2,744
Views
36
CrossRef citations to date
0
Altmetric
Review

Plant-made vaccines and reagents for the One Health initiative

ORCID Icon

References

  • Jeggo M, Mackenzie JS. Defining the future of one health. Microbiol Spectrum. 2014;2:OH–0007. doi:10.1128/microbiolspec.OH-0007-2012. PMID:26082113
  • Monath TP. Vaccines against diseases transmitted from animals to humans: a one health paradigm. Vaccine. 2013;31:5321–38. doi:10.1016/j.vaccine.2013.09.029. PMID:24060567
  • Bengis RG, Frean J. Anthrax as an example of the one health concept. Rev Sci Tech. 2014;33:593–604. PMID:25707186
  • Cleaveland S, Lankester F, Townsend S, Lembo T, Hampson K. Rabies control and elimination: a test case for one health. Vet Rec. 2014;175:188–93. doi:10.1136/vr.g4996. PMID:25172649
  • Rosales-Mendoza S, Angulo C, Meza B. Food-grade organisms as vaccine biofactories and oral delivery vehicles. Trends Biotechnol. 2016;34:124–36. doi:10.1016/j.tibtech.2015.11.007. PMID:26708345
  • Topp E, Irwin R, McAllister T, Lessard M, Joensuu JJ, Kolotilin I, Conrad U, Stoger E, Mor T, Warzecha H, et al. The case for plant-made veterinary immunotherapeutics. Biotechnol Adv. 2016;34:597–604. doi:10.1016/j.biotechadv.2016.02.007. PMID:26875776
  • Merlin M, Pezzotti M, Avesani L. Edible plants for oral delivery of biopharmaceuticals. Br J Clin Pharmacol. 2017;83:71–81. doi:10.1111/bcp.12949. PMID:27037892
  • Steele JF, Peyret H, Saunders K, Castells-Graells R, Marsian J, Meshcheriakova Y, Lomonossoff GP. Synthetic plant virology for nanobiotechnology and nanomedicine. WIREs Nanomed Nanobiotechnol. 2017;9:e1447. doi:10.1002/wnan.1447. PMID:28078770
  • Rybicki EP. Plant-based vaccines against viruses. Virol J. 2014;11:205. doi:10.1186/s12985-014-0205-0. PMID:25465382
  • D'Aoust MA, Lavoie PO, Couture MM, Trepanier S, Guay JM, Dargis M, Mongrand S, Landry N, Ward BJ, Vezina LP. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J. 2008;6:930–40. doi:10.1111/j.1467-7652.2008.00384.x
  • Kahn RE, Ma W, Richt JA. Swine and influenza: a challenge to one health research. Curr Top Microbiol Immunol. 2014;385:205–18. doi:10.1007/82_2014_392
  • Leclerc D, Rivest M, Babin C, Lopez-Macias C, Savard P. A novel M2e based flu vaccine formulation for dogs. PLoS One. 2013;8:e77084. doi:10.1371/journal.pone.0077084. PMID:24098576
  • Mortimer E, Maclean JM, Mbewana S, Buys A, Williamson AL, Hitzeroth, II, Rybicki EP. Setting up a platform for plant-based influenza virus vaccine production in South Africa. BMC Biotechnol. 2012;12:14. doi:10.1186/1472-6750-12-14. PMID:22536810
  • Mbewana S, Mortimer E, Pera FF, Hitzeroth, II, Rybicki EP. Production of H5N1 Influenza Virus Matrix Protein 2 Ectodomain Protein Bodies in Tobacco Plants and in Insect Cells as a Candidate Universal Influenza Vaccine. Front Bioeng Biotechnol. 2015;3:197. doi:10.3389/fbioe.2015.00197. PMID:26697423
  • Mackenzie JS, Field HE, Guyatt KJ. Managing emerging diseases borne by fruit bats (flying foxes), with particular reference to henipaviruses and Australian bat lyssavirus. J Applied Microbiol. 2003;94:59S–69S
  • Ashraf S, Singh PK, Yadav DK, Shahnawaz M, Mishra S, Sawant SV, Tuli R. High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. J Biotechnol. 2005;119:1–14. doi:10.1016/j.jbiotec.2005.06.009. PMID:16038998
  • Loza-Rubio E, Rojas-Anaya E, Lopez J, Olivera-Flores MT, Gomez-Lim M, Tapia-Perez G. Induction of a protective immune response to rabies virus in sheep after oral immunization with transgenic maize, expressing the rabies virus glycoprotein. Vaccine. 2012;30:5551–6. doi:10.1016/j.vaccine.2012.06.039. PMID:22749836
  • D'Aoust M-A, Lavoie P-O, Vezina L-P, Couture M in https://www.google.com/patents/EP2718428A4?cl=en, Vol. EP2718428 A4. (ed. Organisation EP) (Europe; 2012)
  • Medicago. Medicago Announces Expansion of Pipeline with the Development of a Vaccine for Rabies. 2012 [ accessed April 12th 2017]. http://www.prnewswire.com/news-releases/medicago-announces-expansion-of-pipeline-with-the-development-of-a-vaccine-for-rabies-137659043.html
