7,508
Views
76
CrossRef citations to date
0
Altmetric
Reviews

Adenoviral vector-based strategies against infectious disease and cancer

&
Pages 2064-2074 | Received 30 Dec 2015, Accepted 10 Mar 2016, Published online: 20 May 2016

References

  • Takafuji ET, Gaydos JC, Allen RG, Top FH, Jr. Simultaneous administration of live, enteric-coated adenovirus types 4, 7 and 21 vaccines: safety and immunogenicity. J Infect Dis 1979; 140:48-53; PMID:458200; http://dx.doi.org/10.1093/infdis/140.1.48
  • Rosenfeld MA, Siegfried W, Yoshimura K, Yoneyama K, Fukayama M, Stier LE, Pääkkö PK, Gilardi P, Stratford-Perricaudet LD, Perricaudet M. Adenovirus-mediated transfer of a recombinant α 1-antitrypsin gene to the lung epithelium in vivo. Science 1991; 252:431-4; PMID:2017680; http://dx.doi.org/10.1126/science.2017680
  • Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L, Gore M, Ironside J, MacDougall RH, Heise C, et al. a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6:879-85; PMID:10932224; http://dx.doi.org/10.1038/78638
  • Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274:373-6; PMID:8832876; http://dx.doi.org/10.1126/science.274.5286.373
  • Lasaro MO, Ertl HC. New insights on adenovirus as vaccine vectors. Mol Therapy 2009; 17:1333-9; http://dx.doi.org/10.1038/mt.2009.130
  • Tatsis N, Ertl HC. Adenoviruses as vaccine vectors. Mol Therapy 2004; 10:616-29; http://dx.doi.org/10.1016/j.ymthe.2004.07.013
  • Walsh MP, Seto J, Liu EB, Dehghan S, Hudson NR, Lukashev AN, Ivanova O, Chodosh J, Dyer DW, Jones MS, et al. Computational analysis of two species C human adenoviruses provides evidence of a novel virus. J Clin Microbiol 2011; 49:3482-90; PMID:21849694; http://dx.doi.org/10.1128/JCM.00156-11
  • Wang X, Xing M, Zhang C, Yang Y, Chi Y, Tang X, Zhang H, Xiong S, Yu L, Zhou D. Neutralizing antibody responses to enterovirus and adenovirus in healthy adults in China. Emerg Microbes Infect 2014; 3:e30; PMID:26038738; http://dx.doi.org/10.1038/emi.2014.30
  • Hendrix RM, Lindner JL, Benton FR, Monteith SC, Tuchscherer MA, Gray GC, Gaydos JC. Large, persistent epidemic of adenovirus type 4-associated acute respiratory disease in US army trainees. Emerging Infect Dis 1999; 5:798-801; PMID:10603214; http://dx.doi.org/10.3201/eid0506.990609
  • Xia D, Henry LJ, Gerard RD, Deisenhofer J. Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 A resolution. Structure 1994; 2:1259-70; PMID:7704534; http://dx.doi.org/10.1016/S0969-2126(94)00126-X
  • Saban SD, Silvestry M, Nemerow GR, Stewart PL. Visualization of α-helices in a 6-angstrom resolution cryoelectron microscopy structure of adenovirus allows refinement of capsid protein assignments. J Virol 2006; 80:12049-59; PMID:17005667; http://dx.doi.org/10.1128/JVI.01652-06
  • Liu H, Jin L, Koh SB, Atanasov I, Schein S, Wu L, Zhou ZH. Atomic structure of human adenovirus by cryo-EM reveals interactions among protein networks. Science 2010; 329:1038-43; PMID:20798312; http://dx.doi.org/10.1126/science.1187433
  • Sundararajan R, Cuconati A, Nelson D, White E. Tumor necrosis factor-α induces Bax-Bak interaction and apoptosis, which is inhibited by adenovirus E1B 19K. J Biol Chem 2001; 276:45120-7; PMID:11571294; http://dx.doi.org/10.1074/jbc.M106386200
  • Ugai H, Dobbins GC, Wang M, Le LP, Matthews DA, Curiel DT. Adenoviral protein V promotes a process of viral assembly through nucleophosmin 1. Virology 2012; 432:283-95; PMID:22717133; http://dx.doi.org/10.1016/j.virol.2012.05.028
  • Matthews DA. Adenovirus protein V induces redistribution of nucleolin and B23 from nucleolus to cytoplasm. J Virol 2001; 75:1031-8; PMID:11134316; http://dx.doi.org/10.1128/JVI.75.2.1031-1038.2001
  • Johnson JS, Osheim YN, Xue Y, Emanuel MR, Lewis PW, Bankovich A, Beyer AL, Engel DA. Adenovirus protein VII condenses DNA, represses transcription, and associates with transcriptional activator E1A. J Virol 2004; 78:6459-68; PMID:15163739; http://dx.doi.org/10.1128/JVI.78.12.6459-6468.2004
  • Xue Y, Johnson JS, Ornelles DA, Lieberman J, Engel DA. Adenovirus protein VII functions throughout early phase and interacts with cellular proteins SET and pp32. J Virol 2005; 79:2474-83; PMID:15681448; http://dx.doi.org/10.1128/JVI.79.4.2474-2483.2005
  • Karen KA, Hearing P. Adenovirus core protein VII protects the viral genome from a DNA damage response at early times after infection. J Virol 2011; 85:4135-42; PMID:21345950; http://dx.doi.org/10.1128/JVI.02540-10
