5,113
Views
59
CrossRef citations to date
0
Altmetric
Reviews

The current status, challenges, and future developments of new tuberculosis vaccines

, &
Pages 1697-1716 | Received 28 Dec 2017, Accepted 25 Mar 2018, Published online: 14 May 2018

References

  • Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45:1176–82. doi:10.1038/ng.2744. PMID:23995134
  • WHO. Global tuberculosis report 2017. Geneva: World Health Organization, 2017.
  • Prabowo SA, Groschel MI, Schmidt ED, Skrahina A, Mihaescu T, Hasturk S, Mitrofanov R, Pimkina E, Visontai I, de Jong B, et al. Targeting multidrug-resistant tuberculosis (MDR-TB) by therapeutic vaccines. Med Microbiol Immunol. 2013;202:95–104. doi:10.1007/s00430-012-0278-6. PMID:23143437
  • White AD, Sibley L, Dennis MJ, Gooch K, Betts G, Edwards N, Reyes-Sandoval A, Carroll MW, Williams A, Marsh PD, et al. Evaluation of the Safety and Immunogenicity of a Candidate Tuberculosis Vaccine, MVA85A, Delivered by Aerosol to the Lungs of Macaques. Clin Vaccine Immunol Cvi. 2013;20:663. doi:10.1128/CVI.00690-12.
  • Hussey G, Hawkridge T, Hanekom W. Childhood tuberculosis: old and new vaccines. Paediatr Respir Rev. 2007;8:148–54. doi:10.1016/j.prrv.2007.04.009. PMID:17574159
  • Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, Fineberg HV, Mosteller F. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. Jama. 1994;271:698–702. doi:10.1001/jama.1994.03510330076038. PMID:8309034
  • Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet. 1995;346:1339–45. doi:10.1016/S0140-6736(95)92348-9. PMID:7475776
  • Hokey DA, Ginsberg A. The current state of tuberculosis vaccines. Human vaccines Immunotherapeutics. 2013;9:2142–6. doi:10.4161/hv.25427.
  • Sharma SK, Katoch K, Sarin R, Balambal R, Kumar Jain N, Patel N, Murthy KJR, Singla N, Saha PK, Khanna A, et al. Efficacy and Safety of Mycobacterium indicus pranii as an adjunct therapy in Category II pulmonary tuberculosis in a randomized trial. Sci Rep. 2017;7:3354. doi:10.1038/s41598-017-03514-1. PMID:28611374
  • von Reyn CF, Mtei L, Arbeit RD, Waddell R, Cole B, Mackenzie T, Matee M, Bakari M, Tvaroha S, Adams LV, et al. Prevention of tuberculosis in Bacille Calmette-Guerin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS. 2010;24:675–85. doi:10.1097/QAD.0b013e3283350f1b. PMID:20118767
  • Da CA, Nogueira SV, Kipnis A, Junqueirakipnis AP. Recombinant BCG: Innovations on an Old Vaccine. Scope of BCG Strains and Strategies to Improve Long-Lasting Memory. Front Immunol. 2014;5:152. PMID:24778634
  • Hoft DF, Blazevic A, Selimovic A, Turan A, Tennant J, Abate G, Fulkerson J, Zak DE, Walker R, McClain B, et al. Safety and Immunogenicity of the Recombinant BCG Vaccine AERAS-422 in Healthy BCG-naive Adults: A Randomized, Active-controlled, First-in-human Phase 1 Trial. EBioMed. 2016;7:278–86. doi:10.1016/j.ebiom.2016.04.010. PMID:27322481
  • Lewis DJ, Huo Z, Barnett S, Kromann I, Giemza R, Galiza E, Woodrow M, Thierry-Carstensen B, Andersen P, Novicki D, et al. Transient facial nerve paralysis (Bell's palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PloS One. 2009;4:e6999. doi:10.1371/journal.pone.0006999. PMID:19756141
  • Russell DG. Who puts the tubercle in tuberculosis? Nat Rev Microbiol. 2007;5:39–47. doi:10.1038/nrmicro1538. PMID:17160001
  • Bhatt K, Salgame P. Host innate immune response to Mycobacterium tuberculosis. J Clin Immunol 2007; 27:347–62. doi:10.1007/s10875-007-9084-0. PMID:17364232
  • Tang J, Yam WC, Chen Z. Mycobacterium tuberculosis infection and vaccine development. Tuberculosis. 2016;98:30–41. doi:10.1016/j.tube.2016.02.005. PMID:27156616
  • Khan A, Jagannath C. Analysis of host-pathogen modulators of autophagy during Mycobacterium Tuberculosis infection and therapeutic repercussions. Int Rev Immunol. 2017:1–16.
  • Srivastava S, Ernst JD, Desvignes L. Beyond macrophages: the diversity of mononuclear cells in tuberculosis. Immunol Rev. 2014;262:179–92. doi:10.1111/imr.12217. PMID:25319335
  • Khan N, Pahari S, Vidyarthi A, Aqdas M, Agrewala JN. NOD-2 and TLR-4 Signaling Reinforces the Efficacy of Dendritic Cells and Reduces the Dose of TB Drugs against Mycobacterium tuberculosis. J Innate Immun. 2016;8:228–42. doi:10.1159/000439591. PMID:26613532
  • Hu S, He W, Du X, Yang J, Wen Q, Zhong XP, Ma L. IL-17 Production of Neutrophils Enhances Antibacteria Ability but Promotes Arthritis Development During Mycobacterium tuberculosis Infection. EBioMedicine. 2017;23:88–99. doi:10.1016/j.ebiom.2017.08.001. PMID:28821374
  • Junqueirakipnis AP, Kipnis A, Jamieson A, Juarrero MG, Diefenbach A, Raulet DH, Turner J, Orme IM. NK cells respond to pulmonary infection with Mycobacterium tuberculosis, but play a minimal role in protection. J Immunol. 2003;171:6039. doi:10.4049/jimmunol.171.11.6039.
  • Jaillon S, Galdiero MR, Del Prete D, Cassatella MA, Garlanda C, Mantovani A. Neutrophils in innate and adaptive immunity. Semin Immunopathol. 2013;35:377–94. doi:10.1007/s00281-013-0374-8. PMID:23553214
  • Hilda JN, Narasimhan M, Das SD. Neutrophils from pulmonary tuberculosis patients show augmented levels of chemokines MIP-1alpha, IL-8 and MCP-1 which further increase upon in vitro infection with mycobacterial strains. Hum Immunol. 2014;75:914–22. doi:10.1016/j.humimm.2014.06.020. PMID:24994463
  • Sugawara I, Yamada H, Mizuno S, Li CY, Nakayama T, Taniguchi M. Mycobacterial infection in natural killer T cell knockout mice. Tuberculosis. 2002;82:97. doi:10.1054/tube.2002.0331. PMID:12356461
  • Choreno Parra JA, Martinez Zuniga N, Jimenez Zamudio LA, Jimenez Alvarez LA, Salinas Lara C, Zuniga J. Memory of Natural Killer Cells: A New Chance against Mycobacterium tuberculosis? Front Immunol. 2017;8:967. doi:10.3389/fimmu.2017.00967. PMID:28855906
  • Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, O'Neill LA, Xavier RJ. Trained immunity: A program of innate immune memory in health and disease. Science. 2016;352:aaf1098. doi:10.1126/science.aaf1098. PMID:27102489
  • Arts RJW, Carvalho A, La Rocca C, Palma C, Rodrigues F, Silvestre R, Kleinnijenhuis J, Lachmandas E, Gonçalves LG, Belinha A, et al. Immunometabolic Pathways in BCG-Induced Trained Immunity. Cell Rep. 2016;17:2562–71. doi:10.1016/j.celrep.2016.11.011. PMID:27926861
  • Schaible UE, Linnemann L, Redinger N, Patin EC, Dallenga T. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity. Front Immunol. 2017;8:1755. doi:10.3389/fimmu.2017.01755. PMID:29312298
  • Mourik BC, Lubberts E, de Steenwinkel JEM, Ottenhoff THM, Leenen PJM. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol. 2017;8:294. doi:10.3389/fimmu.2017.00294. PMID:28424682
  • Gong W, Wang P, Xiong X, Jiao J, Yang X, Wen B. Chloroform-Methanol Residue of Coxiella burnetii Markedly Potentiated the Specific Immunoprotection Elicited by a Recombinant Protein Fragment rOmpB-4 Derived from Outer Membrane Protein B of Rickettsia rickettsii in C3H/HeN Mice. PloS one. 2015;10:e0124664. doi:10.1371/journal.pone.0124664. PMID:25909586
  • Gong W, Wang P, Xiong X, Jiao J, Yang X, Wen B. Enhanced protection against Rickettsia rickettsii infection in C3H/HeN mice by immunization with a combination of a recombinant adhesin rAdr2 and a protein fragment rOmpB-4 derived from outer membrane protein B. Vaccine. 2015;33:985–92. doi:10.1016/j.vaccine.2015.01.017. PMID:25597943
  • Gong W, Qi Y, Xiong X, Jiao J, Duan C, Wen B. Rickettsia rickettsii outer membrane protein YbgF induces protective immunity in C3H/HeN mice. Human vaccines & immunotherapeutics. 2015;11:642–9. doi:10.1080/21645515.2015.1011572.
