5,322
Views
90
CrossRef citations to date
0
Altmetric
Reviews

Current prospects and future challenges for nasal vaccine delivery

&
Pages 34-45 | Received 07 Jul 2016, Accepted 18 Sep 2016, Published online: 09 Dec 2016

References

  • Giudice EL, Campbell JD. Needle-free vaccine delivery. Adv Drug Deliv Rev 2006; 58:68-89; PMID:16564111; http://dx.doi.org/10.1016/j.addr.2005.12.003
  • Chen D, Endres RL, Erickson CA, Weis KF, McGregor MW, Kawaoka Y, Payne LG. Epidermal immunization by a needle-free powder delivery technology: immunogenicity of influenza vaccine and protection in mice. Nat Med 2000; 6:1187-90; PMID:11017153; http://dx.doi.org/10.1038/80538
  • Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med 2005; 11:S45-S53; PMID:15812489; http://dx.doi.org/10.1038/nm1213
  • Quraishi MS, Jones NS, Mason J. The rheology of nasal mucus: a review. Clin Otolaryngol 1998; 23:403-13; PMID:9800075; http://dx.doi.org/10.1046/j.1365-2273.1998.00172.x
  • Voynow JA, Rubin BK. Mucins, mucus, and sputum. Chest 2009; 135:505-12; PMID:19201713; http://dx.doi.org/10.1378/chest.08-0412
  • Thornton DJ, Rousseau K, McGuckin MA. Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol 2008; 70:459-86; PMID:17850213; http://dx.doi.org/10.1146/annurev.physiol.70.113006.100702
  • Walker WT, Liew A, Harris A, Cole J, Lucas JS. Upper and lower airway nitric oxide levels in primary ciliary dyskinesia, cystic fibrosis and asthma. Respir Med 2013; 107:380-6; PMID:23290188; http://dx.doi.org/10.1016/j.rmed.2012.11.021
  • Thomann-Harwood LJ, Kaeuper P, Rossi N, Milona P, Herrmann B, McCullough KC. Nanogel vaccines targeting dendritic cells: Contributions of the surface decoration and vaccine cargo on cell targeting and activation. J Controlled Release 2013; 166:95-105; http://dx.doi.org/10.1016/j.jconrel.2012.11.015
  • Brandtzaeg P. Function of Mucosa-Associated Lymphoid Tissue in Antibody Formation. Immunol Invest 2010; 39:303-55; PMID:20450282; http://dx.doi.org/10.3109/08820131003680369
  • van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol 2010; 10:664-74; PMID:20706277; http://dx.doi.org/10.1038/nri2832
  • Hargreaves DC, Medzhitov R. Innate Sensors of Microbial Infection. J Clin Immunol; 25:503-10; PMID:16380814; http://dx.doi.org/10.1007/s10875-005-8065-4
  • J Philpott D, E Girardin S, J Sansonetti P. Innate immune responses of epithelial cells following infection with bacterial pathogens. Curr Opin Immunol 2001; 13:410-6; PMID:11498296; http://dx.doi.org/10.1016/S0952-7915(00)00235-1
  • López-Boado YS, Wilson CL, Hooper LV, Gordon JI, Hultgren SJ, Parks WC. Bacterial Exposure Induces and Activates Matrilysin in Mucosal Epithelial Cells. The Journal of Cell Biology 2000; 148:1305-15; PMID:Can't; http://dx.doi.org/10.1083/jcb.148.6.1305
  • Kagnoff MF, Eckmann L. Epithelial cells as sensors for microbial infection. J Clin Invest 1997; 100:6-10; PMID:9202050; http://dx.doi.org/10.1172/JCI119522
  • Neutra MR, Mantis NJ, Kraehenbuhl J-P. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol 2001; 2:1004-9; PMID:11685223; http://dx.doi.org/10.1038/ni1101-1004
  • Kiyono H, Fukuyama S. NALT- versus PEYER'S-patch-mediated mucosal immunity. Nat Rev Immunol 2004; 4:699-710; PMID:15343369
  • Corr SC, Gahan CC, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol 2008; 52:2-12; PMID:18081850
  • Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 2006; 6:148-58; PMID:16491139
  • Sharma S, Mukkur TK, Benson HA, Chen Y. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J Pharm Sci 2009; 98:812-43; PMID:18661544
  • Illum L. Nanoparticulate systems for nasal delivery of drugs: A real improvement over simple systems? J Pharm Sci 2007; 96:473-83; PMID:17117404
  • Csaba N, Garcia-Fuentes M, Alonso MJ. Nanoparticles for nasal vaccination. Adv Drug Deliv Rev 2009; 61:140-57; PMID:19121350
  • Fagarasan S, Honjo T. Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol 2003; 3:63-72; PMID:12511876
  • Macpherson AJ, Slack E. The functional interactions of commensal bacteria with intestinal secretory IgA. Current opinion in gastroenterology 2007; 23:673-8; PMID:17906446
  • Yel L. Selective IgA Deficiency. J Clin Immunol 2010; 30:10-6; PMID:20101521
  • Snoeck V, Peters IR, Cox E. The IgA system: a comparison of structure and function in different species. Vet Res 2006; 37:455-67; PMID:16611558
