343-55.
  • Vasir JK, Labhasetwar V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev 2007; 59:718-28; PMID:17683826; http://dx.doi.org/10.1016/j.addr.2007.06.003
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4:145-60; PMID:15688077; http://dx.doi.org/10.1038/nrd1632
  • Yuba E, Kono Y, Harada A, Yokoyama S, Arai M, Kubo K, Kono K. The application of pH-sensitive polymer-lipids to antigen delivery for cancer immunotherapy. Biomaterials 2013; 34:5711-21; PMID:23639528; http://dx.doi.org/10.1016/j.biomaterials.2013.04.007
  • Du FS, Wang Y, Zhang R, Li ZC. Intelligent nucleic acid delivery systems based on stimuli-responsive polymers. Soft Matter 2010; 6:835-48; http://dx.doi.org/10.1039/B915020J
  • Vercauteren D, Rejman J, Martens TF, Demeester J, De Smedt SC, Braeckmans K. On the cellular processing of non-viral nanomedicines for nucleic acid delivery: Mechanisms and methods. J Control Release 2012; 161:566-81; PMID:22613879; http://dx.doi.org/10.1016/j.jconrel.2012.05.020
  • Akita H, Kogure K, Moriguchi R, Nakamura Y, Higashi T, Nakamura T, Serada S, Fujimoto M, Naka T, Futaki S. Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: programmed endosomal escape and dissociation. J Control Release 2010; 143:311-7; PMID:20080139; http://dx.doi.org/10.1016/j.jconrel.2010.01.012
  • Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 2008; 8:108-20; PMID:18219306; http://dx.doi.org/10.1038/nrc2326
  • Saleh T, Bolhassani A, Shojaosadati SA, Hosseinkhani S. Evaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line. Iran J Biotech 2015; 13:55-62; http://dx.doi.org/10.15171/ijb.1115
  • Martin ME, Rice KG. Peptide-guided gene delivery. AAPS J 2007; 9:18-29; http://dx.doi.org/10.1208/aapsj0901003
  • Simeoni F, Morris MC, Heitz F, Divita G. Insight into the mechanism of the peptide‐based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res 2003; 31:2717-24; PMID:12771197; http://dx.doi.org/10.1093/nar/gkg385
  • Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004; 21:137-48; PMID:15308095; http://dx.doi.org/10.1016/j.immuni.2004.07.017
  • Bhutia SK, Mallick SK, Maiti TK. Tumour escape mechanisms and their therapeutic implications in combination tumour therapy. Cell Biol Int 2010; 34:553-63; PMID:20384587; http://dx.doi.org/10.1042/CBI20090206
  • Weigert A, Sekar D, Brüne B. Tumor-associated macrophages as targets for tumor immunotherapy. Fut Med 2009; 1(1):83-95.
  • Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009; 86:1065-73; PMID:19741157; http://dx.doi.org/10.1189/jlb.0609385
  • Beyer M, Schultze JL. Regulatory T cells: major players in the tumor microenvironment. Curr Pharm Des 2009; 15:1879-92; PMID:19519430; http://dx.doi.org/10.2174/138161209788453211
  • Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9:162-74; PMID:19197294; http://dx.doi.org/10.1038/nri2506
  • Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 2006; 16(1):53-65; PMID:16168663; http://dx.doi.org/10.1016/j.semcancer.2005.07.005
  • Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 2007; 7:41-51; PMID:17186030; http://dx.doi.org/10.1038/nri1995
  • Alshamsan A, Haddadi A, Hamdy S, Samuel J, El-Kadi AO, Uludag H, Lavasanifar A. STAT3 silencing in dendritic cells by siRNA polyplexes encapsulated in PLGA nanoparticles for the modulation of anticancer immune response. Mol Pharm 2010; 7:1643-54; PMID:20804176; http://dx.doi.org/10.1021/mp100067u
  • Connelly MA, Williams DL. SR‐BI and HDL cholesteryl ester metabolism. Endocr Res 2004; 30:697-703; PMID:15666814; http://dx.doi.org/10.1081/ERC-200043979
  • Shahzad MM, Mangala LS, Han HD, Lu C, Bottsford-Miller J, Nishimura M, Mora EM, Lee J-W, Stone RL, Pecot CV. Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia 2011; 13:309-IN8; PMID:21472135; http://dx.doi.org/10.1593/neo.101372
  • Pussinen PJ, Lindner H, Glatter O, Reicher H, Kostner GM, Wintersperger A, Malle E, Sattler W. Lipoprotein-associated α-tocopheryl-succinate inhibits cell growth and induces apoptosis in human MCF-7 and HBL-100 breast cancer cells. BBA-Mol Cell Biol L 2000; 1485:129-44
  • Sood AK, Coffin JE, Schneider GB, Fletcher MS, DeYoung BR, Gruman LM, Gershenson DM, Schaller MD, Hendrix MJ. Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. Am J Pathol 2004; 165:1087-95; PMID:15466376; http://dx.doi.org/10.1016/S0002-9440(10)63370-6
  • Halder J, Kamat AA, Landen CN, Han LY, Lutgendorf SK, Lin YG, Merritt WM, Jennings NB, Chavez-Reyes A, Coleman RL. Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res 2006; 12:4916-24; PMID:16914580; http://dx.doi.org/10.1158/1078-0432.CCR-06-0021
  • Park J, Wrzesinski SH, Stern E, Look M, Criscione J, Ragheb R, Jay SM, Demento SL, Agawu A, Limon PL. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater 2012; 11:895-905; PMID:22797827; http://dx.doi.org/10.1038/nmat3355
  • Huang Z, Zhang Z, Jiang Y, Zhang D, Chen J, Dong L, Zhang J. Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy. J Control Release 2012; 158:286-92; PMID:22119956; http://dx.doi.org/10.1016/j.jconrel.2011.11.013
  • Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+ CD25+ T cell-mediated suppression by dendritic cells. Science 2003; 299:1033-6; PMID:12532024; http://dx.doi.org/10.1126/science.1078231
  • Silva JM, Zupancic E, Vandermeulen G, Oliveira VG, Salgado A, Videira M, Gaspar M, Graca L, Préat V, Florindo HF. In vivo delivery of peptides and Toll-like receptor ligands by mannose-functionalized polymeric nanoparticles induces prophylactic and therapeutic anti-tumor immune responses in a melanoma model. J Control Release 2015; 198:91-103; PMID:25483429; http://dx.doi.org/10.1016/j.jconrel.2014.11.033
  • Roy A, Singh MS, Upadhyay P, Bhaskar S. Nanoparticle mediated co-delivery of paclitaxel and a TLR-4 agonist results in tumor regression and enhanced immune response in the tumor microenvironment of a mouse model. Int J Pharm 2013; 445:171-80; PMID:23376226; http://dx.doi.org/10.1016/j.ijpharm.2013.01.045
  • Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci 2007; 104:3360-5; PMID:17360651; http://dx.doi.org/10.1073/pnas.0611533104
  • Brown JA, Dorfman DM, Ma F-R, Sullivan EL, Munoz O, Wood CR, Greenfield EA, Freeman GJ. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 2003; 170:1257-66; PMID:12538684; http://dx.doi.org/10.4049/jimmunol.170.3.1257
  • Cubillos-Ruiz JR, Engle X, Scarlett UK, Martinez D, Barber A, Elgueta R, Wang L, Nesbeth Y, Durant Y, Gewirtz AT. Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J Clin Invest 2009; 119:2231; PMID:19620771.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.