  • Gong W, Xiong X, Qi Y, Jiao J, Duan C, Wen B. Identification of novel surface-exposed proteins of Rickettsia rickettsii by affinity purification and proteomics. PloS one. 2014;9:e100253. doi:10.1371/journal.pone.0100253. PMID:24950252
  • Gong W, Xiong X, Qi Y, Jiao J, Duan C, Wen B. Surface protein Adr2 of Rickettsia rickettsii induced protective immunity against Rocky Mountain spotted fever in C3H/HeN mice. Vaccine. 2014;32:2027–33. doi:10.1016/j.vaccine.2014.02.057. PMID:24582636
  • Liang Y, Zhang X, Xiao L, Bai X, Wang X, Yang Y, Zhang J, Song J, Liu Y, Li N, et al. Immunogenicity and therapeutic effects of pVAX1- rv1419 DNA from Mycobacterium tuberculosis. Current gene Ther. 2016;16:249–55. doi:10.2174/1566523216666161102170123. PMID:27809753
  • Wu X, Yang Y, Han Y, Zhang J, Liang Y, Li H, Li B, Wang L. Effect of recombinant Rv1009 protein on promoting the growth of Mycobacterium tuberculosis. J Appl Microbiol. 2008;105:1121–7. doi:10.1111/j.1365-2672.2008.03850.x. PMID:18843791
  • Wilkie ME, McShane H. TB vaccine development: where are we and why is it so difficult? Thorax. 2015;70:299–301. doi:10.1136/thoraxjnl-2014-205202. PMID:25432943
  • Herbst S, Schaible UE, Schneider BE. Interferon gamma activated macrophages kill mycobacteria by nitric oxide induced apoptosis. PloS One. 2011;6:e19105. doi:10.1371/journal.pone.0019105. PMID:21559306
  • Barber DL, Mayer-Barber KD, Feng CG, Sharpe AH, Sher A. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J Immunol (Baltimore, Md: 1950). 2011;186:1598–607. doi:10.4049/jimmunol.1003304. PMID:21172867
  • Ortega C, Fernández-A S, Carrillo JM, Romero P, Molina IJ, Moreno JC, Santamaría M. IL-17-producing CD8 + T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J Leukoc Biol. 2009;86:435–43. doi:10.1189/JLB.0109046. PMID:19487306
  • Prezzemolo T, Guggino G, La Manna MP, Di Liberto D, Dieli F, Caccamo N. Functional Signatures of Human CD4 and CD8 T Cell Responses to Mycobacterium tuberculosis. Front Immunol. 2014;5:180. doi:10.3389/fimmu.2014.00180. PMID:24795723
  • Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, Suda T, Sudo K, Nakae S, Iwakura Y, et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J Immunol (Baltimore, Md: 1950). 2007;178:3786–96. doi:10.4049/jimmunol.178.6.3786. PMID:17339477
  • Jurado JO, Pasquinelli V, Alvarez IB, Pena D, Rovetta AI, Tateosian NL, Romeo HE, Musella RM, Palmero D, Chuluyán HE, et al. IL-17 and IFN-gamma expression in lymphocytes from patients with active tuberculosis correlates with the severity of the disease. J Leukoc Biol. 2012;91:991–1002. doi:10.1189/jlb.1211619. PMID:22416258
  • Basile JI, Geffner LJ, Romero MM, Balboa L, Sabio YGC, Ritacco V, Ritacco V, García A, Cuffré M, Abbate E, et al. Outbreaks of mycobacterium tuberculosis MDR strains induce high IL-17 T-cell response in patients with MDR tuberculosis that is closely associated with high antigen load. J Infect Dis. 2011;204:1054–64. doi:10.1093/infdis/jir460. PMID:21881121
  • North RJ. Mice incapable of making IL‐4 or IL‐10 display normal resistance to infection with Mycobacterium tuberculosis. Clin Exp Immunol. 1998;113:55–8. doi:10.1046/j.1365-2249.1998.00636.x. PMID:9697983
  • Bhattacharya D, Dwivedi VP, Kumar S, Reddy MC, Van Kaer L, Moodley P, Das G. Simultaneous inhibition of T helper 2 and T regulatory cell differentiation by small molecules enhances Bacillus Calmette-Guerin vaccine efficacy against tuberculosis. J Biol Chem. 2014;289:33404–11. doi:10.1074/jbc.M114.600452. PMID:25315774
  • Jaron B, Maranghi E, Leclerc C, Majlessi L. Effect of attenuation of Treg during BCG immunization on anti-mycobacterial Th1 responses and protection against Mycobacterium tuberculosis. PloS one. 2008;3:e2833. doi:10.1371/journal.pone.0002833. PMID:18665224
  • Kumar S. Improving the efficacy of bacillus calmette guerin vaccine by concomitant inhibition of T regulatory and T helper 2 cells. Medical Microbiology and Infection Control. Durban: University of KwaZulu-Natal, 2015:87.
  • Lazarevic V, Flynn J. CD8+ T cells in tuberculosis. Am J Respir Crit Care Med. 2002;166:1116–21. doi:10.1164/rccm.2204027. PMID:12379557
  • Orme IM. The kinetics of emergence and loss of mediator T lymphocytes acquired in response to infection with Mycobacterium tuberculosis. J Immunol (Baltimore, Md: 1950). 1987;138:293–8. PMID:3097148
  • Stenger S, Mazzaccaro RJ, Uyemura K, Cho S, Barnes PF, Rosat JP, Sette A, Brenner MB, Porcelli SA, Bloom BR, et al. Differential effects of cytolytic T cell subsets on intracellular infection. Science. 1997;276:1684–7. doi:10.1126/science.276.5319.1684. PMID:9180075
  • Casadevall A, Pirofski LA. A reappraisal of humoral immunity based on mechanisms of antibody-mediated protection against intracellular pathogens. Adv Immunol. 2006;91:1–44. doi:10.1016/S0065-2776(06)91001-3. PMID:16938537
  • Jacobs AJ, Mongkolsapaya J, Screaton GR, McShane H, Wilkinson RJ. Antibodies and tuberculosis. Tuberculosis. 2016;101:102–13. doi:10.1016/j.tube.2016.08.001. PMID:27865379
  • Achkar JM, Chan J, Casadevall A. B cells and antibodies in the defense against Mycobacterium tuberculosis infection. Immunol Rev. 2015;264:167–81. doi:10.1111/imr.12276. PMID:25703559
  • Achkar JM, Casadevall A. Antibody-mediated immunity against tuberculosis: implications for vaccine development. Cell Host Microbe. 2013;13:250–62. doi:10.1016/j.chom.2013.02.009. PMID:23498951
  • Harriff MJ, Karamooz E, Burr A, Grant WF, Canfield ET, Sorensen ML, Moita LF, Lewinsohn DM. Endosomal MR1 Trafficking Plays a Key Role in Presentation of Mycobacterium tuberculosis Ligands to MAIT Cells. PLoS Pathog. 2016;12:e1005524. doi:10.1371/journal.ppat.1005524. PMID:27031111
  • Huang S. Targeting Innate-Like T Cells in Tuberculosis. Front Immunol 2016;7:594. doi:10.3389/fimmu.2016.00594. PMID:28066410
  • Jagusztyn-Krynicka EK, Roszczenko P, Grabowska A. Impact of proteomics on anti-Mycobacterium tuberculosis (MTB) vaccine development. Pol J Microbiol. 2009;58:281–7. PMID:20380137
  • Ohara N. Current status of tuberculosis and recombinant bacillus Calmette-Guérin vaccines. J Oral Biosci. 2012;54:92–5. doi:10.1016/j.job.2012.04.002.
  • Zhu B, Dockrell HM, Ottenhoff THM, Evans TG, Zhang Y. Tuberculosis vaccines: Opportunities and challenges. Respirology. 2018;23:359–68. doi:10.1111/resp.13245.
  • Marinova D, Gonzaloasensio J, Aguilo N, Martin C. Recent developments in tuberculosis vaccines. Expert Review of Vaccines. 2013;12:1431. doi:10.1586/14760584.2013.856765. PMID:24195481
  • Xie Q, Liu ER. Therapeutic efficacy and immunological effect of mycobacterium phlei F.U.36 (Utilins) on atopic dermatitis. J Clin Exp Med. 2010;2010:27–8.
