1,067
Views
10
CrossRef citations to date
0
Altmetric
Research Papers

Harnessing benefit from targeting tumor associated carbohydrate antigens

, , , &

References

  • Colozza M, de Azambuja E, Cardoso F, Bernard C, Piccart MJ. Breast cancer: achievements in adjuvant systemic therapies in the pre-genomic era. Oncologist 2006; 11:111-25; PMID:16476832; http://dx.doi.org/10.1634/theoncologist.11-2-111
  • Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol 2007; 608:1-22; PMID:17993229; http://dx.doi.org/10.1007/978-0-387-74039-3_1
  • Autier P, Hery C, Haukka J, Boniol M, Byrnes G. Advanced breast cancer and breast cancer mortality in randomized controlled trials on mammography screening. J Clin Oncol 2009; 27:5919-23. Epub 2009 Nov 2; PMID:19884547; http://dx.doi.org/10.1200/JCO.2009.22.7041
  • Clay TM, Osada T, Hartman ZC, Hobeika A, Devi G, Morse MA, Lyerly HK. Polyclonal immune responses to antigens associated with cancer signaling pathways and new strategies to enhance cancer vaccines. Immunol Res 2011; 49:235-47; PMID:21136201; http://dx.doi.org/10.1007/s12026-010-8186-6
  • Perez-Herrero E, Fernandez-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93:52-79. Epub Mar 23; PMID:25813885; http://dx.doi.org/10.1016/j.ejpb.2015.03.018
  • Fischer U, Schulze-Osthoff K. New approaches and therapeutics targeting apoptosis in disease. Pharmacol Rev 2005; 57:187-215; PMID:15914467; http://dx.doi.org/10.1124/pr.57.2.6
  • Berg EL, Kunkel EJ, Hytopoulos E. Biological complexity and drug discovery: a practical systems biology approach. Syst Biol (Stevenage) 2005; 152:201-6; PMID:16986261; http://dx.doi.org/10.1049/ip-syb:20050036
  • Jones KL, Buzdar AU. Evolving novel anti-HER2 strategies. Lancet Oncol 2009; 10:1179-87; PMID:19959074; http://dx.doi.org/10.1016/S1470-2045(09)70315-8
  • Ferreira AF, de Oliveira GL, Tognon R, Collassanti MD, Zanichelli MA, Hamerschlak N, de Souza AM, Covas DT, Kashima S, de Castro FA. Apoptosis-related gene expression profile in chronic myeloid leukemia patients after imatinib mesylate and dasatinib therapy. Acta Haematol 2015; 133:354-64. Epub 2015 Feb 17; PMID:25721555; http://dx.doi.org/10.1159/000369446
  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344:783-92; PMID:11248153; http://dx.doi.org/10.1056/NEJM200103153441101
  • Torti D, Trusolino L. Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med 2011; 3:623-36. Epub 2011 Sep 23; PMID:21953712; http://dx.doi.org/10.1002/emmm.201100176
  • Weinstein IB, Joe AK. Mechanisms of disease: Oncogene addiction–a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 2006; 3:448-57; PMID:16894390; http://dx.doi.org/10.1038/ncponc0558
  • Topol EJ. Individualized medicine from prewomb to tomb. Cell 2014; 157:241-53; PMID:24679539; http://dx.doi.org/10.1016/j.cell.2014.02.012
  • Kitano H. Systems biology: a brief overview. Science 2002; 295:1662-4; PMID:11872829; http://dx.doi.org/10.1126/science.1069492
  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004; 32:D277-80; PMID:14681412; http://dx.doi.org/10.1093/nar/gkh063
  • Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001; 411:355-65; PMID:11357143; http://dx.doi.org/10.1038/35077225
  • Mao YJ, Li HH, Li JF, Shen JS. [Signal transduction by protein tyrosine kinases and antitumor agents]. Yao Xue Xue Bao 2008; 43:323-34; PMID:18664191
  • Brent R. Genomic biology. Cell 2000; 100:169-83; PMID:10647941; http://dx.doi.org/10.1016/S0092-8674(00)81693-1
  • Zhang P. The cell cycle and development: redundant roles of cell cycle regulators. Curr Opin Cell Biol 1999; 11:655-62; PMID:10600701; http://dx.doi.org/10.1016/S0955-0674(99)00032-0
  • Shaheen RM, Tseng WW, Davis DW, Liu W, Reinmuth N, Vellagas R, Wieczorek AA, Ogura Y, McConkey DJ, Drazan KE, et al. Tyrosine kinase inhibition of multiple angiogenic growth factor receptors improves survival in mice bearing colon cancer liver metastases by inhibition of endothelial cell survival mechanisms. Cancer Res 2001; 61:1464-8; PMID:11245452
  • Hoekman K. SU6668, a multitargeted angiogenesis inhibitor. Cancer J 2001; 7:S134-8; PMID:11779084
  • Yau T, Dan X, Ng CC, Ng TB. Lectins with potential for anti-cancer therapy. Molecules 2015; 20:3791-810; PMID:25730388; http://dx.doi.org/10.3390/molecules20033791
  • Peng Y, Kowalewski R, Kim S, Elkon KB. The role of IgM antibodies in the recognition and clearance of apoptotic cells. Mol Immunol 2005; 42:781-7. Epub 2005 Jan 16; PMID:15829266; http://dx.doi.org/10.1016/j.molimm.2004.07.045
  • Varambally S, Bar-Dayan Y, Bayry J, Lacroix-Desmazes S, Horn M, Sorel M, Bar-Dayan Y, Ruberti G, Kazatchkine MD, Kaveri SV. Natural human polyreactive IgM induce apoptosis of lymphoid cell lines and human peripheral blood mononuclear cells. Int Immunol 2004; 16:517-24; PMID:14978025; http://dx.doi.org/10.1093/intimm/dxh053
  • Vollmers HP, Brandlein S. Natural antibodies and cancer. N Biotechnol 2009; 25:294-8. Epub Apr 11; PMID:19442595; http://dx.doi.org/10.1016/j.nbt.2009.03.016
  • Taniguchi K, Nishiura H, Yamamoto T. Requirement of the acquired immune system in successful cancer chemotherapy with cis-diamminedichloroplatinum (II) in a syngeneic mouse tumor transplantation model. J Immunother 2011; 34:480-9; PMID:21654518; http://dx.doi.org/10.1097/CJI.0b013e31821e7662
  • Garg AD, Dudek-Peric AM, Romano E, Agostinis P. Immunogenic cell death. Int J Dev Biol 2015; 59:131-40; PMID:26374534; http://dx.doi.org/10.1387/ijdb.150061pa
  • Fucikova J, Moserova I, Urbanova L, Bezu L, Kepp O, Cremer I, Salek C, Strnad P, Kroemer G, Galluzzi L, et al. Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer. Front Immunol 2015; 6:402. eCollection 2015; PMID:26300886; http://dx.doi.org/10.3389/fimmu.2015.00402
  • Lorusso G, Ruegg C. New insights into the mechanisms of organ-specific breast cancer metastasis. Semin Cancer Biol 2012; 22:226-33. Epub Apr 5; PMID:22504658; http://dx.doi.org/10.1016/j.semcancer.2012.03.007
  • Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 2012; 12:237-51; PMID:22437869; http://dx.doi.org/10.1038/nrc3237
  • Huang Y, Goel S, Duda DG, Fukumura D, Jain RK. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res 2013; 73:2943-8. Epub 2013 Feb 25; PMID:23440426; http://dx.doi.org/10.1158/0008-5472.CAN-12-4354
