1,531
Views
18
CrossRef citations to date
0
Altmetric
Research Paper

Preclinical evaluation of a chemically detoxified pneumolysin as pneumococcal vaccine antigen

, , , , , & show all
Pages 220-228 | Received 03 Mar 2016, Accepted 05 Sep 2016, Published online: 23 Dec 2016

References

  • Hausdorff WP, Feikin DR, Klugman KP. Epidemiological differences among pneumococcal serotypes. Lancet Infect Dis 2005; 5:83-93; PMID:15680778; http://dx.doi.org/10.1016/S1473-3099(05)70083-9
  • McCullers JA, Tuomanen EI. Molecular pathogenesis of pneumococcal pneumonia. Front Biosci 2001; 6:D877-D889; PMID:11502489; http://dx.doi.org/10.2741/A649
  • Dagan R, Käyhty H, Wuorimaa T, Yaich M, Bailleux F, Zamir O, Eskola J. Tolerability and immunogenicity of an eleven valent mixed carrier Streptococcus pneumoniae capsular polysaccharide-diphtheria toxoid or tetanus protein conjugate vaccine in Finnish and Israeli infants. Pediatr Infect Dis J 2004; 23:91-8; PMID:14872172; http://dx.doi.org/10.1097/01.inf.0000109221.50972.53
  • Fedson DC, Musher DM. Pneumococcal polysaccharide vaccines. In: Plotkin SA, Orenstein, WA, editors. Vaccines. Philadelphia, PA, Elsevier, Inc, 2004: 529-88
  • Mbelle N, Huebner RE, Wasas AD, Kimura A, Chang I, Klugman KP. Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine. J Infect Dis 1999; 180:1171-6; PMID:10479145; http://dx.doi.org/10.1086/315009
  • Smart LE, Dougall AJ, Girdwood RWA. New 23-valent pneumococcal vaccine in relation to pneumococcal serotypes in systemic and non-systemic disease. J Infect 1987; 14:209-15; PMID:3585032; http://dx.doi.org/10.1016/S0163-4453(87)93360-3
  • Jefferies JMC, Macdonald E, Faust SN, Clarke SC. Thirteen-valent pneumococcal conjugate vaccine (PCV13). Hum Vaccin 2011; 7:1012-8; PMID:21941097; http://dx.doi.org/10.4161/hv.7.10.16794
  • Palmu AA, Jokinen J, Borys D, Nieminen H, Ruokokoski E, Siira L, Puumalainen T, Lommel P, Hezareh M, Moreira M, et al. Effectiveness of the ten-valent pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10) against invasive pneumococcal disease: a cluster randomised trial. The Lancet 2013; 381:214-22; http://dx.doi.org/10.1016/S0140-6736(12)61854-6
  • Lipsitch M. Vaccination against colonizing bacteria with multiple serotypes. Proc Natl Acad Sci U S A 1997; 94:6571-6; PMID:9177259; http://dx.doi.org/10.1073/pnas.94.12.6571
  • Nunes S, Sá-Leão R, Pereira LC, de Lencastre H. Emergence of a serotype 1 Streptococcus pneumoniae lineage colonising healthy children in Portugal in the seven-valent conjugate vaccination era. Clin Microbiol Infect 2008; 14:82-4; PMID:17986268; http://dx.doi.org/10.1111/j.1469-0691.2007.01871.x
  • Singleton RJ, Hennessy TW, Bulkow LR, Hammitt LL, Zulz T, Hurlburt DA, Butler JC, Rudolph K, Parkinson A. Invasive pneumococcal disease caused by nonvaccine serotypes among alaska native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA 2007; 297:1784-92; PMID:17456820; http://dx.doi.org/10.1001/jama.297.16.1784
  • Feldman C, Anderson R. Review: Current and new generation pneumococcal vaccines. J Infect 2014; 69:309-25; PMID:24968238; http://dx.doi.org/10.1016/j.jinf.2014.06.006
  • Mitchell TJ, Dalziel CE. The biology of pneumolysin. Subcell Biochem 2014; 80:145-60; PMID:24798011; http://dx.doi.org/10.1007/978-94-017-8881-6_8
