1,986
Views
29
CrossRef citations to date
0
Altmetric
Reviews

Antigenic variability: Obstacles on the road to vaccines against traditionally difficult targets

, , &
Pages 2640-2648 | Received 02 Mar 2016, Accepted 15 May 2016, Published online: 27 Jul 2016

References

  • Rappuoli R, Pizza M, Del Giudice G, De Gregorio E. Vaccines, new opportunities for a new society. Proc Natl Acad Sci USA 2014; 111(34):12288-12293; PMID:25136130; http://dx.doi.org/10.1073/pnas.1402981111
  • Anderson RM, Donnelly CA, Gupta S. Vaccine design, evaluation, and community-based use for antigenically variable infectious agents. Lancet 1997; 350(9089):1466-1470; PMID:9371182; http://dx.doi.org/10.1016/S0140-6736(97)03255-8
  • Trajanoski Z, Maccalli C, Mennonna D, Casorati G, Parmiani G, Dellabona P. Somatically mutated tumor antigens in the quest for a more efficacious patient-oriented immunotherapy of cancer. Cancer Immunol Immunother 2015; 64(1):99-104; PMID:25164877; http://dx.doi.org/10.1007/s00262-014-1599-7
  • Yu B, O'Toole SA, Trent RJ. Somatic DNA mutation analysis in targeted therapy of solid tumours. Transl Pediatr 2015; 4(2):125-138; PMID:26835368
  • Reinherz EL, Keskin DB, Reinhold B. Forward Vaccinology: CTL Targeting Based upon Physical Detection of HLA-Bound Peptides. Front Immunol 2014; 5:418; PMID:25237310
  • Correia BE, Bates JT, Loomis RJ, Baneyx G, Carrico C, Jardine JG, Rupert P, Correnti C, Kalyushniy O, Vittal V, et al. Proof of principle for epitope-focused vaccine design. Nature 2014; 507(7491):201-6; PMID:24499818; http://dx.doi.org/10.1038/nature12966
  • Kulp DW, Schief WR. Advances in structure-based vaccine design. Curr Opin Virol 2013; 3(3):322-31; PMID:23806515; http://dx.doi.org/10.1016/j.coviro.2013.05.010
  • Fonville JM, Wilks SH, James SL, Fox A, Ventresca M, Aban M, Xue L, Jones TC, Le NM, Pham QT, et al. Antibody landscapes after influenza virus infection or vaccination. Science 2014; 21;346(6212):996-1000; PMID:25414313; http://dx.doi.org/10.1126/science.1256427
  • Carlson JM, Le AQ, Shahid A, Brumme ZL. HIV-1 adaptation to HLA: a window into virus-host immune interactions. Trends Microbiol 2015; 23(4):212-24; PMID:25613992; http://dx.doi.org/10.1016/j.tim.2014.12.008
  • Tobin GJ, Trujillo JD, Bushnell RV, Lin G, Chaudhuri AR, Long J, Barrera J, Pena L, Grubman MJ, Nara PL. Deceptive imprinting and immune refocusing in vaccine design. Vaccine 2008; 26:6189-6199; PMID:18852005; http://dx.doi.org/10.1016/j.vaccine.2008.09.080
  • Kissick HT, Sanda MG. The role of active vaccination in cancer immunotherapy: lessons from clinical trials. Curr Opin Immunol 2015; 35:15-22; PMID:26050634; http://dx.doi.org/10.1016/j.coi.2015.05.004
  • Thomas S, Luxon BA. Vaccines based on structure-based design provide protection against infectious diseases. Expert Rev Vaccines 2013; 12(11):1301-11; PMID:24090172; http://dx.doi.org/10.1586/14760584.2013.840092
  • Cozzi R, Scarselli M, Ferlenghi I. Srtuctural vaccinology_ a three-dimensional view for vaccine development. Curr Top Med chem 2013; 13(20):2629-2637; PMID:24066888; http://dx.doi.org/10.2174/15680266113136660187
