2,478
Views
18
CrossRef citations to date
0
Altmetric
Review

Vaccines for leishmaniasis and the implications of their development for American tegumentary leishmaniasis

ORCID Icon, ORCID Icon & ORCID Icon
Pages 919-930 | Received 01 Jul 2019, Accepted 06 Oct 2019, Published online: 11 Nov 2019

References

  • WHO. Leishmaniasis Fact Sheet. World Health Organization; [ cited 2019 April 1]. Published 2017. Available from: https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis
  • Gillespie PM, Beaumier CM, Strych U, Hayward T, Hotez PJ, Bottazzi ME. Status of vaccine research and development of vaccines for leishmaniasis. Vaccine. 2016;34(26):2992–95. doi:10.1016/j.vaccine.2015.12.071.
  • de Vries HJC, Reedijk SH, Schallig HDFH. Cutaneous leishmaniasis: recent developments in diagnosis and management. Am J Clin Dermatol. 2015;16(2):99–109. doi:10.1007/s40257-015-0114-z.
  • Pearson RD, Sousa ADQ. Clinical spectrum of leishmaniasis. Clin Infect Dis. 2010;22(1):1–13. doi: 10.1093/clinids/22.1.1.
  • Mayrink W, De Carvalho Botelho AC, Magalhães PA, Batista SM, Lima ADO, Genaro O, Costa CAD, Melo MND, Michalick MSM, Williams P, et al. Immunotherapy, immunochemotherapy and chemotherapy for American cutaneous leishmaniasis treatment. Rev Soc Bras Med Trop. 2006;39(1):14–21. doi:10.1590/S0037-86822006000100003.
  • Brelaz MCA, De Oliveira AP, De Almeida AF, de Assis Souza M, Medeiros ÂC, de Brito ME, Pereira VR. Antigenic fractions of Leishmania (Viannia) braziliensis: the immune response characterization of patients at the initial phase of disease. Parasite Immunol. 2012;34(4):236–39. doi:10.1111/j.1365-3024.2012.01351.x.
  • Reis LDC, Edileuza M, De Brito F, De Assis M. Mecanismos Imunologicos na resposta celular e humoral na leishmaniose tegumentar Americana. Revista de Patologia Tropical. 2006;35(81):103–15.
  • Ribeiro-Gomes FL, Peters NC, Debrabant A, Sacks DL. Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-leishmania response. PLoS Pathog. 2012;8(2):e1002536. doi:10.1371/journal.ppat.1002536.
  • Scott P, Novais FO. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol. 2016;16:581–92. doi:10.1038/nri.2016.72.
  • Alexander J, Brombacher F. T helper1/T helper2 cells and resistance/susceptibility to Leishmania infection: is this paradigm still relevant? Front Immunol. 2012;3(APR):1–13. doi:10.3389/fimmu.2012.00080.
  • Souza MDA, Castro MCABD, Oliveira APD, Oliveira BC, Almeida AF, Almeida TMD, Pereira VRA. Immunity against leishmaniasis. New York: Nova Science Publishers; 2013.
  • Lainson R, Shaw JJ. Leishmaniasis in Brazil: XII. Observations on cross-immunity in monkeys and man infected with Leishmania mexicana mexicana, L. m. amazonensis, L. braziliensis braziliensis, L. b. guyanensis and L. b. panamensis. J Trop Med Hyg. 1977;80:29–35.
  • Porrozzi R, Teva A, Amaral V, Da Costa MV, Grimaldi G. Cross-immunity experiments between different species or strains of Leishmania in rhesus macaques (Macaca Mulatta). Am J Trop Med Hyg. 2018;71(3):297–305. doi:10.4269/ajtmh.2004.71.297.
  • Brito ME, Mendonça M, Gomes Y, Jardim M, Abath FG. Dynamics of the antibody response in patients with therapeutic or spontaneous cure of American cutaneous leishmaniasis. Trans R Soc Trop Med Hyg. 2001;95(2):203–06. doi:10.1016/S0035-9203(01)90168-3.
  • Carvalho EM, Filho DC, Bacellar O, Almeida RP, Lessa H, Rocha H. Characterization of the immune response in subjects with self-healing cutaneous leishmaniasis. Am J Trop Med Hyg. 2017;53(3):273–77. doi:10.4269/ajtmh.1995.53.273.