  • Anderson CW, Young ME, Flint SJ. Characterization of the adenovirus 2 virion protein, mu. Virology 1989; 172:506-12; PMID:2800334; http://dx.doi.org/10.1016/0042-6822(89)90193-1
  • Crawford-Miksza L, Schnurr DP. Analysis of 15 adenovirus hexon proteins reveals the location and structure of seven hypervariable regions containing serotype-specific residues. J Virol 1996; 70:1836-44; PMID:8627708
  • Pichla-Gollon SL, Drinker M, Zhou X, Xue F, Rux JJ, Gao GP, Wilson JM, Ertl HC, Burnett RM, Bergelson JM. Structure-based identification of a major neutralizing site in an adenovirus hexon. J Virol 2007; 81:1680-9; PMID:17108028; http://dx.doi.org/10.1128/JVI.02023-06
  • Zhang C, Yang Y, Chi Y, Yin J, Yan L, Ku Z, Liu Q, Huang Z, Zhou D. Hexon-modified recombinant E1-deleted adenoviral vectors as bivalent vaccine carriers for Coxsackievirus A16 and Enterovirus 71. Vaccine 2015; 33:5087-94; PMID:26296491; http://dx.doi.org/10.1016/j.vaccine.2015.08.016
  • Zhou D, Wu TL, Emmer KL, Kurupati R, Tuyishime S, Li Y, Giles-Davis W, Zhou X, Xiang Z, Liu Q, et al. Hexon-modified recombinant E1-deleted adenovirus vectors as dual specificity vaccine carriers for influenza virus. Mol Therapy 2013; 21:696-706; http://dx.doi.org/10.1038/mt.2012.248
  • Wickham TJ, Carrion ME, Kovesdi I. Targeting of adenovirus penton base to new receptors through replacement of its RGD motif with other receptor-specific peptide motifs. Gene Therapy 1995; 2:750-6; PMID:8750015
  • Henry LJ, Xia D, Wilke ME, Deisenhofer J, Gerard RD. Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in Escherichia coli. J Virol 1994; 68:5239-46; PMID:8035520
  • San Martin C, Glasgow JN, Borovjagin A, Beatty MS, Kashentseva EA, Curiel DT, Marabini R, Dmitriev IP. Localization of the N-terminus of minor coat protein IIIa in the adenovirus capsid. J Mol Biol 2008; 383:923-34; PMID:18786542; http://dx.doi.org/10.1016/j.jmb.2008.08.054
  • Wodrich H, Henaff D, Jammart B, Segura-Morales C, Seelmeir S, Coux O, Ruzsics Z, Wiethoff CM, Kremer EJ. A capsid-encoded PPxY-motif facilitates adenovirus entry. PLoS Pathogens 2010; 6:e1000808; PMID:20333243; http://dx.doi.org/10.1371/journal.ppat.1000808
  • Fabry CM, Rosa-Calatrava M, Conway JF, Zubieta C, Cusack S, Ruigrok RW, Schoehn G. A quasi-atomic model of human adenovirus type 5 capsid. EMBO J 2005; 24:1645-54; PMID:15861131; http://dx.doi.org/10.1038/sj.emboj.7600653
  • Colby WW, Shenk T. Adenovirus type 5 virions can be assembled in vivo in the absence of detectable polypeptide IX. J Virol 1981; 39:977-80; PMID:7288921
  • de Vrij J, van den Hengel SK, Uil TG, Koppers-Lalic D, Dautzenberg IJ, Stassen OM, Bárcena M, Yamamoto M, de Ridder CM, Kraaij R, et al. Enhanced transduction of CAR-negative cells by protein IX-gene deleted adenovirus 5 vectors. Virol 2011; 410:192-200; http://dx.doi.org/10.1016/j.virol.2010.10.040
  • Havenga MJ, Holterman L, Melis I, Smits S, Kaspers J, Heemskerk E, van der Vlugt R, Koldijk M, Schouten GJ, Hateboer G, et al. Serum-free transient protein production system based on adenoviral vector and PER.C6 technology: high yield and preserved bioactivity. Biotechnol Bioengineering 2008; 100:273-83; http://dx.doi.org/10.1002/bit.21757
  • Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275:1320-3; PMID:9036860; http://dx.doi.org/10.1126/science.275.5304.1320
  • Kirby I, Lord R, Davison E, Wickham TJ, Roelvink PW, Kovesdi I, Sutton BJ, Santis G. Adenovirus type 9 fiber knob binds to the coxsackie B virus-adenovirus receptor (CAR) with lower affinity than fiber knobs of other CAR-binding adenovirus serotypes. J Virol 2001; 75:7210-4; PMID:11435605; http://dx.doi.org/10.1128/JVI.75.15.7210-7214.2001
  • Roelvink PW, Lizonova A, Lee JG, Li Y, Bergelson JM, Finberg RW, Brough DE, Kovesdi I, Wickham TJ. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol 1998; 72:7909-15; PMID:9733828
  • Sachs MD, Rauen KA, Ramamurthy M, Dodson JL, De Marzo AM, Putzi MJ, Schoenberg MP, Rodriguez R. Integrin α(v) and coxsackie adenovirus receptor expression in clinical bladder cancer. Urology 2002; 60:531-6; PMID:12350512; http://dx.doi.org/10.1016/S0090-4295(02)01748-X
  • Fuxe J, Liu L, Malin S, Philipson L, Collins VP, Pettersson RF. Expression of the coxsackie and adenovirus receptor in human astrocytic tumors and xenografts. Int J Cancer J Int Du Cancer 2003; 103:723-9; http://dx.doi.org/10.1002/ijc.10891
  • Nalbantoglu J, Pari G, Karpati G, Holland PC. Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells. Hum Gene Therapy 1999; 10:1009-19; http://dx.doi.org/10.1089/10430349950018409