  • Wooldridge L, Ekeruche-Makinde J, van den Berg HA, Skowera A, Miles JJ, Tan MP, Dolton J, Clement M, Llewellyn-Lacey S, Price DA, et al. A single autoimmune T cell receptor recognizes more than a million different peptides. J Biol Chem 2012; 287(2):1168-77; PMID:22102287; http://dx.doi.org/10.1074/jbc.M111.289488
  • Sewell AK. Why must T cells be cross-reactive? Nat Rev Immunol 2012; 12(9):669-77; PMID:22918468; http://dx.doi.org/10.1038/nri3279
  • Boesteanu A, Brehm M, Mylin LM, Christianson GJ, Tevethia SS, Roopenian DC, Joyce S. A molecular basis for how a single TCR interfaces multiple ligands. J Immunol 1998; 61(9):4719-27; PMID:NOT_FOUND
  • Kim JH, Davis WG, Sambhara S, Jacob J. Strategies to alleviate original antigenic sin responses to influenza viruses. Proc Natl Acad Sci U S A 2012; 109(34):13751-6; PMID:22869731; http://dx.doi.org/10.1073/pnas.0912458109
  • Klenerman P, Zinkernagel RM. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature 1998; 394:482-485; PMID:9697771
  • Welsh RM, Selin LK. No one is naive: the significance of heterologous T-cell immunity. Nat Rev Immunol 2002; 2(6):417-26
  • Che JW, Selin LK, Welsh RM. Evaluation of non-reciprocal heterologous immunity between unrelated viruses. Virology 2015; 482:89-97; PMID:25838115; http://dx.doi.org/10.1016/j.virol.2015.03.002
  • Simon M, Vanes L, Geahlen RL, Tybulewicz VL. Distinct roles for the linker region tyrosines of Syk in FcepsilonRI signaling in primary mast cells. J Biol Chem 2005; 280(6):4510-7; PMID:15576379; http://dx.doi.org/10.1074/jbc.M410326200
  • Bourdetsky D, Schmelzer CE, Admon A. The nature and extent of contributions by defective ribosome products to the HLA peptidome. Proc Natl Acad Sci U S A 2014; 111(16):E1591-9; PMID:24715725; http://dx.doi.org/10.1073/pnas.1321902111
  • Wei J, Gibbs JS, Hickman HD, Cush SS, Bennink JR, Yewdell JW. Ubiquitous Autofragmentation of Fluorescent Proteins Creates Abundant Defective Ribosomal Products (DRiPs) for Immunosurveillance. J Biol Chem 2015; 290(26):16431-9; PMID:25971973; http://dx.doi.org/10.1074/jbc.M115.658062
  • Chu Q, Ma J, Saghatelian A. Identification and characterization of sORF-encoded polypeptides. Crit Rev Biochem Mol Biol 2015; 50(2):134-41; PMID:25857697; http://dx.doi.org/10.3109/10409238.2015.1016215
  • Yewdell JW. To dream the impossible dream: universal influenza vaccination. Curr Opin Virol 2013; 3(3):316-21; PMID:23835048; http://dx.doi.org/10.1016/j.coviro.2013.05.008
  • Grant EJ, Chen L, Quiñones-Parra S, Pang K, Kedzierska K, Chen W. T-cell immunity to influenza A viruses. Crit Rev Immunol 2014; 34(1):15-39; PMID:24579700; http://dx.doi.org/10.1615/CritRevImmunol.2013010019
  • Nara PL, Tobin GJ, Chaudhuri AR, Trujillo JD, Lin G, Cho MW, Levin SA, Ndifon W, Wingreen NS. How can vaccines against influenza and other viral diseases be made more effective? PLoS Biol 2010; 8(12):e1000571; PMID:21203586; http://dx.doi.org/10.1371/journal.pbio.1000571
  • Quiñones-Parra S, Grant E, Loh L, Nguyen TH, Campbell KA, Tong SY, Miller A, Doherty PC, Vijaykrishna D, Rossjohn J, et al. Preexisting CD8+ T-cell immunity to the H7N9 influenza A virus varies across ethnicities. Proc Natl Acad Sci U S A 2014; 111(3):1049-54; PMID:Can't; http://dx.doi.org/10.1073/pnas.1322229111