  • Borges O, Lebre F, Bento D, Borchard G, Junginger HE. Mucosal Vaccines: Recent Progress in Understanding the Natural Barriers. Pharm Res 2010; 27:211-23; PMID:19953309
  • Hutchings AB, Helander A, Silvey KJ, Chandran K, Lucas WT, Nibert ML, Neutra MR. Secretory Immunoglobulin A Antibodies against the σ1 Outer Capsid Protein of Reovirus Type 1 Lang Prevent Infection of Mouse Peyer's Patches. J Virol 2004; 78:947-57; PMID:14694126
  • Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol 0000; 1:11-22
  • van Ginkel FW, Nguyen HH, McGhee JR. Vaccines for mucosal immunity to combat emerging infectious diseases. Emerg Infect Dis 2000; 6:123-32; PMID:10756145
  • Talsma SS, Babensee JE, Murthy N, Williams IR. Development and in vitro validation of a targeted delivery vehicle for DNA vaccines. J Controlled Release 2006; 112:271-9
  • Russell-Jones GJ. Oral vaccine delivery. J Controlled Release 2000; 65:49-54; http://dx.doi.org/10.1016/S0168-3659(99)00231-X
  • Burgdorf S, Kautz A, Böhnert V, Knolle PA, Kurts C. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science (New York, NY) 2007; 316:612-6; http://dx.doi.org/10.1126/science.1137971
  • Brandtzaeg P. Nature and function of gastrointestinal antigen-presenting cells. Allergy 2001; 56:16-20; PMID:11298000; http://dx.doi.org/10.1034/j.1398-9995.2001.00903.x
  • Diebold SS, Cotten M, Koch N, Zenke M. MHC class II presentation of endogenously expressed antigens by transfected dendritic cells. Gene Ther 2001; 8:487-93; PMID:11313828; http://dx.doi.org/10.1038/sj.gt.3301433
  • Guy B. The perfect mix: recent progress in adjuvant research. Nat Rev Micro 2007; 5:505-17; http://dx.doi.org/10.1038/nrmicro1681
  • Sansonetti PJ, Di Santo JP. Debugging how Bacteria Manipulate the Immune Response. Immunity 2007; 26:149-61; PMID:17307704; http://dx.doi.org/10.1016/j.immuni.2007.02.004
  • Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, Shen F, Eaton SM, Gaffen SL, Swain SL, et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4(+) T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 2007; 8:369-77; PMID:17351619; http://dx.doi.org/10.1038/ni1449
  • Keijzer C, Haijema BJ, Meijerhof T, Voorn P, de Haan A, Leenhouts K, van Roosmalen ML, van Eden W, Broere F. Inactivated influenza vaccine adjuvanted with Bacterium-like particles induce systemic and mucosal influenza A virus specific T-cell and B-cell responses after nasal administration in a TLR2 dependent fashion. Vaccine 2014; 32:2904-10; PMID:24598720; http://dx.doi.org/10.1016/j.vaccine.2014.02.019
  • Rathore JS, Wang Y. Protective role of Th17 cells in pulmonary infection. Vaccine 2016; 34:1504-14; PMID:26878294; http://dx.doi.org/10.1016/j.vaccine.2016.02.021
  • Zygmunt BM, Rharbaoui F, Groebe L, Guzman CA. Intranasal Immunization Promotes Th17 Immune Responses. J Immunol 2009; 183:6933-8; PMID:19890060; http://dx.doi.org/10.4049/jimmunol.0901144
  • Maroof A, Yorgensen YM, Li YF, Evans JT. Intranasal Vaccination Promotes Detrimental Th17Mediated Immunity against Influenza Infection. PLoS Path 2014; 10:e1003875
  • McKinstry KK, Strutt TM, Buck A, Curtis JD, Dibble JP, Huston G, Tighe M, Hamada H, Sell S, Dutton RW, et al. IL-10 Deficiency Unleashes an Influenza-Specific Th17 Response and Enhances Survival against High-Dose Challenge. J Immunol 2009; 182:7353-63; PMID:19494257; http://dx.doi.org/10.4049/jimmunol.0900657
  • Hamada H, Garcia-Hernandez MD, Reome JB, Misra SK, Strutt TM, McKinstry KK, Cooper AM, Swain SL, Dutton RW. Tc17, a Unique Subset of CD8 T Cells That Can Protect against Lethal Influenza Challenge. J Immunol 2009; 182:3469-81; PMID:19265125; http://dx.doi.org/10.4049/jimmunol.0801814
  • Wang R, Epstein J, Baraceros FM, Gorak EJ, Charoenvit Y, Carucci DJ, Hedstrom RC, Rahardjo N, Gay T, Hobart P, et al. Induction of CD4(+) T cell-dependent CD8(+) type 1 responses in humans by a malaria DNA vaccine. Proc Natl Acad Sci U S A 2001; 98:10817-22; PMID:11526203; http://dx.doi.org/10.1073/pnas.181123498
  • Srikiatkhachorn A, Chang W, Braciale TJ. Induction of Th-1 and Th-2 Responses by Respiratory Syncytial Virus Attachment Glycoprotein Is Epitope and Major Histocompatibility Complex Independent. J Virol 1999; 73:6590-7; PMID:10400756
  • Haglund K, Leiner I, Kerksiek K, Buonocore L, Pamer E, Rose JK. High-level primary CD8(+) T-cell response to human immunodeficiency virus type 1 gag and env generated by vaccination with recombinant vesicular stomatitis viruses. J Virol 2002; 76:2730-8; PMID:11861840; http://dx.doi.org/10.1128/JVI.76.6.2730-2738.2002
