2,298
Views
34
CrossRef citations to date
0
Altmetric
Reviews

Pro-tumor activities of macrophages in the progression of melanoma

ORCID Icon, , , &
Pages 1556-1562 | Received 09 Jan 2017, Accepted 23 Mar 2017, Published online: 17 May 2017

References

  • Organization WH. World cancer report, 2014. WHO Report. Geneva: WHO; 2014; Chapter 5.14.
  • committee; Cme. China's guidelines of diagnosis and treatment of melanoma (2011). Chinese Clin Oncol 2012(02):159-71.
  • Han Y, Qu X. The current situations and advances in cutaneous malignant melanoma. Modern J Integrated Traditional Chinese Western Med 2015(30):3416-20.
  • Kaufmann SH. Elie Metchnikoff's and Paul Ehrlich's impact on infection biology. Microbes Infect 2008; 10(14):1417-9; PMID:18824243; https://doi.org/10.1016/j.micinf.2008.08.012
  • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8(12):958-69; PMID:19029990; https://doi.org/10.1038/nri2448
  • Brigati C, Noonan DM, Albini A, Benelli R. Tumors and inflammatory infiltrates: friends or foes? Clin Exp Metastasis 2002; 19(3):247-58; PMID:12067205; https://doi.org/10.1023/A:1015587423262
  • Kozłowska K, Cichorek M. Heterogeneity of peritoneal macrophages in hamsters-bearing transplantable melanomas in relation to their transglutaminase. Folia Histochem Cytobiol 1990; 29(4):141-7.
  • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000; 164(12):6166-73; PMID:10843666; https://doi.org/10.4049/jimmunol.164.12.6166
  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014; 41(1):14-20; PMID:25035950; https://doi.org/10.1016/j.immuni.2014.06.008
  • Biswas SK, Allavena P, Mantovani A. Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Seminars in Immunopathology 2013; 35(5): 585-600.
  • Wang H, Zhang L, Yang L, Liu C, Zhang Q, Zhang L. Targeting macrophage anti-tumor activity to suppress melanoma progression. Oncotarget 2017; 8(11):18486-96.
  • Mantovani A, Allavena P, Sozzani S, Vecchi A, Locati M, Sica A. Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Semin Cancer Biol 2004; 14(3): 155-60.
  • Koga M, Kai H, Egami K, Murohara T, Ikeda A, Yasuoka S, Egashira K, Matsuishi T, Kai M, Kataoka Y. Mutant MCP-1 therapy inhibits tumor angiogenesis and growth of malignant melanoma in mice. Biochem Biophys Res Commun 2008; 365(2):279-84; PMID:17991428; https://doi.org/10.1016/j.bbrc.2007.10.182
  • Gazzaniga S, Bravo AI, Guglielmotti A, van Rooijen N, Maschi F, Vecchi A, Mantovani A, Mordoh J, Wainstok R. Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol 2007; 127(8):2031-41; PMID:17460736; https://doi.org/10.1038/sj.jid.5700827
  • Eubank T, Bailey M, Gross A, Sumner L, Marsh C, Glaser R, Yang E. 7. CCL2 down-regulation from macrophages by stress-induced β-adrenergic receptor activation is protective in a model of malignant melanoma. Brain Behavior Immunity 2011; 25:S180-1; https://doi.org/10.1016/j.bbi.2011.07.010
  • Nesbit M, Schaider H, Miller TH, Herlyn M. Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol 2001; 166(11):6483-90; PMID:11359798; https://doi.org/10.4049/jimmunol.166.11.6483
  • Salven P, Lymboussaki A, Heikkila P, Jaaskela-Saari H, Enholm B, Aase K, von Euler G, Eriksson U, Alitalo K, Joensuu H. Vascular endothelial growth factors VEGF-B and VEGF-C are expressed in human tumors. Am J Pathol 1998; 153(1):103-8; PMID:9665470; https://doi.org/10.1016/S0002-9440(10)65550-2
  • Skobe M, Hamberg LM, Hawighorst T, Schirner M, Wolf GL, Alitalo K, Detmar M. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol 2001; 159(3):893-903; PMID:11549582; https://doi.org/10.1016/S0002-9440(10)61765-8
  • Marquardt H, Todaro GJ. Human transforming growth factor. Production by a melanoma cell line, purification, and initial characterization. J Biol Chem 1982; 257(9):5220-5.