  • van Dolleweerd CJ, Teh AY, Banyard AC, Both L, Lotter-Stark HC, Tsekoa T, Phahladira B, Shumba W, Chakauya E, Sabeta CT, et al. Engineering, expression in transgenic plants and characterisation of E559, a rabies virus-neutralising monoclonal antibody. J Infect Dis. 2014;210:200–8. doi:10.1093/infdis/jiu085. PMID:24511101
  • CSIR. Genetically modified tobacco plants deliver a cheaper, better rabies antidote. Pretoria: Council for Scientific and Industrial Res. 2016 [ accessed June 15 2017]. http://www.techtransfer.csir.co.za/2013/01/genetically-modified-tobacco-plants-deliver-a-cheaper-better-rabies-antidote/
  • Kahn RE, Clouser DF, Richt JA. Emerging infections: a tribute to the one medicine, one health concept. Zoonoses Public Health. 2009;56:407–28. doi:10.1111/j.1863-2378.2009.01255.x. PMID:19486315
  • Souza MJ. One health: zoonoses in the exotic animal practice. Vet Clin North Am Exot Anim Pract. 2011;14:421–426. doi:10.1016/j.cvex.2011.05.007. PMID:21872779
  • Meseko CA, Egbetade AO, Fagbo S. Ebola virus disease control in West Africa: an ecological, one health approach. Pan Afr Med J. 2015;21:6. doi:10.11604/pamj.2015.21.6.6587. PMID:26401200
  • Henao-Restrepo AM, Camacho A, Longini IM, Watson CH, Edmunds WJ, Egger M, Carroll MW, Dean NE, Diatta I, Doumbia M, et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet. 2017;389:505–518. doi:10.1016/S0140-6736(16)32621-6. PMID:28017403
  • Wilson JA, Bray M, Bakken R, Hart MK. Vaccine potential of Ebola virus VP24, VP30, VP35, and VP40 proteins. Virology. 2001;286:384–390. doi:10.1006/viro.2001.1012. PMID:11485406
  • Phoolcharoen W, Bhoo SH, Lai H, Ma J, Arntzen CJ, Chen Q, Mason HS. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant Biotechnol J. 2011;9:807–16. doi:10.1111/j.1467-7652.2011.00593.x. PMID:21281425
  • Monreal-Escalante E, Ramos-Vega AA, Salazar-González JA, Bañuelos-Hernández B, Angulo C, Rosales-Mendoza S. Expression of the VP40 antigen from the Zaire ebolavirus in tobacco plants. Planta. 2017;246(1):123–32, http://link.springer.com/article/10.1007%2Fs00425-017-2689-51-10. doi:10.1007/s00425-017-2689-5
  • Madara JJ, Han Z, Ruthel G, Freedman BD, Harty RN. The multifunctional Ebola virus VP40 matrix protein is a promising therapeutic target. Future Virol. 2015;10:537–46. doi:10.2217/fvl.15.6. PMID:26120351
  • LeafBio http://mappbio.com/leafbio-announces-conclusion-of-zmapp-clinical-trial/ 2016
  • Budzianowski J. Tobacco against Ebola virus disease. Przegl Lek. 2015;72:567–71. PMID:26946569
  • Bukbuk DN, Dowall SD, Lewandowski K, Bosworth A, Baba SS, Varghese A, Watson RJ, Bell A, Atkinson B, Hewson R. Serological and Virological Evidence of Crimean-Congo Haemorrhagic Fever Virus Circulation in the Human Population of Borno State, Northeastern Nigeria. PLoS Negl Trop Dis. 2016;10:e0005126. doi:10.1371/journal.pntd.0005126. PMID:27926935
  • Ghiasi SM, Salmanian AH, Chinikar S, Zakeri S. Mice orally immunized with a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus. Clin Vaccine Immunol. 2011;18:2031–7. doi:10.1128/CVI.05352-11. PMID:22012978
  • Boshra H, Lorenzo G, Busquets N, Brun A. Rift valley fever: recent insights into pathogenesis and prevention. J Virol. 2011;85:6098–105. doi:10.1128/JVI.02641-10. PMID:21450816
  • Kortekaas J. One Health approach to Rift Valley fever vaccine development. Antiviral Res. 2014;106:24–32. doi:10.1016/j.antiviral.2014.03.008. PMID:24681125
  • Bird BH, Maartens LH, Campbell S, Erasmus BJ, Erickson BR, Dodd KA, Spiropoulou CF, Cannon D, Drew CP, Knust B, et al. Rift Valley fever virus vaccine lacking the NSs and NSm genes is safe, nonteratogenic, and confers protection from viremia, pyrexia, and abortion following challenge in adult and pregnant sheep. J Virol. 2011;85:12901–9. doi:10.1128/JVI.06046-11. PMID:21976656