  • Boyer JD, Cohen AD, Vogt S, Schumann K, Nath B, Ahn L, Lacy K, Bagarazzi ML, Higgins TJ, Baine Y, et al. Vaccination of seronegative volunteers with a human immunodeficiency virus type 1 env/rev DNA vaccine induces antigen-specific proliferation and lymphocyte production of beta-chemokines. J Infect Dis 2000; 181:476-83; PMID:10669329; http://dx.doi.org/10.1086/315229
  • D'Souza S, Romano M, Korf J, Wang X-M, Adnet P-Y, Huygen K. Partial Reconstitution of the CD4(+)-T-Cell Compartment in CD4 Gene Knockout Mice Restores Responses to Tuberculosis DNA Vaccines. Infect Immun 2006; 74:2751-9; PMID:16622212; http://dx.doi.org/10.1128/IAI.74.5.2751-2759.2006
  • Walsh KP, Mills KHG. Dendritic cells and other innate determinants of T helper cell polarisation. Trends Immunol; 34:521-30; PMID:23973621; http://dx.doi.org/10.1016/j.it.2013.07.006
  • McKenzie Andrew NJ, Spits H, Eberl G. Innate Lymphoid Cells in Inflammation and Immunity. Immunity 2014; 41:366-74; PMID:25238094; http://dx.doi.org/10.1016/j.immuni.2014.09.006
  • Artis D, Spits H. The biology of innate lymphoid cells. Nature 2015; 517:293-301; PMID:25592534; http://dx.doi.org/10.1038/nature14189
  • von Burg N, Turchinovich G, Finke D. Maintenance of Immune Homeostasis through ILC/T Cell Interactions. Front Immunol 2015; 6:416; PMID:26322047; http://dx.doi.org/10.3389/fimmu.2015.00416
  • Luci C, Bekri S, Bihl F, Pini J, Bourdely P, Nouhen K, Malgogne A, Walzer T, Braud VM, Anjuère F. NKp46+ Innate Lymphoid Cells Dampen Vaginal CD8 T Cell Responses following Local Immunization with a Cholera Toxin-Based Vaccine. PLoS ONE 2015; 10:e0143224; PMID:26630176; http://dx.doi.org/10.1371/journal.pone.0143224
  • Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL. Cross-talk between activated human NK cells and CD4(+) T cells via OX40-OX40 ligand interactions. J Immunol 2004; 173:3716-24; PMID:15356117; http://dx.doi.org/10.4049/jimmunol.173.6.3716
  • Mirchandani AS, Besnard AG, Yip E, Scott C, Bain CC, Cerovic V, Salmond RJ, Liew FY. Type 2 Innate Lymphoid Cells Drive CD4(+) Th2 Cell Responses. J Immunol 2014; 192:2442-8; PMID:24470502; http://dx.doi.org/10.4049/jimmunol.1300974
  • Sakaguchi S, Wing K, Miyara M. Regulatory T cells - a brief history and perspective. Eur J Immunol 2007; 37:S116-S23; PMID:17972355; http://dx.doi.org/10.1002/eji.200737593
  • Ramirez K, Wahid R, Richardson C, Bargatze RF, El-Kamary SS, Sztein MB, Pasetti MF. Intranasal vaccination with an adjuvanted Norwalk virus-like particle vaccine elicits antigen-specific B memory responses in human adult volunteers. Clin Immunol 2012; 144:98-108; PMID:22710446; http://dx.doi.org/10.1016/j.clim.2012.05.006
  • Sealy R, Jones BG, Surman SL, Hurwitz JL. Robust IgA and IgG-producing antibody forming cells in the diffuse NALT and lungs of Sendai virus-vaccinated cotton rats associate with rapid protection against human parainfluenza virus-type 1. Vaccine 2010; 28:6749-56; PMID:20682364; http://dx.doi.org/10.1016/j.vaccine.2010.07.068
  • Fujkuyama Y, Tokuhara D, Kataoka K, Gilbert RS, McGhee JR, Yuki Y, Kiyono H, Fujihashi K. Novel vaccine development strategies for inducing mucosal immunity. Expert Rev Vaccines 2012; 11:367-79; PMID:22380827; http://dx.doi.org/10.1586/erv.11.196
  • Simon JK, Ramirez K, Cuberos L, Campbell JD, Viret JF, Muñoz A, Lagos R, Levine MM, Pasetti MF. Mucosal IgA Responses in Healthy Adult Volunteers following Intranasal Spray Delivery of a Live Attenuated Measles Vaccine. Clin Vaccine Immunol 2011; 18:355-61; PMID:21228137; http://dx.doi.org/10.1128/CVI.00354-10
  • Lijek RS, Luque SL, Liu Q, Parker D, Bae T, Weiser JN. Protection from the acquisition of Staphylococcus aureus nasal carriage by cross-reactive antibody to a pneumococcal dehydrogenase. Proc Natl Acad Sci U S A 2012; 109:13823-8; PMID:22869727; http://dx.doi.org/10.1073/pnas.1208075109
  • Jang YH, Byun YH, Lee YJ, Lee YH, Lee K-H, Seong BL. Cold-adapted pandemic 2009 H1N1 influenza virus live vaccine elicits cross-reactive immune responses against seasonal and H5 influenza a viruses. J Virol 2012; 86:5953-8; PMID:22438541; http://dx.doi.org/10.1128/JVI.07149-11
  • Motohashi S, Okamoto Y, Yoshino I, Nakayama T. Anti-tumor immune responses induced by iNKT cell-based immunotherapy for lung cancer and head and neck cancer. Clin Immunol 2011; 140:167-76; PMID:21349771; http://dx.doi.org/10.1016/j.clim.2011.01.009