  • Bolton KJ, McCaw JM, Brown L, Jackson D, Kedzierska K, McVernon J. Prior population immunity reduces the expected impact of CTL-inducing vaccines for pandemic influenza control. PLoS One 2015; 10(3):e0120138; PMID:25811654; http://dx.doi.org/10.1371/journal.pone.0120138
  • Schwartzman LM, Cathcart AL, Pujanauski LM, Qi L, Kash JC, Taubenberger JK. An Intranasal Virus-Like Particle Vaccine Broadly Protects Mice from Multiple Subtypes of Influenza A Virus. MBio 2015; 6(4):e01044; PMID:26199334; http://dx.doi.org/10.1128/mBio.01044-15
  • Impagliazzo A, Milder F, Kuipers H, Wagner MV, Zhu X, Hoffman RM, van Meersbergen R, Huizingh J, Wanningen P, Verspuij J, et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 2015; 349(6254):1301-6; PMID:26303961; http://dx.doi.org/10.1126/science.aac7263
  • Chua BY, Wong CY, Mifsud EJ, Edenborough KM, Sekiya T, Tan AC, Mercuri F, Rockman S, Chen W, Turner SJ, et al. Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity. MBio 2015; 6(6):e01024-15; PMID:26507227; http://dx.doi.org/10.1128/mBio.01024-15
  • Mongkolsapaya J, Dejnirattisai W, Xu XN, Vasanawathana S, Tangthawornchaikul N, Chairunsri A, Sawasdjyorn S, Duangchinda T, Dong T, Rowland-Jones S, et al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 2003; 9(7):921-7; PMID:12808447; http://dx.doi.org/10.1038/nm887
  • Weiskopf D, Sette A. T-cell immunity to infection with dengue virus in humans. Front Immunol 2014; 5:93; PMID:24639680; http://dx.doi.org/10.3389/fimmu.2014.00093
  • Rothman AL. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol 2011; 11(8):532-43; PMID:21760609; http://dx.doi.org/10.1038/nri3014
  • Hadinegoro SR, Arredondo-Garcia JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, MuhammadIsmail HI, Reynales H, Limkittikul K, Rivera-Medina DM, et al. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N Engl J Med 2015; 373(13):1195-206; PMID:26214039; http://dx.doi.org/10.1056/NEJMoa1506223
  • Guy B, Jackson N. Dengue vaccine: hypothesis to understand CYD-TDV-induced protection. Nat Rev Microbiol 2016; 14(1):45-54; PMID:26639777; http://dx.doi.org/10.1038/nrmicro.2015.2
  • Park SH, Rehermann B. Immune responses to HCV and other hepatitis viruses. Immunity 2014; 40(1):13-24; PMID:24439265; http://dx.doi.org/10.1016/j.immuni.2013.12.010
  • Holz L, Rehermann B. T cell responses in hepatitis C virus infection: historical overview and goals for future research. Antiviral Res 2015; 114:96-105; PMID:25433310; http://dx.doi.org/10.1016/j.antiviral.2014.11.009
  • Nivarthi UK, Gras S, Kjer-Nielsen L, Berry R, Lucet IS, Miles JJ, Tracy SL, Purcell AW, Bowden DC, Hellard M, et al. An extensive antigenic footprint underpins immunodominant TCR adaptability against a hypervariable viral determinant. J Immunol 2014; 193(11):5402-13; PMID:25355921; http://dx.doi.org/10.4049/jimmunol.1401357
  • Ziegler S, Skibbe K, Walker A, Ke X, Heinemann FM, Heinold A, Mok JY, van Esch WY, Yang D, Wolfl M, et al. Impact of sequence variation in a dominant HLA-A*02-restricted epitope in hepatitis C virus on priming and cross-reactivity of CD8+ T cells. J Virol 2014; 88(19):11080-90; PMID:25008925; http://dx.doi.org/10.1128/JVI.01590-14