  • Marriott HM, Mitchell TJ, Dockrell DH. Pneumolysin: a double-edged sword during the host-pathogen interaction. Curr Mol Med 2008; 8:497-509; PMID:18781957; http://dx.doi.org/10.2174/15665-2408785747924
  • Calbo E, Garau J. Factors affecting the development of systemic inflammatory response syndrome in pneumococcal infections. Curr Opin Infect Dis 2011; 24:241-7; PMID:21522066; http://dx.doi.org/10.1097/QCO.0b013e3283463e45
  • Witzenrath M, Gutbier B, Hocke AC, Schmeck B, Hippenstiel S, Berger K, Mitchell TJ, de los Toyos JR, Rosseau S, Suttorp N, et al. Role of pneumolysin for the development of acute lung injury in pneumococcal pneumonia. Crit Care Med 2006; 34:1947-54; PMID:16715037; http://dx.doi.org/10.1097/01.CCM.0000220496.48295.A9
  • Shak JR, Ludewick HP, Howery KE, Sakai F, Yi H, Harvey RM, Paton JC, Klugman KP, Vidal JE. Novel role for the Streptococcus pneumoniae toxin pneumolysin in the assembly of biofilms. MBio 2013; 4:e00655-13; PMID:24023386; http://dx.doi.org/10.1128/mBio.00655-13
  • Neill DR, Coward WR, Gritzfeld JF, Richards L, Garcia-Garcia FJ, Dotor J, Gordon SB, Kadioglu A. Density and duration of pneumococcal carriage is maintained by transforming growth factor beta1 and T regulatory cells. Am J Respir Crit Care Med 2014; 189:1250-9; PMID:24749506; http://dx.doi.org/10.1164/rccm.201401-0128OC
  • Berry AM, Yother J, Briles DE, Hansman D, Paton JC. Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae. Infect Immun 1989; 57:2037-42; PMID:2731982
  • Berry AM, Ogunniyi AD, Miller DC, Paton JC. Comparative virulence of Streptococcus pneumoniae strains with insertion-duplication, point, and deletion mutations in the pneumolysin gene. Infect Immun 1999; 67:981-5; PMID:9916120
  • del Mar García-Suárez M, Flórez N, Astudillo A, Vázquez F, Villaverde R, Fabrizio K, Pirofski L-A, Méndez FJ. The role of pneumolysin in mediating lung damage in a lethal pneumococcal pneumonia murine model. Respir Res 2007; 8:3; http://dx.doi.org/10.1186/1465-9921-8-3
  • Salha D, Szeto J, Myers L, Claus C, Sheung A, Tang M, Ljutic B, Hanwell D, Ogilvie K, Ming M, et al. Neutralizing antibodies elicited by a novel detoxified pneumolysin derivative, PlyD1, provide protection against both pneumococcal infection and lung injury. Infect Immun 2012; 80:2212-20; PMID:22473606; http://dx.doi.org/10.1128/IAI.06348-11
  • Francis JP, Richmond PC, Pomat WS, Michael A, Keno H, Phuanukoonnon S, Nelson JB, Whinnen M, Heinrich T, Smith W-A, et al. Maternal antibodies to pneumolysin but not to pneumococcal surface protein A delay early pneumococcal carriage in high-risk Papua New Guinean infants. Clin Vaccine Immunol 2009; 16:1633-8; PMID:19776196; http://dx.doi.org/10.1128/CVI.00247-09
  • Jefferies JMC, Tocheva AS, Rubery H, Bennett J, Garland J, Christodoulides M, Faust SN, Smith A, Mitchell TJ, Clarke SC. Identification of novel pneumolysin alleles from paediatric carriage isolates of Streptococcus pneumoniae. J Med Microbiol 2010; 59:808-14; PMID:20339017; http://dx.doi.org/10.1099/jmm.0.018663-0