  • Xiao C, Davis FJ, Chauhan BC, Viola KL, Lacor PN, Velasco PT, Klein WL, Chauhan NB. Brain transit and ameliorative effects of intranasally delivered anti-amyloid-beta oligomer antibody in 5XFAD mice. J Alzheimers Dis 2013; 35:777-88; PMID:23542865
  • Keijzer C, van der Zee R, van Eden W, Broere F. Treg inducing adjuvants for therapeutic vaccination against chronic inflammatory diseases. Front Immunol 2013; 4:245; PMID:23970886; http://dx.doi.org/10.3389/fimmu.2013.00245
  • Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 2010; 10:490-500; PMID:20559327; http://dx.doi.org/10.1038/nri2785
  • Weiner HL, da Cunha AP, Quintana F, Wu H. Oral tolerance. Immunol Rev 2011; 241:241-59; PMID:21488901; http://dx.doi.org/10.1111/j.1600-065X.2011.01017.x
  • Keijzer C, Spiering R, Silva AL, van Eden W, Jiskoot W, Vervelde L, Broere F. PLGA nanoparticles enhance the expression of retinaldehyde dehydrogenase enzymes in dendritic cells and induce FoxP3+ T-cells in vitro. J Controlled Release 2013; 168:35-40; http://dx.doi.org/10.1016/j.jconrel.2013.02.027
  • Li H, Ding Y, Yi G, Zeng Q, Yang W. Establishment of nasal tolerance to heat shock protein-60 alleviates atherosclerosis by inducing TGF-β-dependent regulatory T cells. J Huazhong Univ Sci Technol [Medical Sciences] 2012; 32:24-30; PMID:22282240; http://dx.doi.org/10.1007/s11596-012-0004-z
  • Klingenberg R, Lebens M, Hermansson A, Fredrikson GN, Strodthoff D, Rudling M, Ketelhuth DFJ, Gerdes N, Holmgren J, Nilsson J, et al. Intranasal Immunization With an Apolipoprotein B-100 Fusion Protein Induces Antigen-Specific Regulatory T Cells and Reduces Atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30:946-U148; http://dx.doi.org/10.1161/ATVBAHA.109.202671
  • Broere F, Wieten L, Koerkamp EIK, van Roon JAG, Guichelaar T, Lafeber F, van Eden W. Oral or nasal antigen induces regulatory T cells that suppress arthritis and proliferation of arthritogenic T cells in joint draining lymph nodes. J Immunol 2008; 181:899-906; PMID:18606641; http://dx.doi.org/10.4049/jimmunol.181.2.899
  • Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review. Drug Delivery and Translational Research 2013; 3:42-62; PMID:23316447; http://dx.doi.org/10.1007/s13346-012-0108-9
  • Wang SH, Kirwan SM, Abraham SN, Staats HF, Hickey AJ. Stable Dry Powder Formulation for Nasal Delivery of Anthrax Vaccine. J Pharm Sci 2012; 101:31-47; PMID:21905034; http://dx.doi.org/10.1002/jps.22742
  • McInnes FJ, Thapa P, Baillie AJ, Welling PG, Watson DG, Gibson I, Nolan A, Stevens HNE. In vivo evaluation of nicotine lyophilised nasal insert in sheep. Int J Pharm 2005; 304:72-82; PMID:16183221; http://dx.doi.org/10.1016/j.ijpharm.2005.07.025
  • Pattani A, McKay PF, Curran RM, McCaffrey J, Gupta PN, Lowry D, Kett VL, Shattock RJ, McCarthy HO, Malcolm RK. Molecular investigations into vaginal immunization with HIV gp41 antigenic construct H4A in a quick release solid dosage form. Vaccine 2012; 30:2778-85; PMID:22361120; http://dx.doi.org/10.1016/j.vaccine.2012.02.004
  • Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 2010; 10:787-96; PMID:20948547; http://dx.doi.org/10.1038/nri2868
  • Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv Drug Deliv Rev 2008; 60:915-28; PMID:18325628; http://dx.doi.org/10.1016/j.addr.2007.05.017
  • Koping-Hoggard M, Sanchez A, Alonso MJ. Nanoparticles as carriers for nasal vaccine delivery. Exp Rev Vaccines 2005; 4:185-96; PMID:15889992; http://dx.doi.org/10.1586/14760584.4.2.185
  • Slütter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, Kaijzel E, van Eden W, Augustijns P, Löwik C, et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: Nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 2010; 28:6282-91; PMID:20638455; http://dx.doi.org/10.1016/j.vaccine.2010.06.121
  • Jain AK, Goyal AK, Gupta PN, Khatri K, Mishra N, Mehta A, Mangal S, Vyas SP. Synthesis, characterization and evaluation of novel triblock copolymer based nanoparticles for vaccine delivery against hepatitis B. J Controlled Release 2009; 136:161-9; http://dx.doi.org/10.1016/j.jconrel.2009.02.010
  • Jain A, Massey AS, Yusuf H, McDonald DM, McCarthy H, Kett V. Development of polymeric–cationic peptide composite nanoparticles, a nanoparticle-in- nanoparticle system for controlled gene delivery. Int J Nanomed 2015; 7183-96.