  • Esparza J. A new scientific paradigm may be needed to finally develop an HIV vaccine. Front Immunol 2015; 6:124; PMID:25852692; http://dx.doi.org/10.3389/fimmu.2015.00124
  • Haynes BF. New approaches to HIV vaccine development. Curr Opin Immunol 2015; 35:39-47; PMID:26056742; http://dx.doi.org/10.1016/j.coi.2015.05.007
  • Ndung'u T, Weiss RA. On HIV diversity. AIDS 2012; 26(10):1255-60; PMID:22706010; http://dx.doi.org/10.1097/QAD.0b013e32835461b5
  • McMichael A, Hanke T. The quest for an AIDS vaccine: is the CD8+ T-cell approach feasible? Nat Rev Immunol 2002; 2:283-291; PMID:12001999; http://dx.doi.org/10.1038/nri779
  • Kawashima Y, Pfafferott K, Frater J, Matthews P, Payne R, Addo M, Gatanaga H, Fujiwara M, Hachiya A, Koizumi H, et al. Adaptation of HIV-1 to human leukocyte antigen class I. Nature 2009; 458:641-645; PMID:19242411; http://dx.doi.org/10.1038/nature07746
  • Picker LJ, Hansen SG, Lifson JD. New paradigms for HIV/AIDS vaccine development. Annu Rev Med 2012; 63:95-111; PMID:21942424; http://dx.doi.org/10.1146/annurev-med-042010-085643
  • Adnan S, Colantonio AD, Yu Y, Gillis J, Wong FE, Becker EA, Piatak M Jr, Reeves RK, Lifson JD, O'Connor SL, et al. CD8 T cell response maturation defined by anentropic specificity and repertoire depth correlates with SIVΔnef-induced protection. PLoS Pathog 2015; 11(2):e1004633; PMID:25688559; http://dx.doi.org/10.1371/journal.ppat.1004633
  • Julien JP, Lee PS, Wilson IA. Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA. Immunol Rev 2012; 250(1):180-98; PMID:23046130; http://dx.doi.org/10.1111/imr.12005
  • Jones NG, DeCamp A, Gilbert P, Peterson ML, Gurwith M, Cao H. AIDSVAX immunization induces HIV-specific CD8+ T-cell responses in high-risk, HIV-negative volunteers who subsequently acquire HIV infection. Vaccine 2009; 27:1136-1140; PMID:19071176; http://dx.doi.org/10.1016/j.vaccine.2008.11.071
  • Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Gilbert PB, Lama JR, Marmor M, Del Rio C, McElrath MJ, et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008; 372:1881-1893; PMID:19012954; http://dx.doi.org/10.1016/S0140-6736(08)61591-3
  • Esparza J, Van Regenmortel MH. More Surprises in the Development of an HIV Vaccine. Front Immunol 2014; 5:329; PMID:25071786; http://dx.doi.org/10.3389/fimmu.2014.00329
  • Singh RA, Rodgers JR, Barry MA. The role of T cell antagonism and original antigenic sin in genetic immunization. J Immunol 2002; 169:6779-6786; PMID:12471109; http://dx.doi.org/10.4049/jimmunol.169.12.6779
  • Sette A, Rappuoli R. Reverse vaccinology: developing vaccines in the era of genomics. Immunity 2010; 33(4):530-541; PMID:21029963; http://dx.doi.org/10.1016/j.immuni.2010.09.017
  • Jardine JG, Ota T, Sok D, Pauthner M, Kulp DW, Kalyuzhniy O, Kod PD, Thinnes TC, Bhullar D, Briney B, et al. HIV-1 VACCINES. Priming a broadly neutralizing antibody response to HIV-1 using a germline targeting immunogen. Science 2015; 349(6244):156-61; PMID:26089355; http://dx.doi.org/10.1126/science.aac5894
  • Sanders RW, van Gils MJ, Derking R, Sok D, Ketas TJ, Burger JA, Ozorowski G, Cupo A, Simonich C, Goo L, et al. HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science 2015; 349(6244):aac4223; PMID:26089353; http://dx.doi.org/10.1126/science.aac4223