  • Pang Y, Li M, Zhang JB, Yao B. [Effects of Mycobacterium phlei F.U.36 on regulatory T cells and TLR4 expression in asthmatic mice]. Zhongguo Dang Dai Er Ke Za Zhi. 2011;13:917–20. PMID:22099205
  • Yao B, Li M, Pang Y. [Effect of Mycobacterium phlei F.U.36 on balance of CD4(+)CD25(+) regulatory T cells and Th17 cells in asthmatic mice]. Zhongguo Dang Dai Er Ke Za Zhi. 2013;15:1018–22. PMID:24229602
  • Wang QY, Li J. Effect and observation of long-term effects of Mycobacterium Phlei F. U. 36 injection on body's immune indexes in children with bronchial asthma. Anhui Medical & Pharmaceutical Journal. 2016;20:1597–9.
  • Yi-Sheng MO, Zhan YZ, Wang DM. Effect of Mycobacterium Phlei F.U.36 injection for patients with advanced non-small cell lung cancer in chemotherapy. Chin J Hosp Pharm. 2009;29:142–4.
  • Dong CH, Kong FG, Peng J. Mycobacterium phlei F·U·36 injection in treatment of 45 children with reiterative respiratory tract infections. Chinese Journal of New Drugs & Clinical Remedies. 2005;21:463–71.
  • Xiong B, Zhan XQ, Duo LI. Clinical study of intrapleural injection of mycobacterium phlei F.U.36 with cisplatin on malignant pleural effusion. Clinical Focus. 2005;20:670–2.
  • Wang L, Luo XY, Xiao YZ, Yong-Mei LI, Yang-Ying OU, Tan Q. Efficacy of Local Injection of Mycobacterium Phlei F.U.36 in Treating Verruca Vulgaris. J Pediatr Pharm. 2010;16:17–8.
  • Zhong XY, Huang DM. Regulating Role of Mycobacterium Phlei F.U.36 on Th1/Th2 Immune Balance in Patients with Condyloma Acuminatum. China Pharm. 2010;13:109–11.
  • Zhang ZS. Effect of Mycobacterium Phlei F.U.36 Injection in the Treatment of Elderly Patients With New Smear Positive Pulmonary Tuberculosis. China Health Standard Management. 2015;6:384–90.
  • Meng FJ. Analysis the curative effect of presby-lung tuberculosis therapied by Mycobacterium Phlei F.U.36 and antituberculosis drugs. Journal of Qiqihar Medical College. 2009;30:263–5.
  • LI XY, Zeng LX, Chen BX. The nursing for senile pulmonary tuberculosis treated by mycobacterium phlei f.u 36 and anti-tuberculosis drugs. Mod Hosp. 2013;13:81–3.
  • King GM. Uptake of carbon monoxide and hydrogen at environmentally relevant concentrations by mycobacteria. Appl Environ Microbiol. 2003;69:7266–72. doi:10.1128/AEM.69.12.7266-7272.2003. PMID:14660375
  • Cayabyab MJ, Hovav AH, Hsu T, Krivulka GR, Lifton MA, Gorgone DA, Fennelly GJ, Haynes BF, Jacobs WR Jr, Letvin NL. Generation of CD8+ T-cell responses by a recombinant nonpathogenic Mycobacterium smegmatis vaccine vector expressing human immunodeficiency virus type 1 Env. J Virol. 2006;80:1645–52. doi:10.1128/JVI.80.4.1645-1652.2006. PMID:16439521
  • Chen BW, Shen XB, Xu M. Preparation of acellular M. smegmatis vaccine for prevention of M. tuberculosis infection in high risk population. Chin J Biologicals. 2009;39:79–91.
  • Long-Chang YE, Chen BW, Zhu YD, Miao XU, Liu LF, Shen XB. A phase Ⅰ clinical study of M. smegmatis vaccine. Chin J N Drugs. 2007;16:565–8.
  • Boenickse R, Juhasz E. [DESCRIPTION OF THE NEW SPECIES MYCOBACTERIUM VACCAE N. SP]. Zentralbl Bakteriol Orig. 1964;192:133–5. PMID:14176844
  • Tsukamura M, Mizuno S, Tsukamura S. Classification of rapidly growing mycobacteria. Jpn J Microbiol. 1968;12:151–66. doi:10.1111/j.1348-0421.1968.tb00379.x. PMID:4881258
  • Stanford JL, Bahr GM, Rook GA, Shaaban MA, Chugh TD, Gabriel M, al-Shimali B, Siddiqui Z, Ghardani F, Shahin A, et al. Immunotherapy with Mycobacterium vaccae as an adjunct to chemotherapy in the treatment of pulmonary tuberculosis. Tubercle. 1990;71:87–93. doi:10.1016/0041-3879(90)90002-P. PMID:2219469
  • Stanford JL, Grange JM. New concepts for the control of tuberculosis in the twenty first century. J R Coll Physicians Lond. 1993;27:218–23. PMID:8377152
  • Onyebujoh PC, Abdulmumini T, Robinson S, Rook GA, Stanford JL. Immunotherapy with Mycobacterium vaccae as an addition to chemotherapy for the treatment of pulmonary tuberculosis under difficult conditions in Africa. Respir Med. 1995;89:199–207. doi:10.1016/0954-6111(95)90248-1. PMID:7746913
  • Corlan E, Marica C, Macavei C, Stanford JL, Stanford CA. Immunotherapy with Mycobacterium vaccae in the treatment of tuberculosis in Romania. 2. Chronic or relapsed disease. Respir Med. 1997;91:21–9. doi:10.1016/S0954-6111(97)90133-5. PMID:9068813
  • Waddell RD, Chintu C, Lein AD, Zumla A, Karagas MR, Baboo KS, Habbema JD, Tosteson AN, Morin P, Tvaroha S, et al. Safety and immunogenicity of a five-dose series of inactivated Mycobacterium vaccae vaccination for the prevention of HIV-associated tuberculosis. Clin Infect Dis. 2000;30 Suppl 3:S309–15. doi:10.1086/313880. PMID:10875806
  • Vuola JM, Ristola MA, Cole B, Jarviluoma A, Tvaroha S, Ronkko T, Rautio O, Arbeit RD, von Reyn CF. Immunogenicity of an inactivated mycobacterial vaccine for the prevention of HIV-associated tuberculosis: A randomized, controlled trial. AIDS. 2003;17:2351–5. doi:10.1097/00002030-200311070-00010. PMID:14571187
  • Huang CY, Hsieh WY. Efficacy of Mycobacterium vaccae immunotherapy for patients with tuberculosis: A systematic review and meta-analysis. Hum Vaccin Immunother. 2017;13:1960–71. doi:10.1080/21645515.2017.1335374.
  • Weng H, Huang JY, Meng XY, Li S, Zhang GQ. Adjunctive therapy of Mycobacterium vaccae vaccine in the treatment of multidrug-resistant tuberculosis: A systematic review and meta-analysis. Biomed Rep. 2016;4:595–600. doi:10.3892/br.2016.624. PMID:27123253
  • Yang XY, Chen QF, Li YP, Wu SM. Mycobacterium vaccae as adjuvant therapy to anti-tuberculosis chemotherapy in never-treated tuberculosis patients: a meta-analysis. PloS One. 2011; 6:e23826. doi:10.1371/journal.pone.0023826. PMID:21909406
  • Sun ZP, Liu H, Liu R. [Evaluation of the efficacy of mycobacterium bacillus in the treatment of latent TB infection]. Modern Preventive Medicine. 2013;40:2894–6.
  • Bruyn GD, Garner P. Mycobacterium vaccae immunotherapy for treating tuberculosis. Cochrane Database Syst Rev. 2003;1:CD001166. doi:10.1002/14651858.CD001166.
