2,157
Views
43
CrossRef citations to date
0
Altmetric
Commentary

Targeting iNOS to increase efficacy of immunotherapies

, & ORCID Icon
Pages 1105-1108 | Received 15 Dec 2016, Accepted 21 Dec 2016, Published online: 07 Mar 2017

References

  • Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med 2016; 14:73; PMID:27151159; http://dx.doi.org/10.1186/s12916-016-0623-510.1186/s12916-016-0623-5
  • Hughes PE, Caenepeel S, Wu LC. Targeted Therapy and checkpoint immunotherapy combinations for the treatment of cancer. Trend Immunol 2016; 37:462-76; PMID:27216414; http://dx.doi.org/10.1016/j.it.2016.04.01010.1016/j.it.2016.04.010
  • Gubin MM, Artyomov MN, Mardis ER, Schreiber RD. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Investigat 2015; 125:3413-21; PMID:26258412; http://dx.doi.org/10.1172/JCI8000810.1172/JCI80008
  • Bailey P, Chang DK, Forget MA, Lucas FA, Alvarez HA, Haymaker C, Chattopadhyay C, Kim SH, Ekmekcioglu S, Grimm EA, et al. Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Sci Rep 2016; 6:35848; PMID:27762323; http://dx.doi.org/10.1038/srep3584810.1038/srep35848
  • Granados-Principal S, Liu Y, Guevara ML, Blanco E, Choi DS, Qian W, Patel T, Rodriguez AA, Cusimano J, Weiss HL, et al. Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer. Breast Cancer Res 2015; 17:25; PMID:25849745; http://dx.doi.org/10.1186/s13058-015-0527-x10.1186/s13058-015-0527-x
  • Cianchi F, Cortesini C, Fantappiè O, Messerini L, Schiavone N, Vannacci A, Nistri S, Sardi I, Baroni G, Marzocca C, et al. Inducible nitric oxide synthase expression in human colorectal cancer: correlation with tumor angiogenesis. Am J Pathol 2003; 162:793-801; PMID:12598314; http://dx.doi.org/10.1016/S0002-9440(10)63876-X10.1016/S0002-9440(10)63876-X
  • Grimm EA, Ellerhorst J, Tang CH, Ekmekcioglu S. Constitutive intracellular production of iNOS and NO in human melanoma: possible role in regulation of growth and resistance to apoptosis. Nitric Oxide 2008; 19:133-7; PMID:18472017; http://dx.doi.org/10.1016/j.niox.2008.04.00910.1016/j.niox.2008.04.009
  • Ekmekcioglu S, Ellerhorst JA, Prieto VG, Johnson MM, Broemeling LD, Grimm EA. Tumor iNOS predicts poor survival for stage III melanoma patients. Inter J Cancer 2006; 119:861-6; PMID:16557582; http://dx.doi.org/10.1002/ijc.2176710.1002/ijc.21767
  • Bogdan C, Rollinghoff M, Diefenbach A. The role of nitric oxide in innate immunity. Immunol Rev 2000; 173:17-26; PMID:10719664; http://dx.doi.org/10.1034/j.1600-065X.2000.917307.x10.1034/j.1600-065X.2000.917307.x
  • Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol 2015; 6:334-43; PMID:26335399; http://dx.doi.org/10.1016/j.redox.2015.08.00910.1016/j.redox.2015.08.009
  • Wang J, He P, Gaida M, Yang S, Schetter AJ, Gaedcke J, Ghadimi BM, Ried T, Yfantis H, Lee D, et al. Inducible nitric oxide synthase enhances disease aggressiveness in pancreatic cancer. Oncotarget 2016; 7:52993-3004; PMID:27367029; http://dx.doi.org/10.18632/oncotarget.10323
  • Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9:162-74; PMID:19197294; http://dx.doi.org/10.1038/nri250610.1038/nri2506
  • Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 2013; 138:105-15; PMID:23216602; http://dx.doi.org/10.1111/imm.1203610.1111/imm.12036
  • Jayaraman P, Parikh F, Lopez-Rivera E, Hailemichael Y, Clark A, Ma G, Cannan D, Ramacher M, Kato M, Overwijk WW, et al. Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release. J Immunol 2012; 188:5365-76; http://dx.doi.org/10.4049/jimmunol.110355310.4049/jimmunol.1103553