  • Dosenovic P, von Boehmer L, Escolano A, Jardine J, Freund NT, Gitlin AD, McGuire AT, Kulp DW, Oliveira T, Scharf L, et al. Immunization for HIV-1 broadly neutralizing antibodies in human Ig Knockin Mice. Cell 2015; 161(7):1505-15; PMID:26091035; http://dx.doi.org/10.1016/j.cell.2015.06.003
  • Mascola JR. HIV. The modern era of HIV-1 vaccine development. Science 2015; 349(6244):139-40; PMID:26160931; http://dx.doi.org/10.1126/science.aac7800
  • Bricault CA, Kovacs JM, Nkolola JP, Yusim K, Giorgi EE, Shields JL, Perry J, lavine CL, Cheung A, Ellingson-Strouss K, et al. A multivalent clade C HIV-1 Env trimer cocktail elicits a higher magnitude of neutralizing antibodies than any individual component. J Virol 2015; 89(5):2507-19; PMID:NOT_FOUND; http://dx.doi.org/10.1128/JVI.03331-14
  • Van Regenmortel MH. An Outdated Notion of Antibody Specificity is One of the Major Detrimental Assumptions of the Structure-Based Reverse Vaccinology Paradigm, Which Prevented It from Helping to Develop an Effective HIV-1 Vaccine. Front Immunol 2014; 5:593; PMID:25477882
  • Bhiman JN, Anthony C, Doria-Rose NA, Karimanzira O, Schramm CA, Khoza T, Kitchin D, Botha G, Gorman J, Garrett NJ, et al. Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies. Nat Med 2015; 21(11):1332-6; PMID:26457756; http://dx.doi.org/10.1038/nm.3963
  • Anderson DE, Singapuri A, Kang KH, Montefiori DC, Torres JV. Timing of retroviral infection influences anamnestic immune response in vaccinated primates. Viral Immunol 2005; 18:689-694; PMID:16359235; http://dx.doi.org/10.1089/vim.2005.18.689
  • Hewer R, Meyer D. Peptide immunogens based on the envelope region of HIV-1 are recognized by HIV/AIDS patient polyclonal antibodies and induce strong humoral immune responses in mice and rabbits. Mol Immunol 2003; 40:327-335; PMID:14522014; http://dx.doi.org/10.1016/S0161-5890(03)00163-9
  • Oliveira E, Jimenez-Clavero MA, Nunez JI, Sobrino F, Andreu D. Analysis of the immune response against mixotope peptide libraries from a main antigenic site of foot-and-mouth disease virus. Vaccine 2005; 23:2647-2657; PMID:15780448; http://dx.doi.org/10.1016/j.vaccine.2004.10.041
  • Azizi A, Anderson DE, Torres JV, Ogrel A, Ghorbani M, Soare C, Sandstrom P, Fournier J, Diaz-Mitoma F. Induction of broad cross-subtypespecific HIV-1 immune responses by a novel multivalent HIV-1 peptide vaccine in cynomolgus macaques. J Immunol 2008; 180:2174-2186; PMID:18250424; http://dx.doi.org/10.4049/jimmunol.180.4.2174
  • Pedroza-Roldan C, Charles-Niño C, Saavedra R, Govezensky T, Vaca L, Avaniss-Aghajani E, Gevorkian G, Manoutcharian K. Variable epitope library-based vaccines: shooting moving targets. Mol Immunol 2009; 47(2–3):270-82; PMID:19853920; http://dx.doi.org/10.1016/j.molimm.2009.09.024
  • Charles-Niño C, Pedroza-Roldan C, Viveros M, Gevorkian G, Manoutcharian K. Variable epitope libraries: new vaccine immunogens capable of inducing broad human immunodeficiency virus type 1-neutralizing antibody response. Vaccine 2011; 29(32):5313-21; PMID:Can't; http://dx.doi.org/10.1016/j.vaccine.2011.05.007