  • Emens LA, Middleton G. The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res 2015; 3:436-43; PMID:25941355; http://dx.doi.org/10.1158/2326-6066.CIR-15-0064
  • Nijhof IS, Groen RW, Noort WA, van Kessel B, de Jong-Korlaar R, Bakker J, van Bueren JJ, Parren PW, Lokhorst HM, van de Donk NW, et al. Preclinical evidence for the therapeutic potential of CD38-targeted immuno-chemotherapy in multiple myeloma patients refractory to lenalidomide and bortezomib. Clin Cancer Res 2015; 21:2802-10. Epub 2014 Nov 14; PMID:25398450; http://dx.doi.org/10.1158/1078-0432.CCR-14-1813
  • van der Veer MS, de Weers M, van Kessel B, Bakker JM, Wittebol S, Parren PW, Lokhorst HM, Mutis T. Towards effective immunotherapy of myeloma: enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumab. Haematologica 2011; 96:284-90. Epub 2010 Nov 25; PMID:21109694; http://dx.doi.org/10.3324/haematol.2010.030759
  • Kim JE, Jin DH, Lee WJ, Hur D, Wu TC, Kim D. Bortezomib enhances antigen-specific cytotoxic T cell responses against immune-resistant cancer cells generated by STAT3-ablated dendritic cells. Pharmacol Res 2013; 71:23-33. Epub Feb 18; PMID:23428347; http://dx.doi.org/10.1016/j.phrs.2013.02.001
  • Lichtenstein RG, Rabinovich GA. Glycobiology of cell death: when glycans and lectins govern cell fate. Cell Death Differ 2013; 20:976-86. Epub May 24; PMID:23703323; http://dx.doi.org/10.1038/cdd.2013.50
  • Ma J, Hart GW. O-GlcNAc profiling: from proteins to proteomes. Clin Proteomics 2014; 11:8; PMID:24593906; http://dx.doi.org/10.1186/1559-0275-11-8
  • Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 2011; 80:825-58; PMID:21391816; http://dx.doi.org/10.1146/annurev-biochem-060608-102511
  • Chaiyawat P, Netsirisawan P, Svasti J, Champattanachai V. Aberrant O-GlcNAcylated proteins: new perspectives in breast and colorectal cancer. Front Endocrinol (Lausanne) 2014; 5:193. eCollection 2014; PMID:25426101
  • Hirano K, Matsuda A, Shirai T, Furukawa K. Expression of LacdiNAc groups on N-glycans among human tumors is complex. Biomed Res Int 2014; 2014:981627. Epub 2014 May 18; PMID:25003135; http://dx.doi.org/10.1155/2014/981627
  • Kim M, Rao MV, Tweardy DJ, Prakash M, Galili U, Gorelik E. Lectin-induced apoptosis of tumour cells. Glycobiology 1993; 3:447-53; PMID:8286857; http://dx.doi.org/10.1093/glycob/3.5.447
  • Lyu SY, Choi SH, Park WB. Korean mistletoe lectin-induced apoptosis in hepatocarcinoma cells is associated with inhibition of telomerase via mitochondrial controlled pathway independent of p53. Arch Pharm Res 2002; 25:93-101; PMID:11885700; http://dx.doi.org/10.1007/BF02975269
  • Choi SH, Lyu SY, Park WB. Mistletoe lectin induces apoptosis and telomerase inhibition in human A253 cancer cells through dephosphorylation of Akt. Arch Pharm Res 2004; 27:68-76; PMID:14969342; http://dx.doi.org/10.1007/BF02980049
  • Valenzuela HF, Pace KE, Cabrera PV, White R, Porvari K, Kaija H, Vihko P, Baum LG. O-glycosylation regulates LNCaP prostate cancer cell susceptibility to apoptosis induced by galectin-1. Cancer Res 2007; 67:6155-62; PMID:17616672; http://dx.doi.org/10.1158/0008-5472.CAN-05-4431