  • Saini V, Raghuvanshi S, Talwar GP, Ahmed N, Khurana JP, Hasnain SE, Tyagi AK, Tyagi AK. Polyphasic Taxonomic Analysis Establishes Mycobacterium indicus pranii as a Distinct Species. PloS One. 2009;4:e6263. doi:10.1371/journal.pone.0006263. PMID:19606228
  • Guleria I, Mukherjee R, Kaufmann SH. In vivo depletion of CD4 and CD8 T lymphocytes impairs Mycobacterium w vaccine-induced protection against M. tuberculosis in mice. Med Microbiol Immunol. 1993;182:129–35. doi:10.1007/BF00190265. PMID:7901743
  • Gupta A, Ahmad FJ, Ahmad F, Gupta UD, Natarajan M, Katoch VM, Bhaskar S. Protective efficacy of Mycobacterium indicus pranii against tuberculosis and underlying local lung immune responses in guinea pig model. Vaccine. 2012;30:6198–209. doi:10.1016/j.vaccine.2012.07.061. PMID:22871353
  • Das S, Chowdhury BP, Goswami A, Parveen S, Jawed J, Pal N, Majumdar S. Mycobacterium indicus pranii (MIP) mediated host protective intracellular mechanisms against tuberculosis infection: Involvement of TLR-4 mediated signaling. Tuberculosis. 2016;101:201–9. doi:10.1016/j.tube.2016.09.027. PMID:27865392
  • Katoch K, Singh P, Adhikari T, Benara SK, Singh HB, Chauhan DS, Sharma VD, Lavania M, Sachan AS, Katoch VM, et al. Potential of Mw as a prophylactic vaccine against pulmonary tuberculosis. Vaccine. 2008;26:1228–34. doi:10.1016/j.vaccine.2007.12.025. PMID:18243430
  • Cardona PJ. RUTI: a new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis. 2006;86:273–89. doi:10.1016/j.tube.2006.01.024. PMID:16545981
  • Gupta SK. New therapeutic approach for latent tuberculosis infection. Lung India. 2011;28:230–1. doi:10.4103/0970-2113.83992. PMID:21886967
  • Nell AS, D'Lom E, Bouic P, Sabate M, Bosser R, Picas J, Amat M, Churchyard G, Cardona PJ. Safety, tolerability, and immunogenicity of the novel antituberculous vaccine RUTI: randomized, placebo-controlled phase II clinical trial in patients with latent tuberculosis infection. PloS one. 2014;9:e89612. doi:10.1371/journal.pone.0089612. PMID:24586912
  • Vilaplana C, Montane E, Pinto S, Barriocanal AM, Domenech G, Torres F, Cardona PJ, Costa J. Double-blind, randomized, placebo-controlled Phase I Clinical Trial of the therapeutical antituberculous vaccine RUTI. Vaccine. 2010;28:1106–16. doi:10.1016/j.vaccine.2009.09.134. PMID:19853680
  • Kaufmann SH, Weiner J, von Reyn CF. Novel approaches to tuberculosis vaccine development. Int J Infect Dis. 2017;56:263. doi:10.1016/j.ijid.2016.10.018. PMID:27816661
  • Guirado E, Gil O, Caceres N, Singh M, Vilaplana C, Cardona PJ. Induction of a specific strong polyantigenic cellular immune response after short-term chemotherapy controls bacillary reactivation in murine and guinea pig experimental models of tuberculosis. Clin Vaccine Immunol: CVI. 2008;15:1229–37. doi:10.1128/CVI.00094-08. PMID:18524883
  • Lahey T, Laddy D, Hill K, Schaeffer J, Hogg A, Keeble J, Dagg B, Ho MM, Arbeit RD, von Reyn CF. Immunogenicity and Protective Efficacy of the DAR-901 Booster Vaccine in a Murine Model of Tuberculosis. PloS One. 2016;11:e0168521. doi:10.1371/journal.pone.0168521. PMID:27997597
  • Xu Y, Zhu B, Wang Q, Chen J, Qie Y, Wang J, Wang H, Wang B, Wang H. Recombinant BCG coexpressing Ag85B, ESAT-6 and mouse-IFN-gamma confers effective protection against Mycobacterium tuberculosis in C57BL/6 mice. FEMS Immunol. Med. Microbiol. 2007;51:480–7. doi:10.1111/j.1574-695X.2007.00322.x. PMID:17919299
  • Tang C, Yamada H, Shibata K, Maeda N, Yoshida S, Wajjwalku W, Ohara N, Yamada T, Kinoshita T, Yoshikai Y, et al. Efficacy of recombinant bacille Calmette-Guerin vaccine secreting interleukin-15/antigen 85B fusion protein in providing protection against Mycobacterium tuberculosis. J Infect Dis. 2008;197:1263–74. doi:10.1086/586902. PMID:18422438
  • Young S, O'Donnell M, Lockhart E, Buddle B, Slobbe L, Luo Y, De Lisle G, Buchan G. Manipulation of immune responses to Mycobacterium bovis by vaccination with IL-2- and IL-18-secreting recombinant bacillus Calmette Guerin. Immunol Cell Biol. 2002;80:209–15. doi:10.1046/j.1440-1711.2002.01078.x. PMID:12067407
  • Antonsson B, Montessuit S, Sanchez B, Martinou JC. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem. 2001;276:11615–23. doi:10.1074/jbc.M010810200. PMID:11136736
  • Ohara N, Yamada T. Recombinant BCG vaccines. Vaccine. 2001;19:4089–98. doi:10.1016/S0264-410X(01)00155-4. PMID:11457532
  • Deng YH, He HY, Zhang BS. Evaluation of protective efficacy conferred by a recombinant Mycobacterium bovis BCG expressing a fusion protein of Ag85A-ESAT-6. J Microbiol Immunol Infect. 2014;47:48–56. doi:10.1016/j.jmii.2012.11.005. PMID:23357605
  • Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, Griffiths KE, Marchal G, Leclerc C, Cole ST. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med. 2003;9:533–9. doi:10.1038/nm859. PMID:12692540
  • Shen H, Wang C, Yang E, Xu Y, Liu W, Yan J, Wang F, Wang H. Novel recombinant BCG coexpressing Ag85B, ESAT-6 and mouse TNF-alpha induces significantly enhanced cellular immune and antibody responses in C57BL/6 mice. Microbiol Immunol. 2010;54:435–41. doi:10.1111/j.1348-0421.2010.00232.x. PMID:20646207
  • Lu Y, Xu Y, Yang E, Wang C, Wang H, Shen H. Novel recombinant BCG coexpressing Ag85B, ESAT-6 and Rv2608 elicits significantly enhanced cellular immune and antibody responses in C57BL/6 mice. Scand J Immunol. 2012;76:271–7. doi:10.1111/j.1365-3083.2012.02726.x. PMID:22671973
  • Yang E, Lu Y, Xu Y, Liang Q, Wang C, Wang H, Shen H. Recombinant BCG coexpressing Ag85B, ESAT-6 and Rv3620c elicits specific Th1 immune responses in C57BL/6 mice. Microb Pathog. 2014;69–70:53–9. doi:10.1016/j.micpath.2014.03.011. PMID:24726737
  • Alves Da Silva D, Cavalcanti MA, Muniz De Oliveira F, Trentini MM, Junqueira-Kipnis AP, Kipnis A. Immunogenicity of a recombinant Mycobacterium smegmatis vaccine expressing the fusion protein CMX in cattle from Goias State, Brazil. J Vet Med Sci. 2014;76:977–84. doi:10.1292/jvms.13-0338. PMID:24681608
  • Kadir NA, Sarmiento ME, Acosta A, Norazmi MN. Cellular and humoral immunogenicity of recombinant Mycobacterium smegmatis expressing Ag85B epitopes in mice. Int J Mycobacteriol. 2016;5:7–13. doi:10.1016/j.ijmyco.2015.09.006. PMID:26927984
  • Sweeney KA, Dao DN, Goldberg MF, Hsu T, Venkataswamy MM, Henao-Tamayo M, Ordway D, Sellers RS, Jain P, Chen B, et al. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat Med. 2011;17:1261–8. doi:10.1038/nm.2420. PMID:21892180
  • Zhang H, Peng P, Miao S, Zhao Y, Mao F, Wang L, Bai Y, Xu Z, Wei S, Shi C. Recombinant Mycobacterium smegmatis expressing an ESAT6-CFP10 fusion protein induces anti-mycobacterial immune responses and protects against Mycobacterium tuberculosis challenge in mice. Scand J Immunol. 2010;72:349–57. doi:10.1111/j.1365-3083.2010.02448.x. PMID:20883320
  • Tsolaki AG, Nagy J, Leiva S, Kishore U, Rosenkrands I, Robertson BD. Mycobacterium tuberculosis antigen 85B and ESAT-6 expressed as a recombinant fusion protein in Mycobacterium smegmatis elicits cell-mediated immune response in a murine vaccination model. Molecular immunology. 2013;54:278–83. doi:10.1016/j.molimm.2012.11.014. PMID:23333882
  • Zhao SM, Zhao Y, Zhang CQ, Mao FF, Bai B, Zhang H. Immune responses and protection Induced by a recombinant gycobacterium smegmatis expressing an HBHA and hlL-12 fusion protein against M. tuberculosis infection. Lett Biotechnol. 2012;23:383–5.
  • Bai YL, Xue Y, Wang LM, Fan AL, Zhang W, Kang J, He JJ, Xu ZK. [Immunoprophylaxis of recombinant Mycobacterium vaccae secreted MPT64 of Mycobacterium tuberculosis]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2009;25:211–4. PMID:19257983
  • Nieuwenhuizen NE, Kulkarni PS, Shaligram U, Cotton MF, Rentsch CA, Eisele B, Grode L, Kaufmann SHE. The Recombinant Bacille Calmette-Guerin Vaccine VPM1002: Ready for Clinical Efficacy Testing. Front Immunol. 2017;8:1147. doi:10.3389/fimmu.2017.01147. PMID:28974949
  • Velmurugan K, Grode L, Chang R, Fitzpatrick M, Laddy D, Hokey D, Derrick S, Morris S, McCown D, Kidd R, et al. Nonclinical Development of BCG Replacement Vaccine Candidates. Vaccines. 2013;1:120–38. doi:10.3390/vaccines1020120. PMID:26343962
  • Grode L, Seiler P, Baumann S, Hess J, Brinkmann V, Nasser Eddine A, Mann P, Goosmann C, Bandermann S, Smith D, et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest. 2005;115:2472–9. doi:10.1172/JCI24617. PMID:16110326
  • Rentsch CA, Wetterauer C, Gsponer JR, Püschel H, Bachmann A, Blok WD. 521 VPM1002 – a recombinant BCG with favourable preclinical toxicity and immunogenicity for potential improvement of BCG immunotherapy for non-muscle invasive bladder cancer. Eur Urol Suppl. 2014;13:e521–e. doi:10.1016/S1569-9056(14)60513-3.