  • Fomsgaard A, Nielsen HV, Bryder K, Machuca R, Bruun L, Hansen J, Buus S. Improved humoral and cellular immune responses against the 120 V3 loop of HIV-1 following genetic immunization with a chimeric DNA vaccine encoding the V3 inserted into the hepatitis B surface antigen. Scand J Immunol 1998; 47:289-295; PMID:9600309; http://dx.doi.org/10.1046/j.1365-3083.1998.00323.x
  • Pantophlet R, Wrin T, Cavacini LA, Robinson JE, Burton DR. Neutralizing activity of antibodies to the V3 loop region of HIV-1 gp120 relative to their epitope fine specificity. Virology 2008; 381(2):251-260; PMID:18822440; http://dx.doi.org/10.1016/j.virol.2008.08.032
  • Zolla-Pazner S, Sharpe Cohen S, Krachmarov C, Wang S, Pinter A, Lu S. Focusing the immune response on the V3 loop, a neutralizing epitope of the HIV-1 gp envelope. Virology 2008; 372:233-246.70; PMID:18061228; http://dx.doi.org/10.1016/j.virol.2007.09.024
  • Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, Thatcher N, Wagstaff J, Zielinski C, Faulkner I, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 2014; 11(9):509-24; PMID:25001465; http://dx.doi.org/10.1038/nrclinonc.2014.111
  • Madorsky Rowdo FP, Baron A, Urrutia M, Mordoh J. Immunotherapy in cancer: A combat between tumors and the immune system; you win some, you lose some. Front Immunol 2015; 6:127; PMID:25859247
  • Natrajan R, Sailem H, Mardakheh FK, Arias Garcia M, Tape CJ, Dowsett M, Bakal C, Yuan Y. Microenvironmental heterogeneity parallels breast cancer progression: A histology-genomic integration analysis. PLoS Med 2016; 13(2):e1001961; PMID:26881778; http://dx.doi.org/10.1371/journal.pmed.1001961
  • Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape. Curr Opin Immunol 2014; 27:16-25; PMID:24531241; http://dx.doi.org/10.1016/j.coi.2014.01.004
  • Chaffer CL, Weinberg RA. How does multistep tumorigenesis really proceed? Cancer Discov 2015; 5(1):22-4; PMID:25583800; http://dx.doi.org/10.1158/2159-8290.CD-14-0788
  • Melero I, Berman DM, Aznar MA, Korman AJ, Pérez Gracia JL, Haanen J. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer 2015; 15(8):457-72; PMID:26205340; http://dx.doi.org/10.1038/nrc3973
  • Heemskerk B, Kvistborg P, Schumacher TN. The cancer antigenome. EMBO J 2013; 32(2):194-203; PMID:23258224; http://dx.doi.org/10.1038/emboj.2012.333
  • Gubin MM, Artyomov MN, Mardis ER, Schreiber RD. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest 2015; 125(9):3413-21; PMID:26258412; http://dx.doi.org/10.1172/JCI80008
  • Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014; 515(7528):577-81; PMID:25428507; http://dx.doi.org/10.1038/nature13988
  • Eggermont AM, Maio M, Robert C. Immune checkpoint inhibitors in melanoma provide the cornerstones for curative therapies. Semin Oncol 2015; 42(3):429-35; PMID:25965361; http://dx.doi.org/10.1053/j.seminoncol.2015.02.010
  • Desrichard A, Snyder A, Chan TA. Cancer Neoantigens and Applications for Immunotherapy. Clin Cancer Res 2016; 22(4):807-12. DOI: 10.1158/1078-0432.CCR-14-3175.82
  • Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 2013; 19(6):747-52; PMID:23644516; http://dx.doi.org/10.1158/1078-0432.CCR-14-3175
  • van Buuren MM, Calis JJ, Schumacher TN. High sensitivity of cancer exome-based CD8 T cell neo-antigen identification. Oncoimmunology 2014; 3:e28836; PMID:25083320; http://dx.doi.org/10.4161/onci.28836