  • Lázár-Molnár E, Hegyesi H, Tóth S, Falus A. Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine 2000; 12(6):547-54; PMID:10843728; https://doi.org/10.1006/cyto.1999.0614
  • Krasagakis K, Krüger‐Krasagakes S, Fimmel S, Eberle J, Thölke D, Von Der Ohe M, Mansmann U, Orfanos CE. Desensitization of melanoma cells to autocrine TGF‐β isoforms. J Cell Physiol 1999; 178(2):179-87; PMID:10048582; https://doi.org/10.1002/(SICI)1097-4652(199902)178:2%3c179::AID-JCP7%3e3.0.CO;2-5
  • Reed JA, McNutt NS, Prieto VG, Albino AP. Expression of transforming growth factor-beta 2 in malignant melanoma correlates with the depth of tumor invasion. Implications for tumor progression. Am J Pathol 1994; 145(1):97; PMID:8030760
  • Van Belle P, Rodeck U, Nuamah I, Halpern AC, Elder DE. Melanoma-associated expression of transforming growth factor-beta isoforms. Am J Pathol 1996; 148(6):1887; PMID:8669474
  • Moretti S, Pinzi C, Berti E, Spallanzani A, Chiarugi A, Boddi V, Reali U, Giannotti B. In situ expression of transforming growth factor [beta] is associated with melanoma progression and correlates with Ki67, HLA-DR and [beta] 3 integrin expression. Melanoma Res 1997; 7(4):313-21; PMID:9293481; https://doi.org/10.1097/00008390-199708000-00006
  • Hazelbag S, Fleuren GJ, Baelde J, Schuuring E, Kenter GG, Gorter A. Cytokine profile of cervical cancer cells. Gynecologic Oncol 2001; 83(2):235-43; PMID:11606077; https://doi.org/10.1006/gyno.2001.6378
  • Ortegel JW, Staren ED, Faber L, Warren WH, Braun DP. Modulation of tumor-infiltrating lymphocyte cytolytic activity against human non-small cell lung cancer. Lung Cancer 2002; 36(1):17-25; PMID:11891029; https://doi.org/10.1016/S0169-5002(01)00472-X
  • Gratchev A, Kzhyshkowska J, Utikal J, Goerdt S. Interleukin‐4 and dexamethasone counterregulate extracellular matrix remodelling and phagocytosis in type‐2 macrophages. Scandinavian J Immunol 2005; 61(1):10-7; PMID:15644118; https://doi.org/10.1111/j.0300-9475.2005.01524.x
  • Gratchev A, Kzhyshkowska J, Kannookadan S, Ochsenreiter M, Popova A, Yu X, Mamidi S, Stonehouse-Usselmann E, Muller-Molinet I, Gooi L. Activation of a TGF-β-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-β receptor II. J Immunol 2008; 180(10):6553-65; PMID:18453574; https://doi.org/10.4049/jimmunol.180.10.6553
  • Vodovotz Y, Bogdan C, Paik J, Xie Q, Nathan C. Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta. J Exp Med 1993; 178(2):605-13; PMID:7688028; https://doi.org/10.1084/jem.178.2.605
  • Berking C, Takemoto R, Schaider H, Showe L, Satyamoorthy K, Robbins P, Herlyn M. Transforming growth factor-β1 increases survival of human melanoma through stroma remodeling. Cancer Res 2001; 61(22):8306-16; PMID:11719464
  • Ma D, Niederkorn J. Transforming growth factor-beta down-regulates major histocompatibility complex class I antigen expression and increases the susceptibility of uveal melanoma cells to natural killer cell-mediated cytolysis. Immunology 1995; 86(2):263; PMID:7490128
  • de Waal Malefyt R, Haanen J, Spits H, Roncarolo M-G, Te Velde A, Figdor C, Johnson K, Kastelein R, Yssel H, De Vries JE. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 1991; 174(4):915-24; PMID:1655948; https://doi.org/10.1084/jem.174.4.915
  • Ding L, Linsley P, Huang L, Germain R, Shevach E. IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J Immunol 1993; 151(3):1224-34; PMID:7687627
  • Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, O'Garra A. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol 1991; 146(10):3444-51; PMID:1827484
  • Chen Q, Daniel V, Maher DW, Hersey P. Production of IL‐10 by melanoma cells: Examination of its role in immunosuppression mediated by melanoma. Int J Cancer 1994; 56(5):755-60; PMID:8314354; https://doi.org/10.1002/ijc.2910560524
  • Liu C-Y, Xu J-Y, Shi X-Y, Huang W, Ruan T-Y, Xie P, Ding J-L. M2-polarized tumor-associated macrophages promoted epithelial–mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Invest 2013; 93(7):844-54; PMID:23752129; https://doi.org/10.1038/labinvest.2013.69
  • Wimalawansa SJ. Amylin, calcitonin gene-related peptide, calcitonin, and adrenomedullin: a peptide superfamily. Crit Rev™ Neurobiol 1997; 11(2–3):167-239
  • Zudaire E, Martınez A, Cuttitta F. Adrenomedullin and cancer. Regulatory Peptides 2003; 112(1):175-83; PMID:12667640; https://doi.org/10.1016/S0167-0115(03)00037-5
  • Nikitenko L, Fox S, Kehoe S, Rees M, Bicknell R. Adrenomedullin and tumour angiogenesis. Br J Cancer 2006; 94(1):1-7; PMID:16251875; https://doi.org/10.1038/sj.bjc.6602832
  • MartÍnez A, Elsasser TH, Muro-Cacho C, Moody TW, Miller MJ, Macri CJ, Cuttitta F. Expression of adrenomedullin and its receptor in normal and malignant human skin: a potential pluripotent role in the integument. Endocrinology 1997; 138(12):5597-604; https://doi.org/10.1210/endo.138.12.5622
  • Chen P, Huang Y, Bong R, Ding Y, Song N, Wang X, Song X, Luo Y. Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner. Clin Cancer Res 2011; 17(23):7230-9; PMID:21994414; https://doi.org/10.1158/1078-0432.CCR-11-1354
  • den Breems NY, Eftimie R. The re-polarisation of M2 and M1 macrophages and its role on cancer outcomes. J Theoretical Biol 2016; 390:23-39; PMID:26551154; https://doi.org/10.1016/j.jtbi.2015.10.034
  • Sadej R, Spychala J, Skladanowski AC. Expression of ecto-5′-nucleotidase (eN, CD73) in cell lines from various stages of human melanoma. Melanoma Res 2006; 16(3):213-22; PMID:16718268; https://doi.org/10.1097/01.cmr.0000215030.69823.11
  • Koszalka P, Golunska M, Stanislawowski M, Urban A, Stasilojc G, Majewski M, Wierzbicki P, Skladanowski AC, Bigda J. CD73 on B16F10 melanoma cells in CD73-deficient mice promotes tumor growth, angiogenesis, neovascularization, macrophage infiltration and metastasis. Int J Biochem Cell Biol 2015; 69:1-10; PMID:26545615; https://doi.org/10.1016/j.biocel.2015.10.003
  • Yegutkin GG, Marttila-Ichihara F, Karikoski M, Niemela J, Laurila JP, Elima K, Jalkanen S, Salmi M. Altered purinergic signaling in CD73-deficient mice inhibits tumor progression. Eur J Immunol 2011; 41(5):1231-41; PMID:21469131; https://doi.org/10.1002/eji.201041292
  • Eljaszewicz A, Wiese M, Helmin-Basa A, Jankowski M, Gackowska L, Kubiszewska I, Kaszewski W, Michalkiewicz J, Zegarski W. Collaborating with the enemy: function of macrophages in the development of neoplastic disease. Mediators Inflamm 2013; 2013:831387; PMID:23576856; https://doi.org/10.1155/2013/831387
  • Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010; 11(10):889-96; PMID:20856220; https://doi.org/10.1038/ni.1937
  • Massi D, Marconi C, Franchi A, Bianchini F, Paglierani M, Ketabchi S, Miracco C, Santucci M, Calorini L. Arginine metabolism in tumor-associated macrophages in cutaneous malignant melanoma: evidence from human and experimental tumors. Hum Pathol 2007; 38(10):1516-25; PMID:17640716; https://doi.org/10.1016/j.humpath.2007.02.018