  • Grode L, Ganoza CA, Brohm C, Weiner J, 3rd, Eisele B, Kaufmann SH. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine. 2013;31:1340–8. doi:10.1016/j.vaccine.2012.12.053. PMID:23290835
  • Loxton AG, Knaul JK, Grode L, Gutschmidt A, Meller C, Eisele B. Safety and Immunogenicity of the Recombinant Mycobacterium bovis BCG Vaccine VPM1002 in HIV-Unexposed Newborn Infants in South Africa. Clin Vaccine Immunol: CVI. 2017;24:e00439–16. doi:10.1128/CVI.00439-16. PMID:27974398
  • Rao M, Vogelzang A, Kaiser P, Schuerer S, Kaufmann SH, Gengenbacher M. The tuberculosis vaccine candidate Bacillus Calmette-Guerin DeltaureC::hly coexpressing human interleukin-7 or -18 enhances antigen-specific T cell responses in mice. PloS one. 2013;8:e78966. doi:10.1371/journal.pone.0078966. PMID:24236077
  • Gengenbacher M, Nieuwenhuizen N, Vogelzang A, Liu H, Kaiser P, Schuerer S, Lazar D, Wagner I, Mollenkopf HJ, Kaufmann SH, et al. Deletion of nuoG from the Vaccine Candidate Mycobacterium bovis BCG DeltaureC::hly Improves Protection against Tuberculosis. mBio. 2016;7:e00679–16. doi:10.1128/mBio.00679-16. PMID:27222470
  • Reece ST, Nasser-Eddine A, Dietrich J, Stein M, Zedler U, Schommer-Leitner S, Ottenhoff TH, Andersen P, Kaufmann SH. Improved long-term protection against Mycobacterium tuberculosis Beijing/W in mice after intra-dermal inoculation of recombinant BCG expressing latency associated antigens. Vaccine. 2011;29:8740–4. doi:10.1016/j.vaccine.2011.07.144. PMID:21871515
  • Gengenbacher M, Vogelzang A, Schuerer S, Lazar D, Kaiser P, Kaufmann SH. Dietary pyridoxine controls efficacy of vitamin B6-auxotrophic tuberculosis vaccine bacillus Calmette-Guerin DeltaureC::hly Deltapdx1 in mice. mBio. 2014;5:e01262–14. doi:10.1128/mBio.01262-14. PMID:24895310
  • Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic S. Recombinant bacillus calmette-guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc Natl Acad Sci U S A. 2000;97:13853–8. doi:10.1073/pnas.250480397. PMID:11095745
  • Hoft DF, Blazevic A, Abate G, Hanekom WA, Kaplan G, Soler JH, Weichold F, Geiter L, Sadoff JC, Horwitz MA. A new recombinant bacille Calmette-Guerin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers. J Infect Dis. 2008;198:1491–501. doi:10.1086/592450. PMID:18808333
  • Sun R, Skeiky YA, Izzo A, Dheenadhayalan V, Imam Z, Penn E, Stagliano K, Haddock S, Mueller S, Fulkerson J, et al. Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine. 2009;27:4412–23. doi:10.1016/j.vaccine.2009.05.048. PMID:19500523
  • Liu X. [Construction and immunology research of recombinant lactobacillus with ag85a gene of M. bovis]. Jilin Agricultural University. Changchun: Jilin Agricultural University. 2015:56.
  • Daifalla N, Cayabyab MJ, Xie E, Kim HB, Tzipori S, Stashenko P, Duncan M, Campos-Neto A. Commensal Streptococcus mitis is a unique vector for oral mucosal vaccination. Microbes Infect. 2015;17:237–42. doi:10.1016/j.micinf.2014.11.002. PMID:25522856
  • Condit RC, Williamson AL, Sheets R, Seligman SJ, Monath TP, Excler JL, Gurwith M, Bok K, Robertson JS, Kim D, et al. Unique safety issues associated with virus-vectored vaccines: Potential for and theoretical consequences of recombination with wild type virus strains. Vaccine. 2016;34:6610. doi:10.1016/j.vaccine.2016.04.060. PMID:27346303
  • Hansen SG, Zak DE, Xu G, Ford JC, Marshall EE, Malouli D, Gilbride RM, Hughes CM, Ventura AB, Ainslie E, et al. Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nat Med. 2018;24:130–43. doi:10.1038/nm.4473. PMID:29334373
  • Hawkridge T, Scriba TJ, Gelderbloem S, Smit E, Tameris M, Moyo S, Lang T, Veldsman A, Hatherill M, Merwe Lv, et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa. J Infect Dis. 2008;198:544–52. doi:10.1086/590185. PMID:18582195
  • Kashangura R, Sena ES, Young T, Garner P. Effects of MVA85A vaccine on tuberculosis challenge in animals: systematic review. Int J Epidemiol. 2015;44:1970–81. doi:10.1093/ije/dyv142. PMID:26351306
  • Beverley P. Selective presentation of MVA85A tuberculosis booster vaccine preclinical animal data. Int J Epidemiol. 2016;45:581–2. doi:10.1093/ije/dyw082. PMID:27174837
  • Tameris M, Geldenhuys H, Luabeya AK, Smit E, Hughes JE, Vermaak S, Hanekom WA, Hatherill M, Mahomed H, McShane H, et al. The candidate TB vaccine, MVA85A, induces highly durable Th1 responses. PloS One. 2014;9:e87340. doi:10.1371/journal.pone.0087340. PMID:24498312
  • Meyer J, Harris SA, Satti I, Poulton ID, Poyntz HC, Tanner R, Rowland R, Griffiths KL, Fletcher HA, McShane H, et al. Comparing the safety and immunogenicity of a candidate TB vaccine MVA85A administered by intramuscular and intradermal delivery. Vaccine. 2013;31:1026–33. doi:10.1016/j.vaccine.2012.12.042. PMID:23266342
  • Sheehan S, Harris SA, Satti I, Hokey DA, Dheenadhayalan V, Stockdale L, Manjaly Thomas ZR, Minhinnick A, Wilkie M, Vermaak S, et al. A Phase I, Open-Label Trial, Evaluating the Safety and Immunogenicity of Candidate Tuberculosis Vaccines AERAS-402 and MVA85A, Administered by Prime-Boost Regime in BCG-Vaccinated Healthy Adults. PloS One. 2015;10:e0141687. doi:10.1371/journal.pone.0141687. PMID:26529238
  • Sander CR, Pathan AA, Beveridge NE, Poulton I, Minassian A, Alder N, Van Wijgerden J, Hill AV, Gleeson FV, Davies RJ, et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in Mycobacterium tuberculosis-infected individuals. Am J Respir Crit Care Med. 2009;179:724–33. doi:10.1164/rccm.200809-1486OC. PMID:19151191
  • Wajja A, Kizito D, Nassanga B, Nalwoga A, Kabagenyi J, Kimuda S, Galiwango R, Mutonyi G, Vermaak S, Satti I, et al. The effect of current Schistosoma mansoni infection on the immunogenicity of a candidate TB vaccine, MVA85A, in BCG-vaccinated adolescents: An open-label trial. PLoS Negl Trop Dis. 2017;11:e0005440. doi:10.1371/journal.pntd.0005440. PMID:28472067
  • Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, Shea JE, McClain JB, Hussey GD, Hanekom WA, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet. 2013;381:1021–8. doi:10.1016/S0140-6736(13)60177-4. PMID:23391465
  • Darrah PA, Bolton DL, Lackner AA, Kaushal D, Aye PP, Mehra S, Blanchard JL, Didier PJ, Roy CJ, Rao SS, et al. Aerosol vaccination with AERAS-402 elicits robust cellular immune responses in the lungs of rhesus macaques but fails to protect against high-dose Mycobacterium tuberculosis challenge. J Immunol. (Baltimore, Md: 1950) 2014;193:1799–811. doi:10.4049/jimmunol.1400676. PMID:25024382
  • Hoft DF, Blazevic A, Stanley J, Landry B, Sizemore D, Kpamegan E, Gearhart J, Scott A, Kik S, Pau MG, et al. A recombinant adenovirus expressing immunodominant TB antigens can significantly enhance BCG-induced human immunity. Vaccine. 2012;30:2098–108. doi:10.1016/j.vaccine.2012.01.048. PMID:22296955
  • Tameris M, Hokey DA, Nduba V, Sacarlal J, Laher F, Kiringa G, Gondo K, Lazarus EM, Gray GE, Nachman S, et al. A double-blind, randomised, placebo-controlled, dose-finding trial of the novel tuberculosis vaccine AERAS-402, an adenovirus-vectored fusion protein, in healthy, BCG-vaccinated infants. Vaccine. 2015;33:2944–54. doi:10.1016/j.vaccine.2015.03.070. PMID:25936724
  • Churchyard GJ, Snowden MA, Hokey D, Dheenadhayalan V, McClain JB, Douoguih M, Pau MG, Sadoff J, Landry B. The safety and immunogenicity of an adenovirus type 35-vectored TB vaccine in HIV-infected, BCG-vaccinated adults with CD4(+) T cell counts >350 cells/mm(3). Vaccine. 2015;33:1890–6. doi:10.1016/j.vaccine.2015.02.004. PMID:25698492