  • Lu YC, Yao X, Crystal JS, Li YF, El-Gamil M, Gross C, Davis L, Dudley ME, Yang JC, Samuels Y, et al. Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin Cancer Res 2014; 20(13):3401-10; PMID:24987109; http://dx.doi.org/10.1158/1078-0432.CCR-14-0433
  • Schulze K, Imbeaud S, Letouzé E, Alexandrov LB, Calderaro J, Rebouissou S, Couchy G, Neiller C, Shinde J, Soysouvanh F, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 2015; 47(5):505-11; PMID:25822088; http://dx.doi.org/10.1038/ng.3252
  • Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER, et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 2015; 348(6236):803-8; PMID:25837513; http://dx.doi.org/10.1126/science.aaa3828
  • Platsoucas CD, Fincke JE, Pappas J, Jung WJ, Heckel M, Schwarting R, Magira E, Monos D, Freedman RS. Immune responses to human tumors: development of tumor vaccines. Anticancer Res 2003; 23(3A):1969-96; PMID:12894571
  • Jordan KR, McMahan RH, Kemmler CB, Kappler JW, Slansky JE. Peptide vaccines prevent tumor growth by activating T cells that respond to native tumor antigens. Proc Natl Acad Sci U S A 2010; 107(10):4652-7; PMID:20133772; http://dx.doi.org/10.1073/pnas.0914879107
  • Hoppes R, Oostvogels R, Luimstra JJ, Wals K, Toebes M, Bies L, Ekkebus R, Rijal P, Celie PH, Huang JH, et al. Altered peptide ligands revisited: vaccine design through chemically modified HLA- A2-restricted T cell epitopes. J Immunol 2014; 193(10):4803-13; PMID:25311806; http://dx.doi.org/10.4049/jimmunol.1400800
  • Abdul-Alim CS, Li Y, Yee C. Conditional superagonist CTL ligands for the promotion of tumor- specific CTL responses. J Immunol 2010; 184(11):6514-21; PMID:20483791; http://dx.doi.org/10.4049/jimmunol.0900448
  • Ekeruche-Makinde J, Clement M, Cole DK, Edwards ES, Ladell K, Miles JJ, Mattews KK, Fuller A, Lloyd KA, Madura F, et al. T-cell receptor-optimized peptide skewing of the T-cell repertoire can enhance antigen targeting. J Biol Chem 2012; 287(44):37269-81; PMID:22952231; http://dx.doi.org/10.1074/jbc.M112.386409
  • Buhrman JD, Jordan KR, Munson DJ, Moore BL, Kappler JW, Slansky JE. Improving antigenic peptide vaccines for cancer immunotherapy using a dominant tumor- specific T cell receptor. J Biol Chem 2013; 288(46):33213-25; PMID:24106273; http://dx.doi.org/10.1074/jbc.M113.509554
  • Suresh K, Scheid E, Klotz L, Venkateswaran V, Gauldie J, Foley R. Induction of specific human cytotoxic T cells using dendritic cells transduced with an adenovector encoding rat epidermal growth factor receptor 2. Int J Oncol 2011; 39(4):907-13; PMID:21769423
  • Strioga MM, Darinskas A, Pasukoniene V, Mlynska A, Ostapenko V, Schijns V. Xenogeneic therapeutic cancer vaccines as breakers of immune tolerance for clinical application: to use or not to use?. Vaccine 2014; 32(32):4015-24; PMID:24837511; http://dx.doi.org/10.1016/j.vaccine.2014.05.006
  • Milani A, Sangiolo D, Aglietta M, Valabrega G. Recent advances in the development of breast cancer vaccines. Breast Cancer (Dove Med Press) 2014; 6:159-68; PMID:25339848; http://dx.doi.org/10.2147/BCTT.S38428
  • Pol J, Bloy N, Buqué A, Eggermont A, Cremer I, Sautès-Fridman C, Galon J, Tartour E, Zitgovel L, Kroemer G, et al. Trial Watch: Peptide-based anticancer vaccines. Oncoimmunology 2015; 4(4):e974411; PMID:26137405; http://dx.doi.org/10.4161/2162402X.2014.974411