  • Lock RA, Paton JC, Hansman D. Comparative efficacy of pneumococcal neuraminidase and pneumolysin as immunogens protective against Streptococcus pneumoniae. Microb Pathog 1988; 5:461-7; PMID:3149709; http://dx.doi.org/10.1016/0882-4010(88)90007-1
  • Paton JC, Lock RA, Hansman DJ. Effect of immunization with pneumolysin on survival time of mice challenged with Streptococcus pneumoniae. Infect Immun 1983; 40:548-52; PMID:6840851
  • Giddings KS, Johnson AE, Tweten RK. Redefining cholesterol's role in the mechanism of the cholesterol-dependent cytolysins. Proc Natl Acad Sci U S A 2003; 100:11315-20; PMID:14500900; http://dx.doi.org/10.1073/pnas.2033520100
  • Gilbert RJC, Jiménez JL, Chen S, Tickle IJ, Rossjohn J, Parker M, Andrew PW, Saibil HR. Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae. Cell 1999; 97:647-55; http://dx.doi.org/10.1016/S0092-8674(00)80775-8
  • Lim JE, Park SA, Bong SM, Chi YM, Lee KS. Characterization of pneumolysin from Streptococcus pneumoniae, interacting with carbohydrate moiety and cholesterol as a component of cell membrane. Biochem Biophys Res Commun 2013; 430:659-63; PMID:23211600; http://dx.doi.org/10.1016/j.bbrc.2012.11.095
  • Briles DE, Hollingshead SK, Paton JC, Ades EW, Novak L, van Ginkel FW, Benjamin WH, Jr. Immunizations with pneumococcal surface protein A and pneumolysin are protective against pneumonia in a murine model of pulmonary infection with Streptococcus pneumoniae. J Infect Dis 2003; 188:339-48; PMID:12870114; http://dx.doi.org/10.1086/376571
  • Kirkham LAS, Kerr AR, Douce GR, Paterson GK, Dilts DA, Liu D-F, Mitchell TJ. Construction and immunological characterization of a novel nontoxic protective pneumolysin mutant for use in future pneumococcal vaccines. Infect Immun 2006; 74:586-93; PMID:16369015; http://dx.doi.org/10.1128/IAI.74.1.586-593.2006
  • Ogunniyi AD, Folland RL, Briles DE, Hollingshead SK, Paton JC. Immunization of mice with combinations of pneumococcal virulence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae. Infect Immun 2000; 68:3028-33; PMID:10769009; http://dx.doi.org/10.1128/IAI.68.5.3028-3033.2000
  • Ogunniyi AD, Grabowicz M, Briles DE, Cook J, Paton JC. Development of a vaccine against invasive pneumococcal disease based on combinations of virulence proteins of Streptococcus pneumoniae. Infect Immun 2007; 75:350-7; PMID:17088353; http://dx.doi.org/10.1128/IAI.01103-06
  • Paton JC, Lock RA, Lee C-J, Li JP, Berry AM, Mitchell TJ, Andrew PW, Hansman D, Boulnois GJ. Purification and immunogenicity of genetically obtained pneumolysin toxoids and their conjugation to Streptococcus pneumoniae type 19F polysaccharide. Infect Immun 1991; 59:2297-304; PMID:2050399
  • Oloo EO, Yethon JA, Ochs MM, Carpick B, Oomen R. Structure-guided antigen engineering yields pneumolysin mutants suitable for vaccination against pneumococcal disease. J Biol Chem 2011; 286:12133-40; PMID:21296887; http://dx.doi.org/10.1074/jbc.M110.191148
  • Kamtchoua T, Bologa M, Hopfer R, Neveu D, Hu B, Sheng X, Corde N, Pouzet C, Zimmermann G, Gurunathan S. Safety and immunogenicity of the pneumococcal pneumolysin derivative PlyD1 in a single-antigen protein vaccine candidate in adults. Vaccine 2013; 31:327-33; PMID:23153437; http://dx.doi.org/10.1016/j.vaccine.2012.11.005