  • Peters NC, Pagán AJ, Lawyer PG, Hand TW, Henrique Roma E, Stamper LW, Romano A, Sacks DL. Chronic parasitic infection maintains high frequencies of short-lived Ly6C+CD4+ effector T cells that are required for protection against re-infection. PLoS Pathog. 2014;10:12. doi:10.1371/journal.ppat.1004538.
  • De Luca PM, Macedo ABB. Cutaneous leishmaniasis vaccination: A matter of quality. Front Immunol. 2016. doi:10.3389/fimmu.2016.00151.
  • Kostka L, Dinges S, Griewank K, Iwakura Y. Udey MC von SE. IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice. J Immunol. 2010;182(5):3039–46. doi:10.4049/jimmunol.0713598.IL-17.
  • Kaye P, Scott P. Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol. 2011;9(8):604–15. doi:10.1038/nrmicro2608.
  • Bahrami F, Harandi AM, Rafati S. Biomarkers of cutaneous leishmaniasis. Front Cell Infect Microbiol. 2018;8. doi:10.3389/fcimb.2018.00222.
  • Glennie ND, Scott P. Memory T cells in cutaneous leishmaniasis. Cell Immunol. 2016;309:50–54. doi:10.1016/j.cellimm.2016.07.010.
  • Silva RF, Ferreira LFGR, Hernandes MZ, de Brito MEF, de Oliveira BC, da Silva AA, de-Melo-Neto OP, Rezende AM, Pereira VRA. Combination of in silico methods in the search for potential CD4+ and CD8+ T cell epitopes in the proteome of leishmania braziliensis. Front Immunol. 2016;7(AUG). doi:10.3389/fimmu.2016.00327.
  • Brito RCF, Guimarães FG, Velloso JPL, Corrêa-Oliveira R, Ruiz J, Reis A, Resende D. Immunoinformatics features linked to Leishmania vaccine development: data integration of experimental and in silico studies. Int J Mol Sci. 2017;18(2):1–18. doi:10.3390/ijms18020371.
  • Srivastava S, Shankar P, Mishra J, Singh S. Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasites Vectors. 2016;9(1):1–15. doi:10.1186/s13071-016-1553-y.
  • Marcondes M, Day MJ. Current status and management of canine leishmaniasis in Latin America. Res Vet Sci. 2019;123(January):261–72. doi:10.1016/j.rvsc.2019.01.022.
  • Parra LE, Borja-Cabrera GP, Santos FN, Souza LOP, Palatnik-de-Sousa CB, Menz I. Safety trial using the Leishmune® vaccine against canine visceral leishmaniasis in Brazil. Vaccine. 2007;25(12):2180–86. doi:10.1016/j.vaccine.2006.11.057.
  • Starita C, Gavazza A, Lubas G. Hematological, biochemical, and serological findings in healthy canine blood donors after the administration of CaniLeish® vaccine. Vet Med Int. 2016;2016:1–6. doi:10.1155/2016/4601893.
  • Palatnik-de-Sousa CB. Vaccines for leishmaniasis in the fore coming 25 years. Vaccine. 2008;26(14):1709–24. doi:10.1016/j.vaccine.2008.01.023.
  • Seyed N, Peters NC, Rafati S. Translating observations from leishmanization into non-living vaccines: the potential of dendritic cell-based vaccination strategies against Leishmania. Front Immunol. 2018;9(JUN):1–10. doi:10.3389/fimmu.2018.01227.
  • De Luca P, Mayrink W, Pinto J, Coutinho SG, Santiago MA, Toledo VP, Costa CA, Genaro O, Reis AB, Mendonça SCF, et al. A randomized double-blind placebo-controlled trial to evaluate the immunogenicity of a candidate vaccine against American tegumentary leishmaniasis. Acta Trop. 2001;80(3):251–60. doi:10.1016/S0001-706X(01)00181-4.
  • Mayrink W, Mendonça-Mendes A, de Paula JC, Siqueira LMV, Marrocos SDR, Dias ES, de Andrade HM, Machado-Coelho GLL. Cluster randomised trial to evaluate the effectiveness of a vaccine against cutaneous leishmaniasis in the caratinga microregion, south-east brazil. Trans R Soc Trop Med Hyg. 2013;107(4):212–19. doi:10.1093/trstmh/trt006.