  • Garnett CT, Talekar G, Mahr JA, Huang W, Zhang Y, Ornelles DA, Gooding LR. Latent species C adenoviruses in human tonsil tissues. J Virol 2009; 83:2417-28; PMID:19109384; http://dx.doi.org/10.1128/JVI.02392-08
  • Smith TA, Idamakanti N, Marshall-Neff J, Rollence ML, Wright P, Kaloss M, King L, Mech C, Dinges L, Iverson WO, et al. Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates. Human Gene Therapy 2003; 14:1595-604; PMID:14633402; http://dx.doi.org/10.1089/104303403322542248
  • Gaggar A, Shayakhmetov DM, Lieber A. CD46 is a cellular receptor for group B adenoviruses. Nat Med 2003; 9:1408-12; PMID:14566335; http://dx.doi.org/10.1038/nm952
  • Wang H, Li ZY, Liu Y, Persson J, Beyer I, Moller T, Koyuncu D, Drescher MR, Strauss R, Zhang XB, et al. Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14. Nat Med 2011; 17:96-104; PMID:21151137; http://dx.doi.org/10.1038/nm.2270
  • Nilsson EC, Storm RJ, Bauer J, Johansson SM, Lookene A, Angstrom J, Hedenström M, Eriksson TL, Frängsmyr L, Rinaldi S, et al. The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis. Nat Med 2011; 17:105-9; PMID:21151139; http://dx.doi.org/10.1038/nm.2267
  • Huang S, Kamata T, Takada Y, Ruggeri ZM, Nemerow GR. Adenovirus interaction with distinct integrins mediates separate events in cell entry and gene delivery to hematopoietic cells. J Virol 1996; 70:4502-8; PMID:8676475
  • Roelvink PW, Kovesdi I, Wickham TJ. Comparative analysis of adenovirus fiber-cell interaction: adenovirus type 2 (Ad2) and Ad9 utilize the same cellular fiber receptor but use different binding strategies for attachment. J Virol 1996; 70:7614-21; PMID:8892881
  • Arnberg N. Adenovirus receptors: implications for targeting of viral vectors. Trends Pharmacological Sci 2012; 33:442-8; http://dx.doi.org/10.1016/j.tips.2012.04.005
  • Davison E, Diaz RM, Hart IR, Santis G, Marshall JF. Integrin alpha5beta1-mediated adenovirus infection is enhanced by the integrin-activating antibody TS2/16. J Virol 1997; 71:6204-7; PMID:9223518
  • Davison E, Kirby I, Whitehouse J, Hart I, Marshall JF, Santis G. Adenovirus type 5 uptake by lung adenocarcinoma cells in culture correlates with Ad5 fibre binding is mediated by α(v)beta1 integrin and can be modulated by changes in beta1 integrin function. J Gene Med 2001; 3:550-9; PMID:11778901; http://dx.doi.org/10.1002/jgm.223
  • Colin M, Mailly L, Rogee S, D'Halluin JC. Efficient species C HAdV infectivity in plasmocytic cell lines using a clathrin-independent lipid raft/caveola endocytic route. Mol Therapy 2005; 11:224-36; http://dx.doi.org/10.1016/j.ymthe.2004.10.007
  • Choi JW, Lee JS, Kim SW, Yun CO. Evolution of oncolytic adenovirus for cancer treatment. Adv Drug Delivery Rev 2012; 64:720-9; http://dx.doi.org/10.1016/j.addr.2011.12.011
  • Ura T, Okuda K, Shimada M. Developments in Viral Vector-Based Vaccines. Vaccines 2014; 2:624-41; PMID:26344749; http://dx.doi.org/10.3390/vaccines2030624
  • Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D, Gilbert PB, Lama JR, Marmor M, Del Rio C, et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008; 372:1881-93; PMID:19012954; http://dx.doi.org/10.1016/S0140-6736(08)61591-3
  • Janes H, Frahm N, DeCamp A, Rolland M, Gabriel E, Wolfson J, Hertz T, Kallas E, Goepfert P, Friedrich DP, et al. MRKAd5 HIV-1 Gag/Pol/Nef vaccine-induced T-cell responses inadequately predict distance of breakthrough HIV-1 sequences to the vaccine or viral load. PloS One 2012; 7:e43396; http://dx.doi.org/10.1371/journal.pone.0043396
  • Churchyard GJ, Morgan C, Adams E, Hural J, Graham BS, Moodie Z, Grove D, Gray G, Bekker LG, McElrath MJ, et al. A phase IIA randomized clinical trial of a multiclade HIV-1 DNA prime followed by a multiclade rAd5 HIV-1 vaccine boost in healthy adults (HVTN204). PloS One 2011; 6:e21225
  • Baden LR, Walsh SR, Seaman MS, Tucker RP, Krause KH, Patel A, Johnson JA, Kleinjan J, Yanosick KE, Perry J, et al. First-in-human evaluation of the safety and immunogenicity of a recombinant adenovirus serotype 26 HIV-1 Env vaccine (IPCAVD 001). J Infect Dis 2013; 207:240-7; PMID:23125444; http://dx.doi.org/10.1093/infdis/jis670
  • Keefer MC, Gilmour J, Hayes P, Gill D, Kopycinski J, Cheeseman H, Cashin-Cox M, Naarding M, Clark L, Fernandez N, et al. A phase I double blind, placebo-controlled, randomized study of a multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults. PloS One 2012; 7:e41936; PMID:22870265; http://dx.doi.org/10.1371/journal.pone.0041936