  • van Zyl-Smit RN, Esmail A, Bateman ME, Dawson R, Goldin J, van Rikxoort E, Douoguih M, Pau MG, Sadoff JC, McClain JB, et al. Safety and Immunogenicity of Adenovirus 35 Tuberculosis Vaccine Candidate in Adults with Active or Previous Tuberculosis. A Randomized Trial. Am J Respir Crit Care Med. 2017;195:1171–80. doi:10.1164/rccm.201603-0654OC. PMID:28060545
  • Betts G, Poyntz H, Stylianou E, Reyes-Sandoval A, Cottingham M, Hill A, McShane H. Optimising immunogenicity with viral vectors: mixing MVA and HAdV-5 expressing the mycobacterial antigen Ag85A in a single injection. PloS One. 2012;7:e50447. doi:10.1371/journal.pone.0050447. PMID:23284637
  • Jeyanathan M, Shao Z, Yu X, Harkness R, Jiang R, Li J, Xing Z, Zhu T. AdHu5Ag85A Respiratory Mucosal Boost Immunization Enhances Protection against Pulmonary Tuberculosis in BCG-Primed Non-Human Primates. PloS one. 2015;10:e0135009. doi:10.1371/journal.pone.0135009. PMID:26252520
  • Perez de Val B, Villarreal-Ramos B, Nofrarias M, Lopez-Soria S, Romera N, Singh M, Abad FX, Xing Z, Vordermeier HM, Domingo M, et al. Goats primed with Mycobacterium bovis BCG and boosted with a recombinant adenovirus expressing Ag85A show enhanced protection against tuberculosis. Clin Vaccine Immunol: CVI. 2012;19:1339–47. doi:10.1128/CVI.00275-12. PMID:22761299
  • Smaill F, Jeyanathan M, Smieja M, Medina MF, Thanthrige-Don N, Zganiacz A, Yin C, Heriazon A, Damjanovic D, Puri L, et al. A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med. 2013;5:205ra134. doi:10.1126/scitranslmed.3006843. PMID:24089406
  • Stylianou E, Griffiths KL, Poyntz HC, Harrington-Kandt R, Dicks MD, Stockdale L, Betts G, McShane H. Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A. Vaccine. 2015;33:6800–8. doi:10.1016/j.vaccine.2015.10.017. PMID:26478198
  • Dockrell HM. Towards new TB vaccines: What are the challenges? Pathogens and disease. 2016;74:ftw016. doi:10.1093/femspd/ftw016. PMID:26960944
  • Senaratne RH, Mougous JD, Reader JR, Williams SJ, Zhang T, Bertozzi CR, Riley LW. Vaccine efficacy of an attenuated but persistent Mycobacterium tuberculosis cysH mutant. J Med Microbiol. 2007;56:454–8. doi:10.1099/jmm.0.46983-0. PMID:17374883
  • Sambandamurthy VK, Wang X, Chen B, Russell RG, Derrick S, Collins FM, Morris SL, Jacobs WR Jr. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med. 2002;8:1171–4. doi:10.1038/nm765. PMID:12219086
  • Sakthi S, Palaniyandi K, Gupta UD, Gupta P, Narayanan S. Lipoprotein LpqS deficient M. tuberculosis mutant is attenuated for virulence in vivo and shows protective efficacy better than BCG in guinea pigs. Vaccine. 2016;34:735–43. doi:10.1016/j.vaccine.2015.12.059. PMID:26768127
  • Chauhan P, Reddy PV, Singh R, Jaisinghani N, Gandotra S, Tyagi AK. Secretory phosphatases deficient mutant of Mycobacterium tuberculosis imparts protection at the primary site of infection in guinea pigs. PloS One. 2013;8:e77930. doi:10.1371/journal.pone.0077930. PMID:24205032
  • Kar R, Nangpal P, Mathur S, Singh S, Tyagi AK. bioA mutant of Mycobacterium tuberculosis shows severe growth defect and imparts protection against tuberculosis in guinea pigs. PLoS One. 2017;12:e0179513. doi:10.1371/journal.pone.0179513. PMID:28658275
  • Perez E, Samper S, Bordas Y, Guilhot C, Gicquel B, Martin C. An essential role for phoP in Mycobacterium tuberculosis virulence. Mol Microbiol. 2001;41:179–87. doi:10.1046/j.1365-2958.2001.02500.x. PMID:11454210
  • Aguilar LD, Infante E, Bianco MV, Cataldi A, Bigi F, Pando RH. Immunogenicity and protection induced by Mycobacterium tuberculosis mce-2 and mce-3 mutants in a Balb/c mouse model of progressive pulmonary tuberculosis. Vaccine. 2006;24:2333–42. doi:10.1016/j.vaccine.2005.11.051. PMID:16388878
  • Ui H, Yamayoshi S, Uraki R, Kiso M, Oishi K, Murakami S, Mimori S, Kawaoka Y. Evaluation of seasonal influenza vaccines for H1N1pdm09 and type B viruses based on a replication-incompetent PB2-KO virus. Vaccine. 2017;35:1892. doi:10.1016/j.vaccine.2017.02.041. PMID:28285982
  • Sampson SL, Dascher CC, Sambandamurthy VK, Russell RG, Jacobs WR, Jr., Bloom BR, Hondalus MK. Protection elicited by a double leucine and pantothenate auxotroph of Mycobacterium tuberculosis in guinea pigs. Infect Immun. 2004;72:3031–7. doi:10.1128/IAI.72.5.3031-3037.2004. PMID:15102816
  • Sambandamurthy VK, Derrick SC, Hsu T, Chen B, Larsen MH, Jalapathy KV, Chen M, Kim J, Porcelli SA, Chan J, et al. Mycobacterium tuberculosis DeltaRD1 DeltapanCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis. Vaccine. 2006;24:6309–20. doi:10.1016/j.vaccine.2006.05.097. PMID:16860907
  • Larsen MH, Biermann K, Chen B, Hsu T, Sambandamurthy VK, Lackner AA, Aye PP, Didier P, Huang D, Shao L, et al. Efficacy and safety of live attenuated persistent and rapidly cleared Mycobacterium tuberculosis vaccine candidates in non-human primates. Vaccine. 2009;27:4709–17. doi:10.1016/j.vaccine.2009.05.050. PMID:19500524
  • Arbues A, Aguilo JI, Gonzalo-Asensio J, Marinova D, Uranga S, Puentes E, Fernandez C, Parra A, Cardona PJ, Vilaplana C, et al. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine. 2013;31:4867–73. doi:10.1016/j.vaccine.2013.07.051. PMID:23965219
  • Spertini F, Audran R, Chakour R, Karoui O, Steiner-Monard V, Thierry AC, Mayor CE, Rettby N, Jaton K, Vallotton L, et al. Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial. Lancet Respir Med. 2015;3:953–62. doi:10.1016/S2213-2600(15)00435-X. PMID:26598141
  • Andersen P, Doherty TM. TB subunit vaccines–putting the pieces together. Microbes Infect. 2005;7:911–21. doi:10.1016/j.micinf.2005.03.013. PMID:15878836
  • Xin Q, Niu H, Li Z, Zhang G, Hu L, Wang B, Li J, Yu H, Liu W, Wang Y, et al. Subunit vaccine consisting of multi-stage antigens has high protective efficacy against Mycobacterium tuberculosis infection in mice. PloS One. 2013;8:e72745. doi:10.1371/journal.pone.0072745. PMID:23967337
  • Dietrich J, Aagaard C, Leah R, Olsen AW, Stryhn A, Doherty TM, Andersen P. Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy. J Immunol (Baltimore, Md: 1950). 2005;174:6332–9. doi:10.4049/jimmunol.174.10.6332. PMID:15879133
  • Olsen AW, Williams A, Okkels LM, Hatch G, Andersen P. Protective effect of a tuberculosis subunit vaccine based on a fusion of antigen 85B and ESAT-6 in the aerosol guinea pig model. Infect Immun. 2004;72:6148–50. doi:10.1128/IAI.72.10.6148-6150.2004. PMID:15385521
  • Weinrich Olsen A, van Pinxteren LA, Meng Okkels L, Birk Rasmussen P, Andersen P. Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85b and esat-6. Infect Immun. 2001;69:2773–8. doi:10.1128/IAI.69.5.2773-2778.2001. PMID:11292688
  • Xiang ZH, Sun RF, Lin C, Chen FZ, Mai JT, Liu YX, Xu ZY, Zhang L, Liu J. Immunogenicity and Protective Efficacy of a Fusion Protein Tuberculosis Vaccine Combining Five Esx Family Proteins. Front Cell Infec Microbiol. 2017;7:226. doi:10.3389/fcimb.2017.00226. PMID:28620588
  • Liu QL, Wu XQ, Zhang JX, Zhang PJ, li ZM, Liang Y. Ag85ab chimeric gene of Mycobacterium tuberculosis vaccine, its preparation method and application. In: LTD HBC, PLA TtHo, eds. China State Intellectual Property Office. China: Zhang, M. Y., 2011.