  • Gal A, Tapmeier T, Balathasan L, Muschel R. 304 Myeloid response and macrophage polarization in mouse melanoma lung metastasis. European J Cancer Supplements 2010; 8(5):78-9; https://doi.org/10.1016/S1359-6349(10)71108-3
  • Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L. Tumour-released exosomes and their implications in cancer immunity. Cell Death Different 2008; 15(1):80-8; https://doi.org/10.1038/sj.cdd.4402237
  • Hood JL, San RS, Wickline SA. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 2011; 71(11):3792-801; PMID:21478294; https://doi.org/10.1158/0008-5472.CAN-10-4455
  • Marton A, Vizler C, Kusz E, Temesfoi V, Szathmary Z, Nagy K, Szegletes Z, Varo G, Siklos L, Katona RL. Melanoma cell-derived exosomes alter macrophage and dendritic cell functions in vitro. Immunol Letters 2012; 148(1):34-8; PMID:22898052; https://doi.org/10.1016/j.imlet.2012.07.006
  • Savage ND, de Boer T, Walburg KV, Joosten SA, van Meijgaarden K, Geluk A, Ottenhoff TH. Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFβ-1. J Immunol 2008; 181(3):2220-6; PMID:18641362; https://doi.org/10.4049/jimmunol.181.3.2220
  • Kimpfler S, Sevko A, Ring S, Falk C, Osen W, Frank K, Kato M, Mahnke K, Schadendorf D, Umansky V. Skin melanoma development in ret transgenic mice despite the depletion of CD25+ Foxp3+ regulatory T cells in lymphoid organs. J Immunol 2009; 183(10):6330-7; PMID:19841169; https://doi.org/10.4049/jimmunol.0900609
  • Taniguchi K, Petersson M, Höglund P, Kiessling R, Klein G, Kärre K. Interferon gamma induces lung colonization by intravenously inoculated B16 melanoma cells in parallel with enhanced expression of class I major histocompatibility complex antigens. Proc Natl Acad Sci 1987; 84(10):3405-9; https://doi.org/10.1073/pnas.84.10.3405
  • Garbe C, Krasagakis K, Zouboulis CC, Schröder K, Krüger S, Stadler R, Orfanos CE. Antitumor activities of interferon alpha, beta, and gamma and their combinations on human melanoma cells in vitro: changes of proliferation, melanin synthesis, and immunophenotype. J Invest Dermatol 1990; 95:231S-7S; https://doi.org/10.1111/1523-1747.ep12875837
  • Porter GA, Abdalla J, Lu M, Smith S, Montgomery D, Grimm E, Ross MI, Mansfield PF, Gershenwald JE, Lee JE. Significance of plasma cytokine levels in melanoma patients with histologically negative sentinel lymph nodes. Ann Surg Oncol 2001; 8(2):116-22; PMID:11258775; https://doi.org/10.1007/s10434-001-0116-3
  • Meyskens FL, Kopecky KJ, Taylor CW, Noyes RD, Tuthill RJ, Hersh EM, Feun LG, Doroshow JH, Flaherty LE, Sondak VK. Randomized trial of adjuvant human interferon gamma versus observation in high-risk cutaneous melanoma: a Southwest Oncology Group study. J Natl Cancer Inst 1995; 87(22):1710-3; PMID:7473820; https://doi.org/10.1093/jnci/87.22.1710
  • Zaidi MR, Davis S, Noonan FP, Graff-Cherry C, Hawley TS, Walker RL, Feigenbaum L, Fuchs E, Lyakh L, Young HA. Interferon-[ggr] links ultraviolet radiation to melanomagenesis in mice. Nature 2011; 469(7331):548-53; PMID:21248750; https://doi.org/10.1038/nature09666
  • Tanese K, Hashimoto Y, Berkova Z, Wang Y, Samaniego F, Lee JE, Ekmekcioglu S, Grimm EA. Cell Surface CD74–MIF Interactions Drive Melanoma survival in response to Interferon-γ. J Invest Dermatol 2015; 135(11):2901.