  • Gray G, Buchbinder S, Duerr A. Overview of STEP and Phambili trial results: two phase IIb test-of-concept studies investigating the efficacy of MRK adenovirus type 5 gag/pol/nef subtype B HIV vaccine. Curr Opinion HIV AIDS 2010; 5:357-61; http://dx.doi.org/10.1097/COH.0b013e32833d2d2b
  • Frahm N, DeCamp AC, Friedrich DP, Carter DK, Defawe OD, Kublin JG, Casimiro DR, Duerr A, Robertson MN, Buchbinder SP, et al. Human adenovirus-specific T cells modulate HIV-specific T cell responses to an Ad5-vectored HIV-1 vaccine. J Clin Invest 2012; 122:359-67; PMID:22201684; http://dx.doi.org/10.1172/JCI60202
  • Barouch DH, Liu J, Peter L, Abbink P, Iampietro MJ, Cheung A, Alter G, Chung A, Dugast AS, Frahm N, et al. Characterization of humoral and cellular immune responses elicited by a recombinant adenovirus serotype 26 HIV-1 Env vaccine in healthy adults (IPCAVD 001). J Infect Dis 2013; 207:248-56
  • Van Kampen KR, Shi Z, Gao P, Zhang J, Foster KW, Chen DT, Marks D, Elmets CA, Tang DC. Safety and immunogenicity of adenovirus-vectored nasal and epicutaneous influenza vaccines in humans. Vaccine 2005; 23:1029-36; PMID:15620476; http://dx.doi.org/10.1016/j.vaccine.2004.07.043
  • Peters W, Brandl JR, Lindbloom JD, Martinez CJ, Scallan CD, Trager GR, Tingley DW, Kabongo ML, Tucker SN. Oral administration of an adenovirus vector encoding both an avian influenza A hemagglutinin and a TLR3 ligand induces antigen specific granzyme B and IFN-gamma T cell responses in humans. Vaccine 2013; 31:1752-8; PMID:23357198; http://dx.doi.org/10.1016/j.vaccine.2013.01.023
  • Gurwith M, Lock M, Taylor EM, Ishioka G, Alexander J, Mayall T, Ervin JE, Greenberg RN, Strout C, Treanor JJ, et al. Safety and immunogenicity of an oral, replicating adenovirus serotype 4 vector vaccine for H5N1 influenza: a randomised, double-blind, placebo-controlled, phase 1 study. Lancet Infect Dis 2013; 13:238-50; PMID:23369412; http://dx.doi.org/10.1016/S1473-3099(12)70345-6
  • Gao W, Soloff AC, Lu X, Montecalvo A, Nguyen DC, Matsuoka Y, Robbins PD, Swayne DE, Donis RO, Katz JM, et al. Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization. J Virol 2006; 80:1959-64; PMID:16439551; http://dx.doi.org/10.1128/JVI.80.4.1959-1964.2006
  • Prevec L, Campbell JB, Christie BS, Belbeck L, Graham FL. A recombinant human adenovirus vaccine against rabies. J Infect Dis 1990; 161:27-30; PMID:2295855; http://dx.doi.org/10.1093/infdis/161.1.27
  • Vos A, Neubert A, Pommerening E, Muller T, Dohner L, Neubert L, Hughes K. Immunogenicity of an E1-deleted recombinant human adenovirus against rabies by different routes of administration. J General Virol 2001; 82:2191-7; http://dx.doi.org/10.1099/0022-1317-82-9-2191
  • Bouet-Cararo C, Contreras V, Fournier A, Jallet C, Guibert JM, Dubois E, Thiery R, Bréard E, Tordo N, Richardson J, et al. Canine adenoviruses elicit both humoral and cell-mediated immune responses against rabies following immunisation of sheep. Vaccine 2011; 29:1304-10; PMID:21134446; http://dx.doi.org/10.1016/j.vaccine.2010.11.068
  • Xiang ZQ, Greenberg L, Ertl HC, Rupprecht CE. Protection of non-human primates against rabies with an adenovirus recombinant vaccine. Virol 2014; 450-451:243-9; http://dx.doi.org/10.1016/j.virol.2013.12.029
  • Raviprakash K, Wang D, Ewing D, Holman DH, Block K, Woraratanadharm J, Chen L, Hayes C, Dong JY, Porter K, et al. A tetravalent dengue vaccine based on a complex adenovirus vector provides significant protection in rhesus monkeys against all four serotypes of dengue virus. J Virol 2008; 82:6927-34; PMID:18480438; http://dx.doi.org/10.1128/JVI.02724-07
  • Jaiswal S, Khanna N, Swaminathan S. Replication-defective adenoviral vaccine vector for the induction of immune responses to dengue virus type 2. J Virol 2003; 77:12907-13; PMID:14610213; http://dx.doi.org/10.1128/JVI.77.23.12907-12913.2003
  • Khanam S, Pilankatta R, Khanna N, Swaminathan S. An adenovirus type 5 (AdV5) vector encoding an envelope domain III-based tetravalent antigen elicits immune responses against all four dengue viruses in the presence of prior AdV5 immunity. Vaccine 2009; 27:6011-21; PMID:19665609; http://dx.doi.org/10.1016/j.vaccine.2009.07.073
  • Guo X, Deng Y, Chen H, Lan J, Wang W, Zou X, Hung T, Lu Z, Tan W. Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus. Immunol 2015; 145:476-84; http://dx.doi.org/10.1111/imm.12462
  • Kim E, Okada K, Kenniston T, Raj VS, AlHajri MM, Farag EA, AlHajri F, Osterhaus AD, Haagmans BL, Gambotto A. Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice. Vaccine 2014; 32:5975-82; PMID:25192975; http://dx.doi.org/10.1016/j.vaccine.2014.08.058