  • Vélez ID, Gilchrist K, Martínez S, Ramírez-Pineda JR, Ashman JA, Alves FP, Coler RN, Bogatzki LY, Kahn SJ, Beckmann AM, et al. Safety and immunogenicity of a defined vaccine for the prevention of cutaneous leishmaniasis. Vaccine. 2009;28(2):329–37. doi:10.1016/j.vaccine.2009.10.045.
  • Gomes R, Teixeira C, Oliveira F, Lawyer PG, Elnaiem D-E, Meneses C, Goto Y, Bhatia A, Howard RF, Reed SG, et al. KSAC, a defined Leishmania antigen, plus adjuvant protects against the virulence of L. major transmitted by its natural vector Phlebotomus duboscqi. PLoS Negl Trop Dis. 2012;6(4):e1610. doi:10.1371/journal.pntd.0001610.
  • Kocourkova A, Honegr J, Kuca K, Danova J. Vaccine ingredients: components that influence vaccine efficacy. Mini-Reviews Med Chem. 2017;17(5):451–66. doi:10.2174/1389557516666160801103303.
  • Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol. 2009;30(1):23–32. doi:10.1016/j.it.2008.09.006.
  • Raman VS, Duthie MS, Fox CB, Matlashewski G, Reed SG. Adjuvants for Leishmania vaccines: from models to clinical application. Front Immunol. 2012;3(JUN):1–15. doi:10.3389/fimmu.2012.00144.
  • Carter D, Fox CB, Day TA, Guderian JA, Liang H, Rolf T, Vergara J, Sagawa ZK, Ireton G, Orr MT, et al. A structure-function approach to optimizing TLR4 ligands for human vaccines. Clin Transl Immunol. 2016;5(11):e108. doi:10.1038/cti.2016.63.
  • Baldridge JR, McGowan P, Evans JT, Cluff C, Mossman S, Johnson D, Persing D. Taking a toll on human disease: toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents. Expert Opin Biol Ther. 2004;4(7):1129–38. doi:10.1517/14712598.4.7.1129.
  • Coler RN, Bertholet S, Moutaftsi M, Guderian JA, Windish HP, Baldwin SL, Laughlin EM, Duthie MS, Fox CB, Carter D, et al. Development and characterization of synthetic glucopyranosyl lipid adjuvant system as a vaccine adjuvant. PLoS One. 2011;6(1):1–12. doi:10.1371/journal.pone.0016333.
  • Duthie MS, Raman VS, Piazza FM, Reed SG. The development and clinical evaluation of second-generation leishmaniasis vaccines. Vaccine. 2012;30(2):134–41. doi:10.1016/j.vaccine.2011.11.005.
  • Coler RN, Skeiky YAW, Bernards K, Greeson K, Carter D, Cornellison CD, Modabber F, Campos-Neto A, Reed SG. Immunization with a polyprotein vaccine consisting of the T-cell antigens thiol-specific antioxidant, leishmania major stress-inducible protein 1, and leishmania elongation initiation factor protects against leishmaniasis. Infect Immun. 2002;70(8):4215–25. doi:10.1128/IAI.70.8.4215-4225.2002.
  • Alcolea PJ, Alonso A, Larraga V. Rationale for selection of developmentally regulated genes as vaccine candidates against leishmania infantum infection. Vaccine. 2016;34(46):5474–78. doi:10.1016/j.vaccine.2016.08.081.
  • Seyed N, Taheri T, Rafati S. Post-genomics and vaccine improvement for leishmania. Front Microbiol. 2016;7(APR):1–13. doi:10.3389/fmicb.2016.00467.
  • Rappuoli R. Reverse vaccinology. Curr Opin Microbiol. 2000;3:445–50. doi:10.1016/S1369-5274(00)00119-3.
  • De Groot AS. Exploring the immunome: A brave new world for human vaccine development. Hum Vaccin. 2009;5(12):790–93. doi:10.4161/hv.10683.
  • Doolan DL, Weiss WR, Sette A, Felgner PL, Regis DP, Quinones-Casas P, Yates JR, Blair PL, Richie TL, Hoffman SL. Utilization of genomic sequence information to develop malaria vaccines. J Exp Biol. 2003;206(21):3789–802. doi:10.1242/jeb.00615.
  • John L, John GJ, Kholia T. A reverse vaccinology approach for the identification of potential vaccine candidates from leishmania spp. Appl Biochem Biotechnol. 2012;167(5):1340–50. doi:10.1007/s12010-012-9649-0.