  • Nochi T, Yuki Y, Takahashi H, Sawada S-I, Mejima M, Kohda T, Harada N, Kong IG, Sato A, Kataoka N, et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater 2010; 9:572-8; PMID:20562880; http://dx.doi.org/10.1038/nmat2784
  • Jesus S, Soares E, Costa J, Borchard G, Borges O. Immune response elicited by an intranasally delivered HBsAg low-dose adsorbed to poly-epsilon-caprolactone based nanoparticles. Int J Pharm 2016; 504:59-69; PMID:26976502; http://dx.doi.org/10.1016/j.ijpharm.2016.03.013
  • de Jonge MI, Hamstra HJ, Jiskoot W, Roholl P, Williams NA, Dankert J, Alphen Lv, van der Ley P. Intranasal immunisation of mice with liposomes containing recombinant meningococcal OpaB and OpaJ proteins. Vaccine 2004; 22:4021-8; PMID:15364452; http://dx.doi.org/10.1016/j.vaccine.2004.03.047
  • Wang D, Christopher ME, Nagata LP, Zabielski MA, Li H, Wong JP, Samuel J. Intranasal immunization with liposome-encapsulated plasmid DNA encoding influenza virus hemagglutinin elicits mucosal, cellular and humoral immune responses. J Clin Virol 2004; 31, Supplement 1:99-106; http://dx.doi.org/10.1016/j.jcv.2004.09.013
  • Khatri K, Goya AK, Gupta PN, Mishra N, Mehta A, Vyas SP. Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine 2008; 26:2225-33; PMID:18396362; http://dx.doi.org/10.1016/j.vaccine.2008.02.058
  • Amin M, Jaafari MR, Tafaghodi M. Impact of chitosan coating of anionic liposomes on clearance rate, mucosal and systemic immune responses following nasal administration in rabbits. Colloids and Surfaces B-Biointerfaces 2009; 74:225-9; http://dx.doi.org/10.1016/j.colsurfb.2009.07.024
  • Heurtault B, Frisch B, Pons F. Liposomes as delivery systems for nasal vaccination: strategies and outcomes. Exp Opin Drug Delivery 2010; 7:829-44; PMID:20459361; http://dx.doi.org/10.1517/17425247.2010.488687
  • Wang HW, Jiang PL, Lin SF, Lin HJ, Ou KL, Deng WP, Lee LW, Huang YY, Liang PH, Liu DZ. Application of galactose-modified liposomes as a potent antigen presenting cell targeted carrier for intranasal immunization. Acta Biomater 2013; 9:5681-8; PMID:23159567; http://dx.doi.org/10.1016/j.actbio.2012.11.007
  • Fan Y, Sahdev P, Ochyl LJ, J. Akerberg J, Moon JJ. Cationic liposome–hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens. J Controlled Release 2015; 208:121-9; http://dx.doi.org/10.1016/j.jconrel.2015.04.010
  • Chen KH, Di Sabatino M, Albertini B, Passerini N, Kett VL. The effect of polymer coatings on physicochemical properties of spray-dried liposomes for nasal delivery of BSA. Eur J Pharm Sci 2013; 50:312-22; PMID:23876823; http://dx.doi.org/10.1016/j.ejps.2013.07.006
  • Glück U, Gebbers J-O, Glück R. Phase 1 Evaluation of Intranasal Virosomal Influenza Vaccine with and without Escherichia coli Heat-Labile Toxin in Adult Volunteers. J Virol 1999; 73:7780-6; PMID:10438868
  • Gluck R. Pre-clinical and clinical investigation of the safety of a novel adjuvant for intranasal immunization. Vaccine 2001; 20, Supplement 1:S42-S4.