  • Ledgerwood JE, Costner P, Desai N, Holman L, Enama ME, Yamshchikov G, Mulangu S, Hu Z, Andrews CA, Sheets RA, et al. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults. Vaccine 2010; 29:304-13; PMID:21034824; http://dx.doi.org/10.1016/j.vaccine.2010.10.037
  • Sullivan NJ, Hensley L, Asiedu C, Geisbert TW, Stanley D, Johnson J, Honko A, Olinger G, Bailey M, Geisbert JB, et al. CD8+ cellular immunity mediates rAd5 vaccine protection against Ebola virus infection of nonhuman primates. Nat Med 2011; 17:1128-31; PMID:21857654; http://dx.doi.org/10.1038/nm.2447
  • Geisbert TW, Bailey M, Hensley L, Asiedu C, Geisbert J, Stanley D, Honko A, Johnson J, Mulangu S, Pau MG, et al. Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge. J Virol 2011; 85:4222-33; PMID:21325402; http://dx.doi.org/10.1128/JVI.02407-10
  • Wong G, Richardson JS, Cutts T, Qiu X, Kobinger GP. Intranasal immunization with an adenovirus vaccine protects guinea pigs from Ebola virus transmission by infected animals. Anti Viral Res 2015; 116:17-9; http://dx.doi.org/10.1016/j.antiviral.2015.01.001
  • Wong G, Richardson JS, Pillet S, Racine T, Patel A, Soule G, Ennis J, Turner J, Qiu X, Kobinger GP. Adenovirus-Vectored Vaccine Provides Postexposure Protection to Ebola Virus-Infected Nonhuman Primates. J Infect Dis 2015; 212 Suppl 2:S379-83; PMID:25957963; http://dx.doi.org/10.1093/infdis/jiv102
  • Tapia MD, Sow SO, Lyke KE, Haidara FC, Diallo F, Doumbia M, et al. Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial. Lancet Infect dis 2015; 16:31-42; PMID:26546548; http://dx.doi.org/10.1016/S1473-3099(15)00362-X
  • Choi JH, Schafer SC, Zhang L, Kobinger GP, Juelich T, Freiberg AN, Croyle MA. A single sublingual dose of an adenovirus-based vaccine protects against lethal Ebola challenge in mice and guinea pigs. Mol Pharmaceutics 2012; 9:156-67; http://dx.doi.org/10.1021/mp200392g
  • Li W, Li M, Deng G, Zhao L, Liu X, Wang Y. Prime-boost vaccination with Bacillus Calmette Guerin and a recombinant adenovirus co-expressing CFP10, ESAT6, Ag85A and Ag85B of Mycobacterium tuberculosis induces robust antigen-specific immune responses in mice. Mol Med Reports 2015; 12:3073-80
  • Rahman S, Magalhaes I, Rahman J, Ahmed RK, Sizemore DR, Scanga CA, Weichold F, Verreck F, Kondova I, Sadoff J, et al. Prime-boost vaccination with rBCG/rAd35 enhances CD8(+) cytolytic T-cell responses in lesions from Mycobacterium tuberculosis-infected primates. Mol Med 2012; 18:647-58; PMID:22396020; http://dx.doi.org/10.2119/molmed.2011.00222
  • Hoft DF, Blazevic A, Stanley J, Landry B, Sizemore D, Kpamegan E, Gearhart J, Scott A, Kik S, Pau MG, et al. A recombinant adenovirus expressing immunodominant TB antigens can significantly enhance BCG-induced human immunity. Vaccine 2012; 30:2098-108; PMID:22296955; http://dx.doi.org/10.1016/j.vaccine.2012.01.048
  • Smaill F, Jeyanathan M, Smieja M, Medina MF, Thanthrige-Don N, Zganiacz A, Yin C, Heriazon A, Damjanovic D, Puri L, et al. A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Translational Med 2013; 5:205ra134; http://dx.doi.org/10.1126/scitranslmed.3006843
  • Tamminga C, Sedegah M, Maiolatesi S, Fedders C, Reyes S, Reyes A, Vasquez C, Alcorta Y, Chuang I, Spring M, et al. Human adenovirus 5-vectored Plasmodium falciparum NMRC-M3V-Ad-PfCA vaccine encoding CSP and AMA1 is safe, well-tolerated and immunogenic but does not protect against controlled human malaria infection. Hum Vaccines Immunotherapeutics 2013; 9:2165-77; http://dx.doi.org/10.4161/hv.24941
  • Schwenk R, Banania G, Epstein J, Kim Y, Peters B, Belmonte M, Ganeshan H, Huang J, Reyes S, Stryhn A, et al. Ex vivo tetramer staining and cell surface phenotyping for early activation markers CD38 and HLA-DR to enumerate and characterize malaria antigen-specific CD8+ T-cells induced in human volunteers immunized with a Plasmodium falciparum adenovirus-vectored malaria vaccine expressing AMA1. Malaria J 2013; 12:376; http://dx.doi.org/10.1186/1475-2875-12-376
  • Chuang I, Sedegah M, Cicatelli S, Spring M, Polhemus M, Tamminga C, Patterson N, Guerrero M, Bennett JW, McGrath S, et al. DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity. PloS One 2013; 8:e55571; PMID:23457473; http://dx.doi.org/10.1371/journal.pone.0055571