  • Agallou M, Koutsoni O, Dotsika E, Karagouni E In silico prediction of promiscuous Leishmania infantum KMP-11, H1, LeIF, CPA, CPB peptides and experimental validation of eliciting CD4+ and CD8+ T-cell specific responses. 15th International Congress of Immunology (ICI), 2013 Aug 22–27; Milan, Italy..
  • Agallou M, Margaroni M, Athanasiou E, Toubanaki DK, Kontonikola K, Karidi K, Kammona O, Kiparissides C, Karagouni E. Identification of BALB/c immune markers correlated with a partial protection to Leishmania infantum after vaccination with a rationally designed multi-epitope cysteine protease a peptide-based nanovaccine. PLoS Negl Trop Dis. 2017;11(1):1–27. doi:10.1371/journal.pntd.0005311.
  • Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl. 2016;10(9–10):922–48. doi:10.1002/prca.201600002.
  • Carvalho GB, Costa LE, Lage DP, Ramos FF, Santos TTO, Ribeiro PAF, Dias DS, Salles BCS, Lima MP, Carvalho LM, et al. High-through identification of T cell-specific phage-exposed mimotopes using PBMCs from tegumentary leishmaniasis patients and their use as vaccine candidates against Leishmania amazonensis infection. Parasitology. 2019;146(3):322–32. doi:10.1017/S0031182018001403.
  • Salvador I, Carlos SJ, María RJ, Manuel S. Vaccine candidates against leishmania under current research. Expert Rev Vaccines. 2018;17(4):323–34. doi:10.1080/14760584.2018.1459191.
  • Saljoughian N, Taheri T, Rafati S. Live vaccination tactics: possible approaches for controlling visceral leishmaniasis. Front Immunol. 2014;5(MAR):1–11. doi:10.3389/fimmu.2014.00134.
  • Convit J, Ulrich M, Zerpa O, Borges R, Aranzazu N, Valera M, Villarroel H, Zapata Z, Tomedes I. Immunotherapy of American cutaneous leishmaniasis in Venezuela during the period 1990–99. Trans R Soc Trop Med Hyg. 2003;97(4):469–72.
  • Convit J, Ulrich M, Polegre MA, Avila A, Rodríguez N, Mazzedo MI, Blanco B. Therapy of venezuelan patients with severe mucocutaneous or early lesions of diffuse cutaneous leishmaniasis with a vaccine containing pasteurized Leishmania promastigotes and bacillus calmette-guerin - preliminary report. 2004;99(February):57–62. doi:10.1590/s0074-02762004000100010.
  • Ghorbani M, Farhoudi R. Leishmaniasis in humans: drug or vaccine therapy? Drug Des Devel Ther. 2018;12:25–40. doi:10.2147/DDDT.S146521.
  • Modabber F. Leishmaniasis vaccines: past, present and future. Int J Antimicrob Agents. 2010;36(SUPPL. 1):S58–S61. doi:10.1016/j.ijantimicag.2010.06.024.
  • Ginsberg AM. Designing tuberculosis vaccine efficacy trials – lessons from recent studies. Expert Rev Vaccines. 2019;18(5):423–32. doi:10.1080/14760584.2019.1593143.
  • Romano A, Doria NA, Mendez J, Sacks DL, Peters NC. Cutaneous infection with Leishmania major mediates heterologous protection against visceral infection with Leishmania infantum. J Immunol. 2015;195(8):3816–27. doi:10.4049/jimmunol.1500752.
  • Breton M, Tremblay MJ, Ouellette M, Papadopoulou B. Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis. Infect Immun. 2005;73(10):6372–82. doi:10.1128/IAI.73.10.6372-6382.2005.
  • Okwor I, Mou Z, Liu D, Uzonna J. Protective immunity and vaccination against cutaneous leishmaniasis. Front Immunol. 2012;3(MAY). doi:10.3389/fimmu.2012.00128.
  • Costa CHN, Peters NC, Maruyama SR, de Brito EC Jr, de Miranda Santos IK. Vaccines for the leishmaniases: proposals for a research Agenda. PLoS Negl Trop Dis. 2011;5(3):1–9. doi:10.1371/journal.pntd.0000943.
  • Whyte DC, Zufferey R. Cutaneous Leishmaniasis: update on vaccine development. Hum Parasit Dis. 2018. doi:10.4137/hpd.s16588.