  • Cusi MG, Zurbriggen R, Valassina M, Bianchi S, Durrer P, Valensin PE, Donati M, Gluck R. Intranasal immunization with mumps virus DNA vaccine delivered by influenza virosomes elicits mucosal and systemic immunity. Virology 2000; 277:111-8; PMID:11062041; http://dx.doi.org/10.1006/viro.2000.0605
  • Durrer P, Gluck U, Spyr C, Lang AB, Zurbriggen R, Herzog C, Gluck R. Mucosal antibody response induced with a nasal virosome-based influenza vaccine. Vaccine 2003; 21:4328-34; PMID:14505915; http://dx.doi.org/10.1016/S0264-410X(03)00457-2
  • Salleras L, Dominguez A, Pumarola T, Prat A, Marcos MA, Garrido P, Artigas R, Bau A, Brotons J, Bruna X, et al. Effectiveness of virosomal subunit influenza vaccine in preventing influenza-related illnesses and its social and economic consequences in children aged 3-14 years: A prospective cohort study. Vaccine 2006; 24:6638-42; PMID:16842892; http://dx.doi.org/10.1016/j.vaccine.2006.05.034
  • Lambkin R, Oxford JS, Bossuyt S, Mann A, Metcalfe IC, Herzog C, Viret JF, Gluck R. Strong local and systemic protective immunity induced in the ferret model by an intranasal virosome-formulated influenza subunit vaccine. Vaccine 2004; 22:4390-6; PMID:15474733; http://dx.doi.org/10.1016/j.vaccine.2003.10.054
  • Hossain MJ, Bourgeois M, Quan F-S, Lipatov AS, Song J-M, Chen L-M, Compans RW, York I, Kang S-M, Donis RO. Virus-Like Particle Vaccine Containing Hemagglutinin Confers Protection against 2009 H1N1 Pandemic Influenza. Clin Vaccine Immunol 2011; 18:2010-7; PMID:22030367; http://dx.doi.org/10.1128/CVI.05206-11
  • Herbst-Kralovetz M, Mason HS, Chen Q. Norwalk virus-like particles as vaccines. Exp Rev Vaccines 2010; 9:299-307; PMID:20218858; http://dx.doi.org/10.1586/erv.09.163
  • Hagenaars N, Mastrobattista E, Glansbeek H, Heldens J, van den Bosch H, Schijns V, Betbeder D, Vromans H, Jiskoot W. Head-to-head comparison of four nonadjuvanted inactivated cell culture-derived influenza vaccines: Effect of composition, spatial organization and immunization route on the immunogenicity in a murine challenge model. Vaccine 2008; 26:6555-63; PMID:18848856; http://dx.doi.org/10.1016/j.vaccine.2008.09.057
  • de Jonge J, Leenhouts JM, Holtrop M, Schoen P, Scherrer P, Cullis PR, Wilschut J, Huckriede A. Cellular gene transfer mediated by influenza virosomes with encapsulated plasmid DNA. Biochem J 2007; 405:41-9; PMID:17355227; http://dx.doi.org/10.1042/BJ20061756
  • Cusi MG. Applications of influenza virosomes as a delivery system. Human Vaccines 2006; 2:1-7; PMID:17012895; http://dx.doi.org/10.4161/hv.2.1.2494
  • Lai SK, Wang Y-Y, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Del Rev 2009; 61:158-71; http://dx.doi.org/10.1016/j.addr.2008.11.002
  • Singh M, Briones M, O'Hagan DT. A novel bioadhesive intranasal delivery system for inactivated influenza vaccines. J Controlled Release 2001; 70:267-76; http://dx.doi.org/10.1016/S0168-3659(00)00330-8
  • Stephenson I, Nicholson KG, Hoschler K, Zambon MC, Hancock K, DeVos J, Katz JM, Praus M, Banzhoff A. Antigenically distinct MF59-adjuvanted vaccine to boost immunity to H5N1. N Engl J Med 2008; 359:1631-3; PMID:18843132; http://dx.doi.org/10.1056/NEJMc0805274
  • Schultze V, D'Agosto V, Wack A, Novicki D, Zorn J, Hennig R. Safety of MF59™ adjuvant. Vaccine 2008; 26:3209-22; PMID:18462843; http://dx.doi.org/10.1016/j.vaccine.2008.03.093
  • McAleer JP, Vella AT. Educating CD4 T cells with vaccine adjuvants: lessons from lipopolysaccharide. Trends Immunol 2010; 31:429-35; PMID:20880743; http://dx.doi.org/10.1016/j.it.2010.08.005
  • Zonneveld-Huijssoon E, van Wijk F, Roord S, Delemarre E, Meerding J, de Jager W, Klein M, Raz E, Albani S, Kuis W, et al. TLR9 agonist CpG enhances protective nasal HSP60 peptide vaccine efficacy in experimental autoimmune arthritis. Ann Rheum Dis 2012; 71:1706-15; PMID:22562976; http://dx.doi.org/10.1136/annrheumdis-2011-201131
  • Velasquez LS, Hjelm BE, Arntzen CJ, Herbst-Kralovetz MM. An intranasally delivered Toll-like receptor 7 agonist elicits robust systemic and mucosal responses to Norwalk virus-like particles. Clin Vaccine Immunol 2010; 17:1850-8; PMID:20962211; http://dx.doi.org/10.1128/CVI.00230-10