  • Ouedraogo A, Tiono AB, Kargougou D, Yaro JB, Ouedraogo E, Kabore Y, Kangoye D, Bougouma EC, Gansane A, Henri N, et al. A phase 1b randomized, controlled, double-blinded dosage-escalation trial to evaluate the safety, reactogenicity and immunogenicity of an adenovirus type 35 based circumsporozoite malaria vaccine in Burkinabe healthy adults 18 to 45 years of age. PloS One 2013; 8:e78679; PMID:24244339; http://dx.doi.org/10.1371/journal.pone.0078679
  • Karen KA, Deal C, Adams RJ, Nielsen C, Ward C, Espinosa DA, Xie J, Zavala F, Ketner G. A replicating adenovirus capsid display recombinant elicits antibodies against Plasmodium falciparum sporozoites in Aotus nancymaae monkeys. Infect Immunity 2015; 83:268-75; http://dx.doi.org/10.1128/IAI.02626-14
  • Sheehy SH, Duncan CJ, Elias SC, Choudhary P, Biswas S, Halstead FD, Collins KA, Edwards NJ, Douglas AD, Anagnostou NA, et al. ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans. Mol Therapy 2012; 20:2355-68; http://dx.doi.org/10.1038/mt.2012.223
  • Ginsberg HS. The life and times of adenoviruses. Adv Virus Res 1999; 54:1-13; PMID:10547672; http://dx.doi.org/10.1016/S0065-3527(08)60363-2
  • Kochanek S. High-capacity adenoviral vectors for gene transfer and somatic gene therapy. Hum Gene Therapy 1999; 10:2451-9; http://dx.doi.org/10.1089/10430349950016807
  • Yeh P, Dedieu JF, Orsini C, Vigne E, Denefle P, Perricaudet M. Efficient dual transcomplementation of adenovirus E1 and E4 regions from a 293-derived cell line expressing a minimal E4 functional unit. J Virol 1996; 70:559-65; PMID:8523570
  • Toietta G, Mane VP, Norona WS, Finegold MJ, Ng P, McDonagh AF, Beaudet AL, Lee B. Lifelong elimination of hyperbilirubinemia in the Gunn rat with a single injection of helper-dependent adenoviral vector. Proc Natl Acad Sci U S A 2005; 102:3930-5; PMID:15753292; http://dx.doi.org/10.1073/pnas.0500930102
  • Gilbert R, Dudley RW, Liu AB, Petrof BJ, Nalbantoglu J, Karpati G. Prolonged dystrophin expression and functional correction of mdx mouse muscle following gene transfer with a helper-dependent (gutted) adenovirus-encoding murine dystrophin. Hum Mol Genetics 2003; 12:1287-99; http://dx.doi.org/10.1093/hmg/ddg141
  • Dicks MD, Guzman E, Spencer AJ, Gilbert SC, Charleston B, Hill AV, Cottingham MG. The relative magnitude of transgene-specific adaptive immune responses induced by human and chimpanzee adenovirus vectors differs between laboratory animals and a target species. Vaccine 2015; 33:1121-8; PMID:25629523; http://dx.doi.org/10.1016/j.vaccine.2015.01.042
  • Tan WG, Jin HT, West EE, Penaloza-MacMaster P, Wieland A, Zilliox MJ, McElrath MJ, Barouch DH, Ahmed R. Comparative analysis of simian immunodeficiency virus gag-specific effector and memory CD8+ T cells induced by different adenovirus vectors. J Virol 2013; 87:1359-72; PMID:23175355; http://dx.doi.org/10.1128/JVI.02055-12
  • Teigler JE, Iampietro MJ, Barouch DH. Vaccination with adenovirus serotypes 35, 26, and 48 elicits higher levels of innate cytokine responses than adenovirus serotype 5 in rhesus monkeys. J Virol 2012; 86:9590-8; PMID:22787208; http://dx.doi.org/10.1128/JVI.00740-12
  • Xiang ZQ, Gao GP, Reyes-Sandoval A, Li Y, Wilson JM, Ertl HC. Oral vaccination of mice with adenoviral vectors is not impaired by preexisting immunity to the vaccine carrier. J Virol 2003; 77:10780-9; PMID:14512528; http://dx.doi.org/10.1128/JVI.77.20.10780-10789.2003
  • Liebowitz D, Lindbloom JD, Brandl JR, Garg SJ, Tucker SN. High titre neutralising antibodies to influenza after oral tablet immunisation: a phase 1, randomised, placebo-controlled trial. Lancet Infect Dis 2015; 15:1041-8; PMID:26333337; http://dx.doi.org/10.1016/S1473-3099(15)00266-2
  • Richert L, Lhomme E, Fagard C, Levy Y, Chene G, Thiebaut R. Recent developments in clinical trial designs for HIV vaccine research. Hum Vaccines Immunotherapeutics 2015; 11:1022-9; http://dx.doi.org/10.1080/21645515.2015.1011974
  • Perreau M, Pantaleo G, Kremer EJ. Activation of a dendritic cell-T cell axis by Ad5 immune complexes creates an improved environment for replication of HIV in T cells. J Exp Med 2008; 205:2717-25; PMID:18981239; http://dx.doi.org/10.1084/jem.20081786
  • Benlahrech A, Harris J, Meiser A, Papagatsias T, Hornig J, Hayes P, Lieber A, Athanasopoulos T, Bachy V, Csomor E, et al. Adenovirus vector vaccination induces expansion of memory CD4 T cells with a mucosal homing phenotype that are readily susceptible to HIV-1. Proc Natl Acad Sci U S A 2009; 106:19940-5; PMID:19918060; http://dx.doi.org/10.1073/pnas.0907898106