  • Cody JJ, Hurst DR. Promising oncolytic agents for metastasis breast cancer treatment. Oncolytic Virotherapy 2015; 4:63-73; PMID:NOT_FOUND
  • Sokolowski NAS, Rizos H, Diefenbach RJ. Oncolytic virotherapy using herpes simplexvirus: how far have we come?. Oncolytic Virotherapy 2015; 4:207-219; PMID:NOT_FOUND
  • Pieczonka CM, Telonis D, Mouraviev V, Albala D. Sipuleucel-T for the treatment of patients with metastatic castrate-resistant prostate cancer: considerations for clinical practice. Rev Urol 2015; 17(4):203-10; PMID:26839517
  • Bourzac K. An immune one-two punch. Nature 2015; 528(7582):S134-6; PMID:26672788; http://dx.doi.org/10.1038/528S134a
  • Datta J, Berk E, Cintolo JA, Xu S, Roses RE, Czerniecki BJ. Rationale for a multimodality strategy to enhance the efficacy of dendritic cell-based cáncer immunotherapy. Front Immunol 2015; 6:271; PMID:26082780; http://dx.doi.org/10.3389/fimmu.2015.00271
  • Gulley JL. Therapeutic vaccines: the ultimate personalized therapy?. Hum Vaccin Immunother 2013; 9(1):219-21; PMID:22995839; http://dx.doi.org/10.4161/hv.22106
  • Pol J, Bloy N, Buque A, Eggermont A, Cremer I, Sautes-Fridman C, Galon J, Tartour E, Zitgovel L, Kroemer G, et al. Trial watch: peptide-based anticancer vaccines. Oncoimmunology 2015; 4(4):e974411; PMID:26137405; http://dx.doi.org/10.4161/2162402X.2014.974411
  • Vansteenkiste JF, Cho BC, Vanakesa T, De Pas T, Zielinski M, Kim MS, Jassem J, Yoshimura M, Dahabreh J, Nakayama H, et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive nonsmall-cell lung cáncer (MAGRIT): a randomized-double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2016; 17(6): 822–835; http://dx.doi.org/10.1016/S1470-2045(16)00099-1
  • Hsueh EC, Morton DL. Antigen-based immunotherapy of melanoma: Canvaxin therapeutic polyvalent cáncer vaccine. Semin Cancer Biol 2003; 13(6):401-7; PMID:15001158; http://dx.doi.org/10.1016/j.semcancer.2003.09.003
  • Kelland L. Discontinued drugs in 2005: oncology drugs. Expert Opin Investig Drugs 2006; 15(11):1309-18; PMID:17040193; http://dx.doi.org/10.1517/13543784.15.11.1309
  • Noe Dominguez-Romero A, Zamora-Alvarado R, Servín-Blanco R, Pérez-Hernández EG, Castrillon-Rivera LE, Munguia ME, Acero G, Govezensky T, Gevorkian G, Manoutcharian K. Variable epitope library carrying heavily mutated survivin-derived CTL epitope variants as a new class of efficient vaccine immunogen tested in a mouse model of breast cancer. Hum Vaccin Immunother 2014; 10(11):3201-13; PMID:25483665; http://dx.doi.org/10.4161/hv.29679
  • Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, Bignel GR, Bolli N, Borg A, Borresen-Dale AL, et al. Signatures of mutational processes in human cancer. Nature 2013; 500:415-421; PMID:23945592; http://dx.doi.org/10.1038/nature12477
  • Muthumani K, Block P, Flingai S, Muruganantham N, Chaaithanya IK, Tingey C, Wise M, Reuschel EL, Chung C, Muthumani A, et al. Ra´pid and long-term immunity elicited by DNA encoded antibodu prophylaxis and DNA vaccination against Chikungunya virus. J Infect Dis 2016; PMID:27001960; http://dx.doi.org/10.1093/infdis/jiw111

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.