  • Zheng T, Jiang H, Gros M, del Amo DS, Sundaram S, Lauvau G, Marlow F, Liu Y, Stanley P, Wu P. Tracking N-acetyllactosamine on cell-surface glycans in vivo. Angew Chem Int Ed Engl 2011; 50:4113-8. Epub 2011 Mar 29; PMID:21472942; http://dx.doi.org/10.1002/anie.201100265
  • Kuwabara I, Kuwabara Y, Yang RY, Schuler M, Green DR, Zuraw BL, Hsu DK, Liu FT. Galectin-7 (PIG1) exhibits pro-apoptotic function through JNK activation and mitochondrial cytochrome c release. J Biol Chem 2002; 277:3487-97. Epub 2001 Nov 8; PMID:11706006; http://dx.doi.org/10.1074/jbc.M109360200
  • Hadari YR, Arbel-Goren R, Levy Y, Amsterdam A, Alon R, Zakut R, Zick Y. Galectin-8 binding to integrins inhibits cell adhesion and induces apoptosis. J Cell Sci 2000; 113:2385-97; PMID:10852818
  • Hughes PE, Renshaw MW, Pfaff M, Forsyth J, Keivens VM, Schwartz MA, Ginsberg MH. Suppression of integrin activation: a novel function of a Ras/Raf-initiated MAP kinase pathway. Cell 1997; 88:521-30; PMID:9038343; http://dx.doi.org/10.1016/S0092-8674(00)81892-9
  • Norambuena A, Metz C, Vicuna L, Silva A, Pardo E, Oyanadel C, Massardo L, González A, Soza A. Galectin-8 induces apoptosis in Jurkat T cells by phosphatidic acid-mediated ERK1/2 activation supported by protein kinase A down-regulation. J Biol Chem 2009; 284:12670-9. Epub 2009 Mar 9; PMID:19276072; http://dx.doi.org/10.1074/jbc.M808949200
  • Kashio Y, Nakamura K, Abedin MJ, Seki M, Nishi N, Yoshida N, Nakamura T, Hirashima M. Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway. J Immunol 2003; 170:3631-6; PMID:12646627; http://dx.doi.org/10.4049/jimmunol.170.7.3631
  • Kuroda J, Yamamoto M, Nagoshi H, Kobayashi T, Sasaki N, Shimura Y, Horiike S, Kimura S, Yamauchi A, Hirashima M, et al. Targeting activating transcription factor 3 by Galectin-9 induces apoptosis and overcomes various types of treatment resistance in chronic myelogenous leukemia. Mol Cancer Res 2010; 8:994-1001. Epub 2010 Jun 22; PMID:20571063; http://dx.doi.org/10.1158/1541-7786.MCR-10-0040
  • Brandlein S, Pohle T, Ruoff N, Wozniak E, Muller-Hermelink HK, Vollmers HP. Natural IgM antibodies and immunosurveillance mechanisms against epithelial cancer cells in humans. Cancer Res 2003; 63:7995-8005; PMID:14633732
  • Monzavi-Karbassi B, Artaud C, Jousheghany F, Hennings L, Carcel-Trullols J, Shaaf S, Korourian S, Kieber-Emmons T. Reduction of spontaneous metastases through induction of carbohydrate cross-reactive apoptotic antibodies. J Immunol 2005; 174:7057-65; PMID:15905549; http://dx.doi.org/10.4049/jimmunol.174.11.7057
  • Makhoul I, Hutchins L, Emanuel PD, Pennisi A, Siegel E, Jousheghany F, et al. Moving a carbohydrate mimetic peptide into the clinic: clinical response of a breast cancer patient after mimotope-based immunotherapy. Hum Vaccin Immunother 2014; 11:1; PMID:25483551
  • Aixinjueluo W, Furukawa K, Zhang Q, Hamamura K, Tokuda N, Yoshida S, Ueda R, Furukawa K. Mechanisms for the apoptosis of small cell lung cancer cells induced by anti-GD2 monoclonal antibodies: roles of anoikis. J Biol Chem 2005; 280:29828-36. Epub 2005 May 26; PMID:15923178; http://dx.doi.org/10.1074/jbc.M414041200