  • Korchev YE, Bashford CL, Pederzolli C, Pasternak CA, Morgan PJ, Andrew PW, Mitchell TJ. A conserved tryptophan in pneumolysin is a determinant of the characteristics of channels formed by pneumolysin in cells and planar lipid bilayers. Biochem J 1998; 329 ( Pt 3):571-7; PMID:9445384; http://dx.doi.org/10.1042/bj3290571
  • Metz B, Kersten GFA, Hoogerhout P, Brugghe HF, Timmermans HAM, de Jong A, Meiring H, ten Hove J, Hennink WE, Crommelin DJA, et al. Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J Biol Chem 2004; 279:6235-43; PMID:14638685; http://dx.doi.org/10.1074/jbc.M310752200
  • Petre J, Pizza M, Nencioni L, Podda A, De Magistris MT, Rappuoli R. The reaction of bacterial toxins with formaldehyde and its use for antigen stabilization. Dev Biol Stand 1996; 87:125-34; PMID:8854009
  • Basset A, Thompson CM, Hollingshead SK, Briles DE, Ades EW, Lipsitch M, Malley R. Antibody-independent, CD4+ T-cell-dependent protection against pneumococcal colonization elicited by intranasal immunization with purified pneumococcal proteins. Infect Immun 2007; 75:5460-4; PMID:17698570; http://dx.doi.org/10.1128/IAI.00773-07
  • Malley R. Antibody and cell-mediated immunity to Streptococcus pneumoniae: implications for vaccine development. J Mol Med 2010; 88:135-42; PMID:20049411; http://dx.doi.org/10.1007/s00109-009-0579-4
  • Zhang Z, Clarke TB, Weiser JN. Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J Clin Invest 2009; 119:1899-909; PMID:19509469
  • Rioux S, Neyt C, Di Paolo E, Turpin L, Charland N, Labbé S, Mortier M-C, Mitchell TJ, Feron C, Martin D, et al. Transcriptional regulation, occurrence and putative role of the Pht family of Streptococcus pneumoniae. Microbiology 2011; 157:335-48; http://dx.doi.org/10.1099/mic.0.042184-0
  • Denoël P, Philipp MT, Doyle L, Martin D, Carletti G, Poolman JT. A protein-based pneumococcal vaccine protects rhesus macaques from pneumonia after experimental infection with Streptococcus pneumoniae. Vaccine 2011; 29:5495-501; http://dx.doi.org/10.1016/j.vaccine.2011.05.051
  • Rubins JB, Charboneau D, Paton JC, Mitchell TJ, Andrew PW, Janoff EN. Dual function of pneumolysin in the early pathogenesis of murine pneumococcal pneumonia. J Clin Invest 1995; 95:142-50; PMID:7814608; http://dx.doi.org/10.1172/JCI117631
  • Leroux-Roels G, Maes C, De Boever F, Traskine M, Rüggeberg JU, Borys D. Safety, reactogenicity and immunogenicity of a novel pneumococcal protein-based vaccine in adults: a phase I/II randomized clinical study. Vaccine 2014; 32:6838-46; PMID:24607003; http://dx.doi.org/10.1016/j.vaccine.2014.02.052
  • Prymula R, Pazdiora P, Traskine M, Rüggeberg JU, Borys D. Safety and immunogenicity of an investigational vaccine containing two common pneumococcal proteins in toddlers: a phase II randomized clinical trial. Vaccine 2014; 32:3025-34; PMID:24699466; http://dx.doi.org/10.1016/j.vaccine.2014.03.066
  • Odutola A, Ota MO, Ogundare EO, Antonio M, Owiafe P, Worwui A, Greenwood B, Alderson M, Traskine M, Verlant V, et al. Reactogenicity, safety and immunogenicity of a protein-based pneumococcal vaccine in Gambian children aged 2–4 years: a phase II randomized study. Hum Vaccin Immunother 2016; 12:393-402; PMID:26618243; http://dx.doi.org/10.1080/21645515.2015.1111496