  • Evans JT, Ward JR, Kern J, Johnson ME. A single vaccination with protein-microspheres elicits a strong CD8 T-cell-mediated immune response against Mycobacterium tuberculosis antigen Mtb8.4. Vaccine. 2004;22:1964–72. doi:10.1016/j.vaccine.2003.10.035. PMID:15121309
  • Liu X, Da Z, Wang Y, Niu H, Li R, Yu H, He S, Guo M, Wang Y, Luo Y, et al. A novel liposome adjuvant DPC mediates Mycobacterium tuberculosis subunit vaccine well to induce cell-mediated immunity and high protective efficacy in mice. Vaccine. 2016;34:1370-–8. doi:10.1016/j.vaccine.2016.01.049. PMID:26845736
  • Agger EM. Novel adjuvant formulations for delivery of anti-tuberculosis vaccine candidates. Adv Drug Deliv Rev. 2016;102:73–82. doi:10.1016/j.addr.2015.11.012. PMID:26596558
  • Lu JB, Chen BW, Wang GZ, Fu LL, Shen XB, Su C, Du WX, Yang L, Xu M. Recombinant tuberculosis vaccine AEC/BC02 induces antigen-specific cellular responses in mice and protects guinea pigs in a model of latent infection. J Microbiol Immunol Infect. 2015;48:597–603. doi:10.1016/j.jmii.2014.03.005. PMID:24863497
  • Lu JB, Cheng BW, Deng HQ, Su C, Shen XB, Du WX, Yang L, Wang GZ, Xu M. [Analysis of Koch phenomenon of Mycobacterium tuberculosis-infected guinea pigs vaccinated with recombinant tuberculosis vaccine AEC/BC02]. Zhonghua Jie He He Hu Xi Za Zhi. 2016;39:524–8. PMID:27430923
  • Yan Q, Liu H, Cheng Z, Xue Y, Cheng Z, Dai X, Shan W, Chen F. Immunotherapeutic effect of BCG-polysaccharide nucleic acid powder on Mycobacterium tuberculosis-infected mice using microneedle patches. Drug Delivery. 2017;24:1648–53. doi:10.1080/10717544.2017.1391892. PMID:29069980
  • Liu W, Wang H, Yu J, Liu Y, Lu W, Chai Y, Liu C, Pan C, Yao W, Gao X. Structure, chain conformation, and immunomodulatory activity of the polysaccharide purified from Bacillus Calmette Guerin formulation. Carbohydr. Polym. 2016;150:149. doi:10.1016/j.carbpol.2016.05.011. PMID:27312624
  • Xu X, Gu Z, Liu S, Gao N, He X, Xin X. Purification and characterization of a glucan from Bacillus Calmette Guerin and the antitumor activity of its sulfated derivative. Carbohydr. Polym. 2015;128:138–46. doi:10.1016/j.carbpol.2015.04.025. PMID:26005149
  • Miao G, Zhao JH, Chen Y, Kuang J. Clinical observation of BCG polysaccharide nucleic acid combined with foscarnet sodium in treating of herpes zoster. International Journal of Virology. 2015;22:236–9.
  • Skeiky YA, Alderson MR, Ovendale PJ, Guderian JA, Brandt L, Dillon DC, Campos-Neto A, Lobet Y, Dalemans W, Orme IM, et al. Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J Immunol (Baltimore, Md: 1950). 2004;172:7618–28. doi:10.4049/jimmunol.172.12.7618. PMID:15187142
  • Nabavinia MS, Naderi Nasab M, Meshkat Z, Derakhshan M, Khaje-Karamadini M. Construction of an Expression Vector Containing Mtb72F of Mycobacterium tuberculosis. Cell journal. 2012;14:61–6. PMID:23626939
  • Bhargava S, Choubey S, Mishra S. Vaccines against tuberculosis: A review. Indian J Tuberc. 2016;63:13–8. doi:10.1016/j.ijtb.2016.02.005. PMID:27235939
  • Montoya J, Solon JA, Cunanan SR, Acosta L, Bollaerts A, Moris P, Janssens M, Jongert E, Demoitié MA, Mettens P, et al. A randomized, controlled dose-finding Phase II study of the M72/AS01 candidate tuberculosis vaccine in healthy PPD-positive adults. J Clin Immunol. 2013;33:1360–75. doi:10.1007/s10875-013-9949-3. PMID:24142232
  • Penn-Nicholson A, Geldenhuys H, Burny W, van der Most R, Day CL, Jongert E, Moris P, Hatherill M, Ofori-Anyinam O, Hanekom W, et al. Safety and immunogenicity of candidate vaccine M72/AS01E in adolescents in a TB endemic setting. Vaccine. 2015;33:4025–34. doi:10.1016/j.vaccine.2015.05.088. PMID:26072017
  • Gillard P, Yang PC, Danilovits M, Su WJ, Cheng SL, Pehme L, Bollaerts A, Jongert E, Moris P, Ofori-Anyinam O, et al. Safety and immunogenicity of the M72/AS01E candidate tuberculosis vaccine in adults with tuberculosis: A phase II randomised study. Tuberculosis. 2016; 100:118–27. doi:10.1016/j.tube.2016.07.005. PMID:27553419
  • Syal K. BCG vaccine fails to prevent the reactivation of latent tuberculosis. Med Hypotheses. 2016;88:82. doi:10.1016/j.mehy.2015.11.015. PMID:26639529
  • Langermans JA, Doherty TM, Vervenne RA, van der Laan T, Lyashchenko K, Greenwald R, Agger EM, Aagaard C, Weiler H, van Soolingen D, et al. Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine. 2005;23:2740–50. doi:10.1016/j.vaccine.2004.11.051. PMID:15780721
  • van Dissel JT, Arend SM, Prins C, Bang P, Tingskov PN, Lingnau K, Nouta J, Klein MR, Rosenkrands I, Ottenhoff TH, et al. Ag85B-ESAT-6 adjuvanted with IC31 promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naive human volunteers. Vaccine. 2010;28:3571–81. doi:10.1016/j.vaccine.2010.02.094. PMID:20226890
  • Reither K, Katsoulis L, Beattie T, Gardiner N, Lenz N, Said K, Mfinanga E, Pohl C, Fielding KL, Jeffery H, et al. Safety and immunogenicity of H1/IC31(R), an adjuvanted TB subunit vaccine, in HIV-infected adults with CD4+ lymphocyte counts greater than 350 cells/mm3: a phase II, multi-centre, double-blind, randomized, placebo-controlled trial. PloS One. 2014;9:e114602. doi:10.1371/journal.pone.0114602. PMID:25490675
  • van Dissel JT, Joosten SA, Hoff ST, Soonawala D, Prins C, Hokey DA, O'Dee DM, Graves A, Thierry-Carstensen B, Andreasen LV, et al. A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine. 2014;32:7098–107. doi:10.1016/j.vaccine.2014.10.036. PMID:25454872
  • Norrby M, Vesikari T, Lindqvist L, Maeurer M, Ahmed R, Mahdavifar S, Bennett S, McClain JB, Shepherd BM, Li D, et al. Safety and immunogenicity of the novel H4:IC31 tuberculosis vaccine candidate in BCG-vaccinated adults: Two phase I dose escalation trials. Vaccine. 2017;35:1652–61. doi:10.1016/j.vaccine.2017.01.055. PMID:28216183
  • Aboutorabian S, Hakimi J, Boudet F, Montano S, Dookie A, Roque C, Ausar SF, Rahman N, Brookes RH. A high ratio of IC31((R)) adjuvant to antigen is necessary for H4 TB vaccine immunomodulation. Human vaccines & immunotherapeutics. 2015;11:1449–55. doi:10.1080/21645515.2015.1023970.
  • He L, Su J, Ming M, Bernardo L, Chen T, Gisonni-Lex L, Gajewska B. Flow cytometry: An efficient method for antigenicity measurement and particle characterization on an adjuvanted vaccine candidate H4-IC31 for tuberculosis. J Immunol Methods. 2017;452:39–45. doi:10.1016/j.jim.2017.10.005. PMID:29056527.