  • Sui Z, Chen Q, Wu R, Zhang H, Zheng M, Wang H, Chen Z. Cross-protection against influenza virus infection by intranasal administration of M2-based vaccine with chitosan as an adjuvant. Arch Virol 2010; 155:535-44; PMID:20195654; http://dx.doi.org/10.1007/s00705-010-0621-4
  • Noda K, Kodama S, Umemoto S, Abe N, Hirano T, Suzuki M. Nasal vaccination with P6 outer membrane protein and alpha-galactosylceramide induces nontypeable Haemophilus influenzae-specific protective immunity associated with NKT cell activation and dendritic cell expansion in nasopharynx. Vaccine 2010; 28:5068-74; PMID:20478344; http://dx.doi.org/10.1016/j.vaccine.2010.05.005
  • Miyata T, Harakuni T, Tsuboi T, Sattabongkot J, Kohama H, Tachibana M, Matsuzaki G, Torii M, Arakawa T. Plasmodium vivax ookinete surface protein Pvs25 linked to cholera toxin B subunit induces potent transmission-blocking immunity by intranasal as well as subcutaneous immunization. Infect Immun 2010; 78:3773-82; PMID:20584978; http://dx.doi.org/10.1128/IAI.00306-10
  • Freytag LC, Clements JD. Mucosal adjuvants. Vaccine 2005; 23:1804-13; PMID:15734046; http://dx.doi.org/10.1016/j.vaccine.2004.11.010
  • Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T, Spyr C, Steffen R. Use of the Inactivated Intranasal Influenza Vaccine and the Risk of Bell's Palsy in Switzerland. N Engl J Med 2004; 350:896-903; PMID:14985487; http://dx.doi.org/10.1056/NEJMoa030595
  • van Ginkel FW, Jackson RJ, Yuki Y, McGhee JR. Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J Immunol 2000; 165:4778-82; PMID:11045998; http://dx.doi.org/10.4049/jimmunol.165.9.4778
  • Gluck R, Mischler R, Durrer P, Furer E, Lang AB, Herzog C, Cryz SJ, Jr. Safety and immunogenicity of intranasally administered inactivated trivalent virosome-formulated influenza vaccine containing Escherichia coli heat-labile toxin as a mucosal adjuvant. J Infect Dis 2000; 181:1129-32; PMID:10720540; http://dx.doi.org/10.1086/315337
  • Kanerva M, Mannonen L, Pliparinen H, Peltomaa M, Vaheri A, Pitkaranta A. Search for herpesviruses in cerebrospinal fluid of facial palsy patients by PCR. Acta Otolaryngol (Stockh) 2007; 127:775-9; http://dx.doi.org/10.1080/00016480601011444
  • Kiura K, Kataoka H, Yasuda M, Inoue N, Shibata K. The diacylated lipopeptide FSL-1 induces TLR2-mediated Th2 responses. FEMS Immunol Med Microbiol 2006; 48:44-55; PMID:16965351; http://dx.doi.org/10.1111/j.1574-695X.2006.00119.x
  • Nyirenda MH, Sanvito L, Darlington PJ, O'Brien K, Zhang GX, Constantinescu CS, Bar-Or A, Gran B. TLR2 Stimulation Drives Human Naive and Effector Regulatory T Cells into a Th17-Like Phenotype with Reduced Suppressive Function. J Immunol 2011; 187:2278-90; PMID:21775683; http://dx.doi.org/10.4049/jimmunol.1003715
  • Keijzer C, Slutter B, van der Zee R, Jiskoot W, van Eden W, Broere F. PLGA, PLGA-TMC and TMC-TPP Nanoparticles Differentially Modulate the Outcome of Nasal Vaccination by Inducing Tolerance or Enhancing Humoral Immunity. Plos One 2011; 6:10
  • Carter NJ, Curran MP. Live attenuated influenza vaccine (FluMist(R); Fluenz): a review of its use in the prevention of seasonal influenza in children and adults. Drugs 2011; 71:1591-622; PMID:21861544; http://dx.doi.org/10.2165/11206860-000000000-00000
  • Watts PJ, Smith A. Re-formulating drugs and vaccines for intranasal delivery: maximum benefits for minimum risks? Drug Discov Today 2011; 16:4-7; PMID:21074635; http://dx.doi.org/10.1016/j.drudis.2010.11.001
  • Kulkarni PS, Raut SK, Dhere RM. A post-marketing surveillance study of a human live-virus pandemic influenza A (H1N1) vaccine (Nasovac ((R)) ) in India. Human vaccines & immunotherapeutics 2013; 9:122-4; PMID:23442586; http://dx.doi.org/10.4161/hv.22317
  • Dhere R, Yeolekar L, Kulkarni P, Menon R, Vaidya V, Ganguly M, Tyagi P, Barde P, Jadhav S. A pandemic influenza vaccine in India: from strain to sale within 12 months. Vaccine 2011; 29 Suppl 1:A16-21; http://dx.doi.org/10.1016/j.vaccine.2011.04.119
  • Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nature Reviews Immunology 2012; 12:592-605; PMID:22828912; http://dx.doi.org/10.1038/nri3251
  • Control CfD. ACIP votes down use of LAIV for 2016–2017 flu season CDC Press Release 2016.