  • Koup RA, Roederer M, Lamoreaux L, Fischer J, Novik L, Nason MC, Larkin BD, Enama ME, Ledgerwood JE, Bailer RT, et al. Priming immunization with DNA augments immunogenicity of recombinant adenoviral vectors for both HIV-1 specific antibody and T-cell responses. PloS One 2010; 5:e9015; PMID:20126394; http://dx.doi.org/10.1371/journal.pone.0009015
  • Hammer SM, Sobieszczyk ME, Janes H, Karuna ST, Mulligan MJ, Grove D, Koblin BA, Buchbinder SP, Keefer MC, Tomaras GD, et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N Eng J Med 2013; 369:2083-92; http://dx.doi.org/10.1056/NEJMoa1310566
  • Cheng C, Wang L, Ko SY, Kong WP, Schmidt SD, Gall JG, Colloca S, Seder RA, Mascola JR, Nabel GJ. Combination recombinant simian or chimpanzee adenoviral vectors for vaccine development. Vaccine 2015; 33:7344-51; PMID:26514419; http://dx.doi.org/10.1016/j.vaccine.2015.10.023
  • Baden LR, Liu J, Li H, Johnson JA, Walsh SR, Kleinjan JA, Engelson BA, Peter L, Abbink P, Milner DA, Jr, et al. Induction of HIV-1-specific mucosal immune responses following intramuscular recombinant adenovirus serotype 26 HIV-1 vaccination of humans. J Infect Dis 2015; 211:518-28; PMID:25165165; http://dx.doi.org/10.1093/infdis/jiu485
  • Baden LR, Liu JY, Li HL, Johnson JA, Walsh SR, Kleinjan JA, Engelson BA, Peter L, Abbink P, Milner DA, Jr, et al. Induction of HIV-1-specific mucosal immune responses following intramuscular recombinant adenovirus serotype 26 HIV-1 vaccination of humans. J Infect Dis 2015; 211:518-28; PMID:25165165 http://dx.doi.org/10.1093/infdis/jiu485
  • Fuchs JD, Bart PA, Frahm N, Morgan C, Gilbert PB, Kochar N, DeRosa SC, Tomaras GD, Wagner TM, Baden LR, et al. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals. J AIDS Clin Res 2015; 6:23; http://dx.doi.org/10.4172/2155-6113.1000461
  • Van Kampen KR, Shi ZK, Gao P, Zhang JF, Foster KW, Chen DT, Marks D, Elmets CA, Tang DC. Safety and immunogenicity of adenovirus-vectored nasal and epicutaneous influenza vaccines in humans. Vaccine 2005; 23:1029-36; PMID:15620476; http://dx.doi.org/10.1016/j.vaccine.2004.07.043
  • Vemula SV, Ahi YS, Swaim AM, Katz JM, Donis R, Sambhara S, Mittal SK. Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness. PloS One 2013; 8; http://dx.doi.org/10.1371/journal.pone.0062496
  • Webby RJ, Weaver EA. Centralized Consensus Hemagglutinin Genes Induce Protective Immunity against H1, H3 and H5 Influenza Viruses. PloS One 2015; 10:e0140702; PMID:26469190; http://dx.doi.org/10.1371/journal.pone.0140702
  • Khurana S, Coyle EM, Manischewitz J, King LR, Ishioka G, Alexander J, Smith J, Gurwith M, Golding H. Oral priming with replicating adenovirus serotype 4 followed by subunit H5N1 vaccine boost promotes antibody affinity maturation and expands H5N1 cross-clade neutralization. PloS One 2015; 10:e0115476; PMID: 25629161; http://dx.doi.org/10.1371/journal.pone.0115476
  • Zhang H, Tang X, Zhu C, Song Y, Yin J, Xu J, Ertl HC, Zhou D. Adenovirus-mediated artificial MicroRNAs targeting matrix or nucleoprotein genes protect mice against lethal influenza virus challenge. Gene therapy 2015; 22:653-62; PMID:25835311; http://dx.doi.org/10.1038/gt.2015.31
  • Feldmann H, Jones S, Klenk HD, Schnittler HJ. Ebola virus: from discovery to vaccine. Nat Rev Immunol 2003; 3:677-85; PMID:12974482; http://dx.doi.org/10.1038/nri1154
  • Feldmann H, Geisbert TW. Ebola haemorrhagic fever. Lancet 2011; 377:849-62; PMID:21084112; http://dx.doi.org/10.1016/S0140-6736(10)60667-8
  • Sacks JA, Zehe E, Redick C, Bah A, Cowger K, Camara M, Diallo A, Gigo AN, Dhillon RS, Liu A. Introduction of Mobile Health Tools to Support Ebola Surveillance and Contact Tracing in Guinea. Global Health Sci Practice 2015; 3:646-59; http://dx.doi.org/10.9745/GHSP-D-15-00207
  • Sullivan NJ, Sanchez A, Rollin PE, Yang ZY, Nabel GJ. Development of a preventive vaccine for Ebola virus infection in primates. Nature 2000; 408:605-9; PMID:11117750; http://dx.doi.org/10.1038/35046108
  • Sullivan NJ, Geisbert TW, Geisbert JB, Xu L, Yang ZY, Roederer M, Koup RA, Jahrling PB, Nabel GJ. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature 2003; 424:681-4; PMID:12904795; http://dx.doi.org/10.1038/nature01876
  • Ledgerwood JE, DeZure AD, Stanley DA, Novik L, Enama ME, Berkowitz NM, Hu Z, Joshi G, Ploquin A, Sitar S, et al. Chimpanzee Adenovirus Vector Ebola Vaccine - Preliminary Report. N Eng J Med 2014; PMID: 25426834; http://dx.doi.org/10.1056/NEJMoa1410863
  • Rampling T, Ewer K, Bowyer G, Wright D, Imoukhuede EB, Payne R, Hartnell F, Gibani M, Bliss C, Minhinnick A, et al. A Monovalent Chimpanzee Adenovirus Ebola Vaccine - Preliminary Report. N Eng J Med 2016; 374:1635-46.