  • Yang X, Wu L, Duan X, Cui L, Luo J, Li G. Adenovirus carrying gene encoding Haliotis discus discus sialic acid binding lectin induces cancer cell apoptosis. Mar Drugs 2014; 12:3994-4004; PMID:24983642; http://dx.doi.org/10.3390/md12073994
  • Hong CE, Park AK, Lyu SY. Synergistic anticancer effects of lectin and doxorubicin in breast cancer cells. Mol Cell Biochem 2014; 394:225-35. Epub 2014 May 31; PMID:24878989; http://dx.doi.org/10.1007/s11010-014-2099-y
  • Kieber-Emmons T, Luo P, Qiu J, Chang TY, O I, Blaszczyk-Thurin M, Steplewski Z. Vaccination with carbohydrate peptide mimotopes promotes anti-tumor responses. Nat Biotech 1999; 17:660-5; http://dx.doi.org/10.1038/10870
  • Qiu J, Luo P, Wasmund K, Steplewski Z, Kieber-Emmons T. Towards the development of peptide mimotopes of carbohydrate antigens as cancer vaccines [In Process Citation]. Hybridoma 1999; 18:103-12; PMID:10211797; http://dx.doi.org/10.1089/hyb.1999.18.103
  • Monzavi-Karbassi B, Hennings LJ, Artaud C, Liu T, Jousheghany F, Pashov A, Murali R, Hutchins LF, Kieber-Emmons T. Preclinical studies of carbohydrate mimetic peptide vaccines for breast cancer and melanoma. Vaccine 2007; 25:3022-31. Epub 2007 Jan 26; PMID:17303294; http://dx.doi.org/10.1016/j.vaccine.2007.01.072
  • Monzavi-Karbassi B, Shamloo S, Kieber-Emmons M, Jousheghany F, Luo P, Lin KY, Cunto-Amesty G, Weiner DB, Kieber-Emmons T. Priming characteristics of peptide mimotopes of carbohydrate antigens. Vaccine 2003; 21:753-60; PMID:12531355; http://dx.doi.org/10.1016/S0264-410X(02)00703-X
  • Wondimu A, Zhang T, Kieber-Emmons T, Gimotty P, Sproesser K, Somasundaram R, Ferrone S, Tsao CY, Herlyn D. Peptides mimicking GD2 ganglioside elicit cellular, humoral and tumor-protective immune responses in mice. Cancer Immunol Immunother 2008; 57:1079-89; PMID:18157673; http://dx.doi.org/10.1007/s00262-007-0439-4
  • Pashov A, Monzavi-Karbassi B, Kieber-Emmons T. Immune surveillance and immunotherapy: lessons from carbohydrate mimotopes. Vaccine 2009; 27:3405-15. Epub Feb 5; PMID:19200843; http://dx.doi.org/10.1016/j.vaccine.2009.01.074
  • Engels CC, Ruberta F, de Kruijf EM, van Pelt GW, Smit VT, Liefers GJ, Matsushima T, Shibayama M, Ishihara H, van de Velde CJ, et al. The prognostic value of apoptotic and proliferative markers in breast cancer. Breast Cancer Res Treat 2013; 142:323-39. Epub 2013 Nov 6; PMID:24194179; http://dx.doi.org/10.1007/s10549-013-2748-y
  • Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med 2009; 360:790-800; PMID:19228622; http://dx.doi.org/10.1056/NEJMra0801289
  • Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, Haibe-Kains B, Desmedt C, Ignatiadis M, Sengstag T, Schütz F, et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 2008; 10:R65. Epub 008 Jul 28; PMID:18662380; http://dx.doi.org/10.1186/bcr2124
  • Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 2003; 100:8418-23. Epub 2003 Jun 26; PMID:12829800; http://dx.doi.org/10.1073/pnas.0932692100
  • Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol 2005; 23:7350-60. Epub 2005 Sep 6.