  • Kalbina I, Lagerqvist N, Moiane B, Ahlm C, Andersson S, Strid A, Falk KI. Arabidopsis thaliana plants expressing Rift Valley fever virus antigens: mice exhibit systemic immune responses as the result of oral administration of the transgenic plants. Protein Expr Purif. 2016;127:61–7. doi:10.1016/j.pep.2016.07.003. PMID:27402440
  • Baudin M, Jumaa AM, Jomma HJ, Karsany MS, Bucht G, Naslund J, Ahlm C, Evander M, Mohamed N. Association of Rift Valley fever virus infection with miscarriage in Sudanese women: a cross-sectional study. Lancet Glob Health. 2016;4:e864–71. doi:10.1016/S2214-109X(16)30176-0. PMID:27692776
  • Zumla A, Dar O, Kock R, Muturi M, Ntoumi F, Kaleebu P, Eusebio M, Mfinanga S, Bates M, Mwaba P, et al. Taking forward a 'One Health' approach for turning the tide against the Middle East respiratory syndrome coronavirus and other zoonotic pathogens with epidemic potential. Int J Infect Dis. 2016;47:5–9. doi:10.1016/j.ijid.2016.06.012. PMID:27321961
  • He J, Peng L, Lai H, Hurtado J, Stahnke J, Chen Q. A plant-produced antigen elicits potent immune responses against West Nile virus in mice. Biomed Res Int. 2014;2014:952865. doi:10.1155/2014/952865. PMID:24804264
  • Lai H, Engle M, Fuchs A, Keller T, Johnson S, Gorlatov S, Diamond MS, Chen Q. Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice. Proc Natl Acad Sci U S A. 2010;107:2419–24. doi:10.1073/pnas.0914503107. PMID:20133644
  • He J, Lai H, Brock C, Chen Q. A novel system for rapid and cost-effective production of detection and diagnostic reagents of West Nile virus in plants. J Biomed Biotechnol. 2012;2012:106783. doi:10.1155/2012/106783. PMID:22187532
  • Aguiar M, Stollenwerk N, Halstead SB. The Impact of the Newly Licensed Dengue Vaccine in Endemic Countries. PLoS Negl Trop Dis. 2016;10:e0005179. doi:10.1371/journal.pntd.0005179. PMID:28002420
  • Valdes I, Marcos E, Suzarte E, Perez Y, Brown E, Lazo L, Cobas K, Yaugel M, Rodriguez Y, Gil L, et al. A dose-response study in mice of a tetravalent vaccine candidate composed of domain III-capsid proteins from dengue viruses. Arch Virol. 2017;162(8):2247–56; http://www.ncbi.nlm.nih.gov/pubmed/28393307 doi:10.1007/s00705-017-3360-y. PMID:28393307
  • Kim TG, Kim MY, Yang MS. Cholera toxin B subunit-domain III of dengue virus envelope glycoprotein E fusion protein production in transgenic plants. Protein Expr Purif. 2010;74:236–41. doi:10.1016/j.pep.2010.07.013. PMID:20691270
  • Kim TG, Kim MY, Huy NX, Kim SH, Yang MS. M cell-targeting ligand and consensus dengue virus envelope protein domain III fusion protein production in transgenic rice calli. Mol Biotechnol. 2013;54:880–7. doi:10.1007/s12033-012-9637-1. PMID:23250723
  • Kim MY, Reljic R, Kilbourne J, Ceballos-Olvera I, Yang MS, Reyes-del Valle J, Mason HS. Novel vaccination approach for dengue infection based on recombinant immune complex universal platform. Vaccine. 2015;33:1830–8. doi:10.1016/j.vaccine.2015.02.036. PMID:25728317
  • Gottschamel J, Lossl A, Ruf S, Wang Y, Skaugen M, Bock R, Clarke JL. Production of dengue virus envelope protein domain III-based antigens in tobacco chloroplasts using inducible and constitutive expression systems. Plant Mol Biol. 2016;91:497–512. doi:10.1007/s11103-016-0484-5. PMID:27116001
  • Dent M, Hurtado J, Paul AM, Sun H, Lai H, Yang M, Esqueda A, Bai F, Steinkellner H, Chen Q. Plant-produced anti-dengue virus monoclonal antibodies exhibit reduced antibody-dependent enhancement of infection activity. J Gen Virol. 2016;97:3280–90. doi:10.1099/jgv.0.000635. PMID:27902333
  • CDC. Yellow Fever Vaccine. Centers for Disease Control adn Prevention; 2015 [ accessed https://www.cdc.gov/yellowfever/vaccine/
  • iBio. iBio Expands Commercial Collaboration With Bio-Manguinhos and Fraunhofer. 2014 [ accessed http://www.marketwired.com/press-release/ibio-expands-commercial-collaboration-with-bio-manguinhos-and-fraunhofer-nyse-mkt-ibio-1921259.html