  • Wolf JK, Bodurka DC, Gano JB, Deavers M, Ramondetta L, Ramirez PT, Levenback C, Gershenson DM. A phase I study of Adp53 (INGN 201; ADVEXIN) for patients with platinum- and paclitaxel-resistant epithelial ovarian cancer. Gynecologic Oncol 2004; 94:442-8; http://dx.doi.org/10.1016/j.ygyno.2004.05.041
  • Wu J, Zhu Y, Xu C, Xu H, Zhou X, Yang J, Xie Y, Tao M. Adenovirus-mediated p53 and ING4 gene cotransfer elicits synergistic antitumor effects through enhancement of p53 acetylation in breast cancer. Oncol Reports 2016; 35:243-52
  • Nemunaitis J. Head and neck cancer: response to p53-based therapeutics. Head Neck 2011; 33:131-4; PMID:20222046; http://dx.doi.org/10.1002/hed.21364
  • Nie B, Shen Z, Wen JB, Wong OG, Hsueh WD, Huo LF, Kung HF, Jiang B, Lin MC. AAV-HGFK1 and Ad-p53 cocktail therapy prolongs survival of mice with colon cancer. Mol Cancer Therapeutics 2008; 7:2855-65; http://dx.doi.org/10.1158/1535-7163.MCT-08-0366
  • Nemunaitis J, Clayman G, Agarwala SS, Hrushesky W, Wells JR, Moore C, Hamm J, Yoo G, Baselga J, Murphy BA, et al. Biomarkers Predict p53 gene therapy efficacy in recurrent squamous cell carcinoma of the head and neck. Clin Cancer Res 2009; 15:7719-25; PMID:19996201; http://dx.doi.org/10.1158/1078-0432.CCR-09-1044
  • Westphal M, Yla-Herttuala S, Martin J, Warnke P, Menei P, Eckland D, Kinley J, Kay R, Ram Z. Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial. Lancet Oncol 2013; 14:823-33; PMID:23850491; http://dx.doi.org/10.1016/S1470-2045(13)70274-2
  • Xie J, Guo X, Liu F, Luo J, Duan F, Tao X. In vitro antitumor immune response induced by dendritic cells transduced with human livin α recombinant adenovirus. Cell Immunol 2015; 297:46-52; PMID:26140980; http://dx.doi.org/10.1016/j.cellimm.2015.06.003
  • Liikanen I, Ahtiainen L, Hirvinen ML, Bramante S, Cerullo V, Nokisalmi P, Hemminki O, Diaconu I, Pesonen S, Koski A, et al. Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients. Mol Therapy 2013; 21:1212-23; http://dx.doi.org/10.1038/mt.2013.51
  • Ariyoshi Y, Watanabe M, Eikawa S, Yamazaki C, Sadahira T, Hirata T, Araki M, Ebara S, Nasu Y, Udono H, et al. The induction of antigen-specific CTL by in situ Ad-REIC gene therapy. Gene Therapy 2016; PMID:26836118; http://dx.doi.org/10.1038/gt.2016.7
  • Yao C, Sasaki HM, Ueda T, Tomari Y, Tadakuma H. Single-Molecule Analysis of the Target Cleavage Reaction by the Drosophila RNAi Enzyme Complex. Mol Cell 2015; 59:125-32; PMID:26140368; http://dx.doi.org/10.1016/j.molcel.2015.05.015
  • Yoo JY, Kim JH, Kwon YG, Kim EC, Kim NK, Choi HJ, Yun CO. VEGF-specific short hairpin RNA-expressing oncolytic adenovirus elicits potent inhibition of angiogenesis and tumor growth. Mol Therapy 2007; 15:295-302; http://dx.doi.org/10.1038/sj.mt.6300023
  • Chi Y, Wang X, Yang Y, Zhang C, Ertl HC, Zhou D. Survivin-targeting Artificial MicroRNAs Mediated by Adenovirus Suppress Tumor Activity in Cancer Cells and Xenograft Models. Mol Therapy Nucleic Acids 2014; 3:e208; PMID:25368912; http://dx.doi.org/10.1038/mtna.2014.59
  • MacLeod SH, Elgadi MM, Bossi G, Sankar U, Pisio A, Agopsowicz K, Sharon D, Graham FL, Hitt MM. HER3 targeting of adenovirus by fiber modification increases infection of breast cancer cells in vitro, but not following intratumoral injection in mice. Cancer Gene Therapy 2012; 19:888-98; PMID:23099884; http://dx.doi.org/10.1038/cgt.2012.79
  • Zhan Y, Yu B, Wang Z, Zhang Y, Zhang HH, Wu H, Feng X, Geng RS, Kong W, Yu XH. A fiber-modified adenovirus co-expressing HSV-TK and Coli.NTR enhances antitumor activities in breast cancer cells. Int J Clin Exp Pathol 2014; 7:2850-60; PMID:25031704
  • Takagi-Kimura M, Yamano T, Tamamoto A, Okamura N, Okamura H, Hashimoto-Tamaoki T, Tagawa M, Kasahara N, Kubo S. Enhanced antitumor efficacy of fiber-modified, midkine promoter-regulated oncolytic adenovirus in human malignant mesothelioma. Cancer Sci 2013; 104:1433-9; PMID:23962292; http://dx.doi.org/10.1111/cas.12267
  • Rux JJ, Burnett RM. Adenovirus structure. Hum Gene Therapy 2004; 15:1167-76; http://dx.doi.org/10.1089/hum.2004.15.1167
  • Nemerow GR, Pache L, Reddy V, Stewart PL. Insights into adenovirus host cell interactions from structural studies. Virology 2009; 384:380-8; PMID:19019405; http://dx.doi.org/10.1016/j.virol.2008.10.016
  • Tian X, Su X, Li X, Li H, Li T, Zhou Z, Zhong T, Zhou R. Protection against enterovirus 71 with neutralizing epitope incorporation within adenovirus type 3 hexon. Plos One 2012; 7:e41381; PMID:22848478; http://dx.doi.org/10.1371/journal.pone.0041381
  • Sharma A, Krause A, Xu Y, Sung B, Wu W, Worgall S. Adenovirus-based vaccine with epitopes incorporated in novel fiber sites to induce protective immunity against Pseudomonas aeruginosa. PloS One 2013; 8:e56996; PMID:23437292; http://dx.doi.org/10.1371/journal.pone.0056996
  • Krause A, Joh JH, Hackett NR, Roelvink PW, Bruder JT, Wickham TJ, Kovesdi I, Crystal RG, Worgall S. Epitopes expressed in different adenovirus capsid proteins induce different levels of epitope-specific immunity. J Virol 2006; 80:5523-30; PMID:16699033; http://dx.doi.org/10.1128/JVI.02667-05
  • Vigne E, Mahfouz I, Dedieu JF, Brie A, Perricaudet M, Yeh P. RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. J Virol 1999; 73:5156-61; PMID:10233980
  • Dmitriev IP, Kashentseva EA, Curiel DT. Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol 2002; 76:6893-9; PMID:12072490; http://dx.doi.org/10.1128/JVI.76.14.6893-6899.2002
  • Parks RJ. Adenovirus protein IX: a new look at an old protein. Mol Therapy 2005; 11:19-25; http://dx.doi.org/10.1016/j.ymthe.2004.09.018