  • Uchida N, Suda T, Ishiguro K. Effect of chemotherapy for luminal a breast cancer. Yonago Acta Med 2013; 56:51-6. Epub 2013 Jul 12; PMID:24031152
  • Schott AF, Hayes DF. Defining the benefits of neoadjuvant chemotherapy for breast cancer. J Clin Oncol 2012; 30:1747-9. Epub 2012 Apr 16; PMID:22508810; http://dx.doi.org/10.1200/JCO.2011.41.3161
  • Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, Bonnefoi H, Cameron D, Gianni L, Valagussa P, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 2014; 384:164-72. Epub 2014 Feb 14; PMID:24529560; http://dx.doi.org/10.1016/S0140-6736(13)62422-8
  • Bonnefoi H, Jacot W, Saghatchian M, Moldovan C, Venat-Bouvet L, Zaman K, Matos E, Petit T, Bodmer A, Quenel-Tueux N, et al. Neoadjuvant treatment with docetaxel plus lapatinib, trastuzumab, or both followed by an anthracycline-based chemotherapy in HER2-positive breast cancer: results of the randomised phase II EORTC 10054 study. Ann Oncol 2015; 26:325-32. Epub 2014 Dec 1; PMID:25467016; http://dx.doi.org/10.1093/annonc/mdu551
  • Mieog JS, van der Hage JA, van de Velde CJ. Neoadjuvant chemotherapy for operable breast cancer. Br J Surg 2007; 94:1189-200; PMID:17701939; http://dx.doi.org/10.1002/bjs.5894
  • Prowell TM, Pazdur R. Pathological complete response and accelerated drug approval in early breast cancer. N Engl J Med 2012; 366:2438-41. Epub 2012 May 30; PMID:22646508; http://dx.doi.org/10.1056/NEJMp1205737
  • Jackisch C, Kim SB, Semiglazov V, Melichar B, Pivot X, Hillenbach C, Stroyakovskiy D, Lum BL, Elliott R, Weber HA, et al. Subcutaneous versus intravenous formulation of trastuzumab for HER2-positive early breast cancer: updated results from the phase III HannaH study. Ann Oncol 2015; 26:320-5. Epub 2014 Nov 17; PMID:25403587; http://dx.doi.org/10.1093/annonc/mdu524
  • Amiri-Kordestani L, Wedam S, Zhang L, Tang S, Tilley A, Ibrahim A, Justice R, Pazdur R, Cortazar P. First FDA approval of neoadjuvant therapy for breast cancer: pertuzumab for the treatment of patients with HER2-positive breast cancer. Clin Cancer Res 2014; 20:5359-64. Epub 2014 Sep 9; PMID:25204553; http://dx.doi.org/10.1158/1078-0432.CCR-14-1268
  • Overmoyer B. Treatment with adjuvant endocrine therapy for early-stage breast cancer: is it forever? J Clin Oncol 2015; 33:823-8. Epub 5 Jan 26; PMID:25624431; http://dx.doi.org/10.1200/JCO.2014.58.2361
  • Cazet A, Julien S, Bobowski M, Burchell J, Delannoy P. Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res 2010; 12:204. Epub 010 Jun 8; PMID:20550729; http://dx.doi.org/10.1186/bcr2577
  • Schultz MJ, Swindall AF, Bellis SL. Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev 2012; 31:501-18; PMID:22699311; http://dx.doi.org/10.1007/s10555-012-9359-7
  • Tatsuta T, Sugawara S, Takahashi K, Ogawa Y, Hosono M, Nitta K. Cancer-selective induction of apoptosis by leczyme. Front Oncol 2014; 4:139. eCollection 2014; PMID:24926439; http://dx.doi.org/10.3389/fonc.2014.00139
  • Tseng HH, Yu YL, Chen YL, Chen JH, Chou CL, Kuo TY, Wang JJ, Lee MC, Huang TH, Chen MH, et al. RC-RNase-induced cell death in estrogen receptor positive breast tumors through down-regulation of Bcl-2 and estrogen receptor. Oncol Rep 2011; 25:849-53. Epub 2010 Dec 20; PMID:21174060; http://dx.doi.org/10.3892/or.2010.1097
  • Dole M, Nunez G, Merchant AK, Maybaum J, Rode CK, Bloch CA, Castle VP. Bcl-2 inhibits chemotherapy-induced apoptosis in neuroblastoma. Cancer Res 1994; 54:3253-9; PMID:8205548
  • Yoshino T, Shiina H, Urakami S, Kikuno N, Yoneda T, Shigeno K, Igawa M. Bcl-2 expression as a predictive marker of hormone-refractory prostate cancer treated with taxane-based chemotherapy. Clin Cancer Res 2006; 12:6116-24; PMID:17062688; http://dx.doi.org/10.1158/1078-0432.CCR-06-0147

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.