  • Rudenko LG, Slepushkin AN, Monto AS, Kendal AP, Grigorieva EP, Burtseva EP, Rekstin AR, Beljaev AL, Bragina VE, Cox N, et al. Efficacy Of Live Attenuated And Inactivated Influenza Vaccines In Schoolchildren And Their Unvaccinated Contacts In Novgorod, Russia. J Infect Dis 1993; 168:881-7; PMID:8376833; http://dx.doi.org/10.1093/infdis/168.4.881
  • Elveback LR, Fox JP, Ackerman E, Langworthy A, Boyd M, Gatewood L. An Influenza Simulation Model For Immunization Studies. Am J Epidemiol 1976; 103:152-65; PMID:814808
  • Damm O, Eichner M, Rose MA, Knuf M, Wutzler P, Liese JG, Kruger H, Greiner W. Public health impact and cost-effectiveness of intranasal live attenuated influenza vaccination of children in Germany. Eur J Health Econ 2015; 16:471-88; PMID:24859492; http://dx.doi.org/10.1007/s10198-014-0586-4
  • Meeyai A, Praditsitthikorn N, Kotirum S, Kulpeng W, Putthasri W, Cooper BS, Teerawattananon Y. Seasonal Influenza Vaccination for Children in Thailand: A Cost-Effectiveness Analysis. Plos Medicine 2015; 12:e1001829; PMID:26011712; http://dx.doi.org/10.1371/journal.pmed.1001829
  • SNBL. Nasal Flu vaccine using μco™ System. 2015.
  • Tepper SJ, Cady RK, Silberstein S, Messina J, Mahmoud RA, Djupesland PG, Shin P, Siffert J. AVP-825 Breath-Powered Intranasal Delivery System Containing 22 mg Sumatriptan Powder vs 100 mg Oral Sumatriptan in the Acute Treatment of Migraines (The COMPASS Study): A Comparative Randomized Clinical Trial Across Multiple Attacks. Headache 2015; 55:621-35; PMID:25941016; http://dx.doi.org/10.1111/head.12583
  • Cady R. A novel intranasal breath-powered delivery system for sumatriptan: a review of technology and clinical application of the investigational product AVP-825 in the treatment of migraine. Expert Opinion on Drug Delivery 2015; 12:1565-77; PMID:26119828; http://dx.doi.org/10.1517/17425247.2015.1060959
  • Tepper SJ. Clinical Implications for Breath-Powered Powder Sumatriptan Intranasal Treatment. Headache 2013; 53:1341-9; PMID:23809006; http://dx.doi.org/10.1111/head.12166
  • Kurve. KUrve ViaNase Elecetronic Nebulizer. Kurve Technology Inc., www.kurvetech.com. [accessed on August 2016]
  • Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, et al. Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment A Pilot Clinical Trial. Arch Neurol 2012; 69:29-38; PMID:21911655; http://dx.doi.org/10.1001/archneurol.2011.233
  • Smith A, Perelman M, Hinchcliffe M. Chitosan: A promising safe and immune-enhancing adjuvant for intranasal vaccines. Human vaccines & immunotherapeutics 2014; 10:797-807; PMID:24346613; http://dx.doi.org/10.4161/hv.27449
  • Le Grand R, Dereuddre-Bosquet N, Dispinseri S, Gosse L, Desjardins D, Shen XY, Tolazzi M, Ochsenbauer C, Saidi H, Tomaras G, et al. Superior Efficacy of a Human Immunodeficiency Virus Vaccine Combined with Antiretroviral Prevention in Simian-Human Immunodeficiency Virus-Challenged Nonhuman Primates. J Virol 2016; 90:5315-28; PMID:27009957; http://dx.doi.org/10.1128/JVI.00230-16
  • Lebre F, Borchard G, Faneca H, Pedroso de Lima MC, Borges O. Intranasal Administration of Novel Chitosan Nanoparticle/DNA Complexes Induces Antibody Response to Hepatitis B Surface Antigen in Mice. Mol Pharm 2016; 13:472-82; PMID:26651533; http://dx.doi.org/10.1021/acs.molpharmaceut.5b00707
  • Pawar D, Mangal S, Goswami R, Jaganathan KS. Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: Effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Eur J Pharm Biopharm 2013; 85:550-9; PMID:23831265; http://dx.doi.org/10.1016/j.ejpb.2013.06.017
  • Khatri K, Goyal AK, Gupta PN, Mishra N, Mehta A, Vyas SP. Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine 2008; 26:2225-33; PMID:18396362; http://dx.doi.org/10.1016/j.vaccine.2008.02.058
  • Pan L, Zhang Z, Lv J, Zhou P, Hu W, Fang Y, Chen H, Liu X, Shao J, Zhao F, et al. Induction of mucosal immune responses and protection of cattle against direct-contact challenge by intranasal delivery with foot-and-mouth disease virus antigen mediated by nanoparticles. Int J Nanomedicine 2014; 9:5603-18; PMID:25506214; http://dx.doi.org/10.2147/IJN.S72318
  • Grassin-Delyle S, Buenestado A, Naline E, Faisy C, Blouquit-Laye S, Couderc LJ, Le Guen M, Fischler M, Devillier P. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol Ther 2012; 134:366-79; PMID:22465159; http://dx.doi.org/10.1016/j.pharmthera.2012.03.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.