1,264
Views
7
CrossRef citations to date
0
Altmetric
Commentary

Anti-regulatory T cell vaccines in immunotherapy: focusing on FoxP3 as target

ORCID Icon, &
Pages 620-624 | Received 22 Oct 2018, Accepted 03 Nov 2018, Published online: 30 Jan 2019

References

  • Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Reviews Immunol. 2006;6(4):295–307. doi:10.1038/nri1806.
  • Vergati M, Schlom J, Tsang KY. The consequence of immune suppressive cells in the use of therapeutic cancer vaccines and their importance in immune monitoring. J Biomed Biotechnol. 2011;2011:182413. doi:10.1155/2011/182413.
  • De Veirman K, Rao L, De Bruyne E, Menu E, Van Valckenborgh E, Van Riet I, Frassanito MA, Di Marzo L, Vacca A, Vanderkerken K. Cancer associated fibroblasts and tumor growth: focus on multiple myeloma. Cancers. 2014;6(3):1363–1381. doi:10.3390/cancers6031363.
  • Guan J, Chen J. Mesenchymal stem cells in the tumor microenvironment. Biomed Reports. 2013;1(4):517–521. doi:10.3892/br.2013.103.
  • Ribas A, Camacho LH, Lopez-Berestein G, Pavlov D, Bulanhagui CA, Millham R, Comin-Anduix B, Reuben JM, Seja E, Parker CA, et al. Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clinical Oncology: Official Journal Am Soc Clin Oncol. 2005;23(35):8968–8977. doi:10.1200/JCO.2005.01.109.
  • Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, O’Malley KA, Wynn JL, Antonenko S, Al-Quran SZ, et al. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med. 2007;204(6):1463–1474. doi:10.1084/jem.20062602.
  • Goni O, Alcaide P, Fresno M. Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1(+))CD11b(+)immature myeloid suppressor cells. Int Immunol. 2002;14(10):1125–1134.
  • Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, Leenen PJM. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunology. 2004;172(7):4410–4417. doi:10.4049/jimmunol.172.7.4410.
  • Zhu B, Bando Y, Xiao S, Yang K, Anderson AC, Kuchroo VK, Khoury SJ. CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J Immunology. 2007;179(8):5228–5237. doi:10.4049/jimmunol.179.8.5228.
  • Guruvayoorappan C. Tumor versus tumor-associated macrophages: how hot is the link?. Integr Cancer Ther. 2008;7(2):90–95. doi:10.1177/1534735408319060.
  • Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PloS one. 2009;4(11):e7965. doi:10.1371/journal.pone.0007965.
  • Nizar S, Copier J, Meyer B, Bodman-Smith M, Galustian C, Kumar D, Dalgleish A. T-regulatory cell modulation: the future of cancer immunotherapy? Br J Cancer. 2009;100(11):1697–1703. doi:10.1038/sj.bjc.6605040.
  • Liston A. Is foxp3 the master regulator of regulatory T cells? Prog Mol Biol Transl Sci. 2010;92:315–317. doi:10.1016/S1877-1173(10)92017-6.
  • Beyer M, Schultze JL. Regulatory T cells in cancer. Blood. 2006;108(3):804–811. doi:10.1182/blood-2006-02-002774.
  • Nizar S, Meyer B, Galustian C, Kumar D, Dalgleish A. T regulatory cells, the evolution of targeted immunotherapy. Biochim Biophys Acta. 2010;1806(1):7–17. doi:10.1016/j.bbcan.2010.02.001.
  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Pillars article: immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995. J Immunology. 2011;186(7):3808–3821.
  • Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192(2):295–302.
  • McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, Byrne MC. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 2002;16(2):311–323.
  • Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, Hipkiss EL, Ravi S, Kowalski J, Levitsky HI, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21(4):503–513. doi:10.1016/j.immuni.2004.08.010.
  • Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, Solomon M, Selby W, Alexander SI, Nanan R, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. 2006;203(7):1693–1700. doi:10.1084/jem.20060468.
  • Corthay A. How do regulatory T cells work? Scand J Immunol. 2009;70(4):326–336. doi:10.1111/j.1365-3083.2009.02308.x.