  • Geldenhuys H, Mearns H, Miles DJ, Tameris M, Hokey D, Shi Z, Bennett S, Andersen P, Kromann I, Hoff ST, et al. The tuberculosis vaccine H4:IC31 is safe and induces a persistent polyfunctional CD4 T cell response in South African adults: A randomized controlled trial. Vaccine. 2015;33:3592–9. doi:10.1016/j.vaccine.2015.05.036. PMID:26048780
  • Luabeya AK, Kagina BM, Tameris MD, Geldenhuys H, Hoff ST, Shi Z, Kromann I, Hatherill M, Mahomed H, Hanekom WA, et al. First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine. 2015;33:4130–40. doi:10.1016/j.vaccine.2015.06.051. PMID:26095509
  • Aagaard C, Hoang T, Dietrich J, Cardona PJ, Izzo A, Dolganov G, Schoolnik GK, Cassidy JP, Billeskov R, Andersen P. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med. 2011;17:189–94. doi:10.1038/nm.2285. PMID:21258338
  • Baldwin SL, Reese VA, Huang PW, Beebe EA, Podell BK, Reed SG, Coler RN. Protection and Long-Lived Immunity Induced by the ID93/GLA-SE Vaccine Candidate against a Clinical Mycobacterium tuberculosis Isolate. Clin Vaccine Immunol: CVI. 2015;23:137–47. doi:10.1128/CVI.00458-15. PMID:26656121
  • Bertholet S, Ireton GC, Ordway DJ, Windish HP, Pine SO, Kahn M, Phan T, Orme IM, Vedvick TS, Baldwin SL, et al. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med. 2010;2:53ra74. doi:10.1126/scitranslmed.3001094. PMID:20944089
  • Baldwin SL, Bertholet S, Reese VA, Ching LK, Reed SG, Coler RN. The importance of adjuvant formulation in the development of a tuberculosis vaccine. J Immunol (Baltimore, Md: 1950) 2012;188:2189–97. doi:10.4049/jimmunol.1102696. PMID:22291184
  • Baldwin SL, Reese V, Granger B, Orr MT, Ireton GC, Coler RN, Reed SG. The ID93 tuberculosis vaccine candidate does not induce sensitivity to purified protein derivative. Clin Vaccine Immunol: CVI. 2014;21:1309–13. doi:10.1128/CVI.00372-14. PMID:25030053
  • Ahsan MJ. Recent advances in the development of vaccines for tuberculosis. Therapeutic advances in vaccines. 2015;3:66–75. doi:10.1177/2051013615593891. PMID:26288734
  • Ghanem A, Healey R, Adly FG. Current trends in separation of plasmid DNA vaccines: a review. Anal. Chim. Acta. 2013;760:1–15. doi:10.1016/j.aca.2012.11.006. PMID:23265728
  • Liang Y, Zhang X, Bai X, Xiao L, Wang X, Zhang J, Yang Y, Song J, Wang L, Wu X, et al. Immunogenicity and therapeutic effects of a Mycobacterium tuberculosis rv2190c DNA vaccine in mice. BMC Immunol. 2017;18:11. doi:10.1186/s12865-017-0196-x. PMID:28241799
  • Wang LM, Bai YL, Shi CH, Gao H, Xue Y, Jiang H, Xu ZK. Immunogenicity and protective efficacy of a DNA vaccine encoding the fusion protein of mycobacterium heat shock protein 65 (Hsp65) with human interleukin-2 against Mycobacterium tuberculosis in BALB/c mice. APMIS. 2008;116:1071–81. doi:10.1111/j.1600-0463.2008.01095.x. PMID:19133010
  • Tanghe A, Lefevre P, Denis O, D'Souza S, Braibant M, Lozes E, Singh M, Montgomery D, Content J, Huygen K, et al. Immunogenicity and protective efficacy of tuberculosis DNA vaccines encoding putative phosphate transport receptors. J Immunol (Baltimore, Md: 1950). 1999;162:1113–9. PMID:9916741
  • Wu X, Li H, Shi Y. Curative Effect of Tuberculosis DNA Vaccines in Mice. Chin J Biologicals. 2002;15:340–5.
  • Dai W, Huang H, Yuan Y, Hu J, Huangfu Y. Comparative study on the immunogenicity between Hsp70 DNA vaccine and Hsp65 DNA vaccine in human Mycobacterium tuberculosis. J Tongji Med Univ. 2001;21:181–3. doi:10.1007/BF02886423. PMID:12539570
  • Li Y, Yang F, Zhu J, Sang L, Han X, Wang D, Shan F, Li S, Sun X, Lu C. CD226 as a genetic adjuvant to enhance immune efficacy induced by Ag85A DNA vaccination. Int Immunopharmacol. 2015;25:10–8. doi:10.1016/j.intimp.2014.12.036. PMID:25582686
  • Xu Y, Yang E, Wang J, Li R, Li G, Liu G, Song N, Huang Q, Kong C, Wang H, et al. Prime-boost bacillus Calmette-Guerin vaccination with lentivirus-vectored and DNA-based vaccines expressing antigens Ag85B and Rv3425 improves protective efficacy against Mycobacterium tuberculosis in mice. Immunology. 2014;143:277–86. doi:10.1111/imm.12308. PMID:24773322
  • Meshkat Z, Teimourpour A, Rashidian S, Arzanlou M, Teimourpour R. Immunogenicity of a DNA Vaccine Encoding Ag85a-Tb10.4 Antigens from Mycobacterium Tuberculosis. Iran J Immunol: IJI. 2016;13:289–95. PMID:27999240
  • Wang Q, Lei C, Wan H, Liu Q. Improved cellular immune response elicited by a ubiquitin-fused DNA vaccine against Mycobacterium tuberculosis. DNA Cell Biol. 2012;31:489–95. doi:10.1089/dna.2011.1309. PMID:21905875
  • Li JL, Yu FL, Dou J. Constructing nucleic acid vaccine expressing fusion antigens of Mycobacterium tuberculosis Ag85A and ESAT-6, and Interleukin 21 as well as studying its immune effect in mice. Lett Biotechnol. 2009;20:765–8
  • Wu X, Zheng Y, Xu Y, Zhang J, Lu Y, Zhang L. The evaluation of protective efficacy of tuberculosis DNA vaccines with different dosage and by codelivery of cytokine plasmid. Chin J Immunol. 2006;22:883–77.
  • Wu X, Zhang JX, Li H. Immunogenicity and protective efficacy of a tuberculosis vaccine encoding the antigen MPT64 protein. Buccetin of Chinese Antituberculosis Assoclation. 2003;25:10–5.
  • Yan L, Wu X, Li Z, Zhang J, Ning L, Yang Y. Therapeutic effects of DNA vaccines in a mouse model of multi-drug resistant Mycobacterium tuberculosis infection. Chinese Journal of Antituberculosis. 2009;31:37–40.
  • Wu X, Zhang J, Li H, Shi Y, Xhang L, Liang J. The studies on therapeutic action of tuberculosis Ag85A DNA vaccines. Zhongguo Mian Yi Xue Za Zhi. 2002;18:17-9,22.
  • Liang Y, Wu X, Zhang J, Xiao L, Yang Y, Bai X, Yu Q, Li Z, Bi L, Li N, et al. Immunogenicity and therapeutic effects of Ag85A/B chimeric DNA vaccine in mice infected with Mycobacterium tuberculosis. FEMS Immunol. Med. Microbiol. 2012;66:419–26. doi:10.1111/1574-695X.12008. PMID:23163873
  • Liang Y, Wu X, Zhang J, Li N, Yu Q, Yang Y, Bai X, Liu C, Shi Y, Liu Q, et al. The treatment of mice infected with multi-drug-resistant Mycobacterium tuberculosis using DNA vaccines or in combination with rifampin. Vaccine. 2008;26:4536–40. doi:10.1016/j.vaccine.2008.06.066. PMID:18602439
  • Liang Y, Xiao L, Bai X, Gao Y, Yang Y, Zhang X. Immunogenicity of different dosage DNA vaccine from Mycobacterium tuberculosis medicated by electroporation. Chinese Journal of Antituberculosis. 2014;36:424–8.
  • Liang Y, Bai X, Zhang J, Song J, Yang Y, Yu Q, Li N, Wu X. Ag85A/ESAT-6 chimeric DNA vaccine induces an adverse response in tuberculosis-infected mice. Molecular medicine reports. 2016;14:1146–52. doi:10.3892/mmr.2016.5364. PMID:27279275
  • Kinhikar AG, Verma I, Chandra D, Singh KK, Weldingh K, Andersen P, Hsu T, Jacobs WR Jr, Laal S, et al. Potential role for ESAT6 in dissemination of M. tuberculosis via human lung epithelial cells. Mol Microbiol. 2010;75:92–106.
  • Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, Lalloo U, Zeller K, Andrews J, Friedland G, et al. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet. 2006;368:1575–80. doi:10.1016/S0140-6736(06)69573-1. PMID:17084757
  • Partnership ST. The Global Plan to End TB. Geneva: Stop TB Partnership, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.