  • Okamura A, Rakugi H, Ohishi M, Yanagitani Y, Takiuchi S, Moriguchi K, Fennessy PA, Higaki J, Ogihara T. Upregulation of renin‐angiotensin system during differentiation of monocytes to macrophages. J Hypertens 1999; 17(4):537-45; PMID:10404956; https://doi.org/10.1097/00004872-199917040-00012
  • Cortez-Retamozo V, Etzrodt M, Newton A, Ryan R, Pucci F, Sio SW, Kuswanto W, Rauch PJ, Chudnovskiy A, Iwamoto Y. Angiotensin II drives the production of tumor-promoting macrophages. Immunity 2013; 38(2):296-308; PMID:23333075; https://doi.org/10.1016/j.immuni.2012.10.015
  • Shen XZ, Li P, Weiss D, Fuchs S, Xiao HD, Adams JA, Williams IR, Capecchi MR, Taylor WR, Bernstein KE. Mice with enhanced macrophage angiotensin-converting enzyme are resistant to melanoma. Am J Pathol 2007; 170(6):2122-34; PMID:17525278; https://doi.org/10.2353/ajpath.2007.061205
  • Egami K, Murohara T, Shimada T, Sasaki K-i, Shintani S, Sugaya T, Ishii M, Akagi T, Ikeda H, Matsuishi T. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J Clin Invest 2003; 112(1):67-75; PMID:12840060; https://doi.org/10.1172/JCI16645
  • Bianchini F, Massi D, Marconi C, Franchi A, Baroni G, Santucci M, Mannini A, Mugnai G, Calorini L. Expression of cyclo-oxygenase-2 in macrophages associated with cutaneous melanoma at different stages of progression. Prostaglandins Other Lipid Mediat 2007; 83(4):320-8; https://doi.org/10.1016/j.prostaglandins.2007.03.003
  • Gross O, Thomas CJ, Guarda G, Tschopp J. The inflammasome: an integrated view. Immunol Rev 2011; 243(1):136-51; PMID:21884173; https://doi.org/10.1111/j.1600-065X.2011.01046.x
  • Elaraj D, Weinreich D, Varghese S, Puhlmann M, Hewitt S, Carroll N, Feldman E, Turner E, Alexander H. The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin Cancer Res 2006; 12(4):1088-96; PMID:16489061; https://doi.org/10.1158/1078-0432.CCR-05-1603
  • Gehrke S, Otsuka A, Huber R, Meier B, Kistowska M, Fenini G, Cheng P, Dummer R, Kerl K, Contassot E. Metastatic melanoma cell lines do not secrete IL-1β but promote IL-1β production from macrophages. J Dermatol Sci 2014; 74(2):167-9; PMID:24581590; https://doi.org/10.1016/j.jdermsci.2014.01.006
  • Björkdahl O, Wingren A, Hedhund G, Ohlsson L, Dohlsten M. Gene transfer of a hybrid interleukin-1 beta gene to B16 mouse melanoma recruits leucocyte subsets and reduces tumour growth in vivo. Cancer Immunol Immunother 1997; 44(5):273-81; PMID:9247562; https://doi.org/10.1007/s002620050383
  • Pawelek JM. Fusion of bone marrow-derived cells with cancer cells: metastasis as a secondary disease in cancer. Chin J Cancer 2014; 33(3):133-9; PMID:24589183; https://doi.org/10.5732/cjc.013.10243
  • Rachkovsky M, Sodi S, Chakraborty A, Avissar Y, Bolognia J, McNiff JM, Platt J, Bermudes D, Pawelek J. Melanoma × macrophage hybrids with enhanced metastatic potential. Clin Exp Metastasis 1998; 16(4):299-312; https://doi.org/10.1023/A:1006557228604
  • Rachkovsky M, Pawelek J. Acquired Melanocyte Stimulating Hormone-inducible Chemotaxis following Macrophage Fusion with Cloudman S91 Melanoma cells. Cell Growth Differ 1999; 10(7):517-24.
  • Chakraborty AK, Pawelek J. Beta1,6-branched oligosaccharides regulate melanin content and motility in macrophage-melanoma fusion hybrids. Melanoma Res 2007; 17(1):9-16; PMID:17235237; https://doi.org/10.1097/CMR.0b013e3280114f34
  • Handerson T, Camp R, Harigopal M, Rimm D, Pawelek J. Beta1,6-branched oligosaccharides are increased in lymph node metastases and predict poor outcome in breast carcinoma. Clin Cancer Res 2005; 11(8):2969-73; PMID:15837749; https://doi.org/10.1158/1078-0432.CCR-04-2211