  • Orentas RJ, Kohler ME, Johnson BD. Suppression of anti-cancer immunity by regulatory T cells: back to the future. Semin Cancer Biol. 2006;16(2):137–149. doi:10.1016/j.semcancer.2005.11.007.
  • Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer J Int Du Cancer. 2010;127(4):759–767. doi:10.1002/ijc.25429.
  • Kimpfler S, Sevko A, Ring S, Falk C, Osen W, Frank K, Kato M, Mahnke K, Schadendorf D, Umansky V. Skin melanoma development in ret transgenic mice despite the depletion of CD25+Foxp3+ regulatory T cells in lymphoid organs. J Immunology. 2009;183(10):6330–6337. doi:10.4049/jimmunol.0900609.
  • Menetrier-Caux C, Gobert M, Caux C. Differences in tumor regulatory T-cell localization and activation status impact patient outcome. Cancer Res. 2009;69(20):7895–7898. doi:10.1158/0008-5472.CAN-09-1642.
  • Zhao H, Liao X, Kang Y. Tregs: where we are and what comes next? Front Immunol. 2017;8:1578. doi:10.3389/fimmu.2017.01578.
  • Hua J, Inomata T, Chen Y, Foulsham W, Stevenson W, Shiang T, Bluestone JA, Dana R. Pathological conversion of regulatory T cells is associated with loss of allotolerance. Sci Rep. 2018;8(1):7059. doi:10.1038/s41598-018-25384-x.
  • Ahmad M, Rees RC, Ali SA. Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother: CII. 2004;53(10):844–854. doi:10.1007/s00262-004-0540-x.
  • Terabe M, Berzofsky JA. Immunoregulatory T cells in tumor immunity. Curr Opin Immunol. 2004;16(2):157–162. doi:10.1016/j.coi.2004.01.010.
  • Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, Verjee SS, Jones LA, Hershberg RM. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clinical Oncology: Official Journal Am Soc Clin Oncol. 2006;24(19):3089–3094. doi:10.1200/JCO.2005.04.5252.
  • Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res. 2003;9(2):606–612.
  • Viguier M, Lemaitre F, Verola O, Cho MS, Gorochov G, Dubertret L, Bachelez H, Kourilsky P, Ferradini L. Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunology. 2004;173(2):1444–1453. doi:10.4049/jimmunol.173.2.1444.
  • Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest. 2005;115(12):3623–3633. doi:10.1172/JCI25947.
  • Almeida AR, Legrand N, Papiernik M, Freitas AA. Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J Immunology. 2002;169(9):4850–4860. doi:10.4049/jimmunol.169.9.4850.
  • Taniguchi T, Minami Y. The IL-2/IL-2 receptor system: a current overview. Cell. 1993;73(1):5–8.
  • Bulliard Y, Jolicoeur R, Zhang J, Dranoff G, Wilson NS, Brogdon JL. OX40 engagement depletes intratumoral Tregs via activating FcgammaRs, leading to antitumor efficacy. Immunol Cell Biol. 2014;92(6):475–480. doi:10.1038/icb.2014.26.
  • Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E. Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res. 2007;67(1):371–380. doi:10.1158/0008-5472.CAN-06-2903.
  • Lahl K, Sparwasser T. In vivo depletion of FoxP3+ Tregs using the DEREG mouse model. Methods Mol Biol. 2011;707:157–172. doi:10.1007/978-1-61737-979-6_10.
  • Klages K, Mayer CT, Lahl K, Loddenkemper C, Teng MW, Ngiow SF, Smyth MJ, Hamann A, Huehn J, Sparwasser T. Selective depletion of Foxp3+ regulatory T cells improves effective therapeutic vaccination against established melanoma. Cancer Res. 2010;70(20):7788–7799. doi:10.1158/0008-5472.CAN-10-1736.
  • Franco-Molina MA, Miranda-Hernandez DF, Mendoza-Gamboa E, Zapata-Benavides P, Coronado-Cerda EE, Sierra-Rivera CA, Saavedra-Alonso S, Taméz-Guerra RS, Rodríguez-Padilla C. Silencing of Foxp3 delays the growth of murine melanomas and modifies the tumor immunosuppressive environment. Onco Targets Ther. 2016;9:243–253. doi:10.2147/OTT.S90476.