  • Ito H, Ando T, Seishima M. Inhibition of iNOS activity enhances the anti-tumor effects of alpha-galactosylceramide in established murine cancer model. Oncotarget 2015; 6:41863-74; PMID:26496031
  • Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 2010; 70:68-77; PMID:20028852; http://dx.doi.org/10.1158/0008-5472.CAN-09-258710.1158/0008-5472.CAN-09-2587
  • Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 2008; 68:5439-49; PMID:18593947; http://dx.doi.org/10.1158/0008-5472.CAN-07-662110.1158/0008-5472.CAN-07-6621
  • Jayaraman P, Alfarano MG, Svider PF, Parikh F, Lu G, Kidwai S, Xiong H, Sikora AG. iNOS expression in CD4+ T cells limits Treg induction by repressing TGFbeta1: combined iNOS inhibition and Treg depletion unmask endogenous antitumor immunity. Clin Cancer Res 2014; 20:6439-51; PMID:25278453; http://dx.doi.org/10.1158/1078-0432.CCR-13-340910.1158/1078-0432.CCR-13-3409
  • Scheffel MJ, Scurti G, Simms P, Garrett-Mayer E, Mehrotra S, Nishimura MI, Voelkel-Johnson C. Efficacy of adoptive T-cell therapy is improved by treatment with the antioxidant N-acetyl cysteine, which limits activation-induced T-cell death. Cancer Res 2016; 76:6006-16; PMID:27742673; http://dx.doi.org/10.1158/0008-5472.CAN-16-058710.1158/0008-5472.CAN-16-0587
  • Majano PL, Medina J, Zubía I, Sunyer L, Lara-Pezzi E, Maldonado-Rodríguez A, López-Cabrera M, Moreno-Otero R. N-Acetyl-cysteine modulates inducible nitric oxide synthase gene expression in human hepatocytes. J Hepatol 2004; 40:632-7; PMID:15030979; http://dx.doi.org/10.1016/j.jhep.2003.12.00910.1016/j.jhep.2003.12.009
  • Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141:39-51; PMID:20371344; http://dx.doi.org/10.1016/j.cell.2010.03.01410.1016/j.cell.2010.03.014
  • Varol C, Mildner A, Jung S. Macrophages: development and tissue specialization. Annu Rev Immunol 2015; 33:643-75; PMID:25861979; http://dx.doi.org/10.1146/annurev-immunol-032414-11222010.1146/annurev-immunol-032414-112220
  • Lu G, Zhang R, Geng S, Peng L, Jayaraman P, Chen C, Xu F, Yang J, Li Q, Zheng H, et al. Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization. Nat Communicat 2015; 6:6676; PMID:25813085; http://dx.doi.org/10.1038/ncomms767610.1038/ncomms7676
  • Ito H, Ando T, Ogiso H, Arioka Y, Seishima M. Inhibition of induced nitric oxide synthase enhances the anti-tumor effects on cancer immunotherapy using TLR7 agonist in mice. Cancer Immunol Immunoth 2015; 64:429-36; PMID:25567751; http://dx.doi.org/10.1007/s00262-014-1644-610.1007/s00262-014-1644-6
  • Mao Y, Eissler N, Blanc KL, Johnsen JI, Kogner P, Kiessling R. Targeting suppressive myeloid cells potentiates checkpoint inhibitors to control spontaneous neuroblastoma. Clin Cancer Res 2016; 22:3849-59; PMID:26957560; http://dx.doi.org/10.1158/1078-0432.CCR-15-191210.1158/1078-0432.CCR-15-1912
  • De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH, Budhu S, Ghosh A, Pink M, Tchaicha J, et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature 2016; 539:443-7; PMID:27828943; http://dx.doi.org/10.1038/nature2055410.1038/nature20554
  • Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, Wang-Gillam A, Goedegebuure SP, Linehan DC, DeNardo DG. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 2014; 74:5057-69; PMID:25082815; http://dx.doi.org/10.1158/0008-5472.CAN-13-372310.1158/0008-5472.CAN-13-3723
  • Green KA, Wang L, Noelle RJ, Green WR. Selective involvement of the checkpoint regulator VISTA in suppression of B-cell, but not T-cell, responsiveness by monocytic myeloid-derived suppressor cells from mice infected with an immunodeficiency-causing retrovirus. J Virol 2015; 89:9693-8; PMID:26157131; http://dx.doi.org/10.1128/JVI.00888-1510.1128/JVI.00888-15