  • Miguel A, Sendra L, Noe V, Ciudad CJ, Dasi F, Hervas D, Herrero MJ, Aliño SF. Silencing of Foxp3 enhances the antitumor efficacy of GM-CSF genetically modified tumor cell vaccine against B16 melanoma. Onco Targets Ther. 2017;10:503–514. doi:10.2147/OTT.S104393.
  • Santori FR, Arsov I, Vukmanovic S. Modulation of CD8+ T cell response to antigen by the levels of self MHC class I. J Immunology. 2001;166(9):5416–5421. doi:10.4049/jimmunol.166.9.5416.
  • Mousavi Niri N, Memarnejadian A, Hadjati J, Aghasadeghi MR, Shokri M, Pilehvar-Soltanahmadi Y, Akbarzadeh A, Zarghami N. Construction and Production of Foxp3-Fc (IgG) DNA Vaccine/Fusion Protein. Avicenna J Med Biotechnol. 2016;8(2):57–64.
  • Mousavi Niri N, Memarnejadian A, Pilehvar-Soltanahmadi Y, Agha Sadeghi M, Mahdavi M, Kheshtchin N, Arab S, Namdar A, Jadidi F, Zarghami N, et al. Improved anti-treg vaccination targeting Foxp3 Efficiently decreases regulatory T cells in mice. J Immunotherapy. 2016;39(7):269–275. doi:10.1097/CJI.0000000000000133.
  • You Z, Huang X, Hester J, Toh HC, Chen SY. Targeting dendritic cells to enhance DNA vaccine potency. Cancer Res. 2001;61(9):3704–3711.
  • Zizzari IG, Veglia F, Taurino F, Rahimi H, Quaglino E, Belleudi F, Riccardo F, Antonilli M, Napoletano C, Bellati F, et al. HER2-based recombinant immunogen to target DCs through FcgammaRs for cancer immunotherapy. J Mol Med. 2011;89(12):1231–1240. doi:10.1007/s00109-011-0794-7.
  • Dorgham K, Abadie V, Iga M, Hartley O, Gorochov G, Combadière B. Engineered CCR5 superagonist chemokine as adjuvant in anti-tumor DNA vaccination. Vaccine. 2008;26(26):3252–3260. doi:10.1016/j.vaccine.2008.04.003.
  • Palucka K, Banchereau J, Mellman I. Designing vaccines based on biology of human dendritic cell subsets. Immunity. 2010;33(4):464–478. doi:10.1016/j.immuni.2010.10.007.
  • Niri NM, Hadjati J, Sadat M, Memarnejadian A, Aghasadeghi M, Akbarzadeh A, Zarghami N. Inducing Humoral Immune Responses Against Regulatory T Cells by Foxp3-Fc(IgG) Fusion Protein. Monoclon Antib Immunodiagn Immunother. 2015;34(6):381–385. doi:10.1089/mab.2015.0048.
  • Estcourt MJ, McMichael AJ, Hanke T. DNA vaccines against human immunodeficiency virus type 1. Immunol Rev. 2004;199:144–155. doi:10.1111/j.0105-2896.2004.00151.x.
  • Ruter J, Barnett BG, Kryczek I, Brumlik MJ, Daniel BJ, Coukos G, Zou W, Curiel TJ. Altering regulatory T cell function in cancer immunotherapy: a novel means to boost the efficacy of cancer vaccines. Front Biosci. 2009;14:1761–1770. doi:10.2741/3338.
  • Namdar A, Mirzaei R, Memarnejadian A, Boghosian R, Samadi M, Mirzaei HR, Farajifard H, Zavar M, Azadmanesh K, Elahi S, et al. Prophylactic DNA vaccine targeting Foxp3(+) regulatory T cells depletes myeloid-derived suppressor cells and improves anti-melanoma immune responses in a murine model. Cancer Immunol Immunother: CII. 2018;67(3):367–379. doi:10.1007/s00262-017-2088-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.