  • Okwor I, Uzonna J. Persistent parasites and immunologic memory in cutaneous leishmaniasis: implications for vaccine designs and vaccination strategies. Immunol Res. 2008;41(2):123–36. doi:10.1007/s12026-008-8016-2.
  • Viana SM, Celes FS, Ramirez L, Kolli B, Ng DK, Chang KP, De Oliveira CI. Photodynamic vaccination of BALB/c mice for prophylaxis of cutaneous leishmaniasis caused by Leishmania amazonensis. Front Microbiol. 2018;9(FEB):1–10. doi:10.3389/fmicb.2018.00165.
  • Stewart J, Curtis J, Spurck TP, Ilg T, Garami A, Baldwin T, Courret N, McFadden GI, Davis A, Handman E, et al. Characterisation of a Leishmania mexicana knockout lacking guanosine diphosphate-mannose pyrophosphorylase. Int J Parasitol. 2005;35:861–73. doi:10.1016/j.ijpara.2005.03.008.
  • Heravi Shargh V, Jaafari MR, Khamesipour A, Jalali SA, Firouzmand H, Abbasi A, Badiee A. Cationic liposomes containing soluble Leishmania antigens (SLA) plus CpG ODNs induce protection against murine model of leishmaniasis. Parasitol Res. 2012;111(1):105–14. doi:10.1007/s00436-011-2806-5.
  • Rostamian M, Bahrami F, Niknam HM. Vaccination with whole-cell killed or recombinant leishmanial protein and toll-like receptor agonists against Leishmania tropica in BALB/c mice. PLoS One. 2018;13:e0204491. doi:10.1371/journal.pone.0204491.
  • Pratti JES, da Fonseca Martins AM, da Silva JP, Ramos TD, Pereira JC, Firmino-Cruz L, Oliveira-Maciel D, Vieira TSDS, Lacerda LL, Vale AM, et al. The role of TLR9 on Leishmania amazonensis infection and its influence on intranasal LaAg vaccine efficacy. PLoS Negl Trop Dis. 2019;13(2):e0007146. doi:10.1371/journal.pntd.0007146.
  • Ilg T, Demar M, Harbecke D. Phosphoglycan repeat-deficient Leishmania mexicana parasites remain infectious to macrophages and mice. J Biol Chem. 2001;276(7):4988–97. doi:10.1074/jbc.M008030200.
  • Uzonna JE, Spath GF, Beverley SM, Scott P. Vaccination with phosphoglycan-deficient Leishmania major protects highly susceptible mice from virulent challenge without inducing a strong Th1 response. J Immunol. 2014;172(6):3793–97. doi:10.4049/jimmunol.172.6.3793.
  • Elikaee S, Mohebali M, Rezaei S, Eslami H, Khamesipour A, Keshavarz H, Eshraghian MR. Development of a new live attenuated Leishmania major p27 gene knockout: safety and immunogenicity evaluation in BALB/c mice. Cell Immunol. 2018;332(July):24–31. doi:10.1016/j.cellimm.2018.07.002.
  • Mitchell GF, Handman E, Spithill TW. Vaccination against cutaneous leishmaniasis in mice using nonpathogenic cloned promastigotes of Leishmania major and importance of route of injection. Immunol Cell Biol. 1984;62(2):145–53. doi:10.1038/icb.1984.14.
  • Gorczynski R. Immunization of Susceptible BALB/c Mice against Leishmania braziliensis. Cell Immunol. 1985;94(1):11–20. doi:10.1016/0008-8749(85)90081-4.
  • Kimsey PB, Theodos CM, Mitchen TK, Turco SJ, Titus RG. An avirulent lipophosphoglycan-deficient Leishmania major clone induces CD4+ T cells which protect susceptible BALB/c mice against infection with virulent L. major. Infect Immun. 1993;61:5205–13.
  • Rivier D, Bovay P, Shah R, Didisheim S, Mauël J. Vaccination against Leishmania major in a CBA mouse model of infection: role of adjuvants and mechanism of protection. Parasite Immunol. 1999;21(9):461–73. doi:10.1046/j.1365-3024.1999.00244.x.
  • Daneshvar H, Hagan P, Phillips RS. Leishmania mexicana H-line attenuated under pressure of gentamicin, potentiates a Th1 response and control of cutaneous leishmaniasis in BALB/c mice. Parasite Immunol. 2003;25(11–12):589–96. doi:10.1111/j.0141-9838.2004.00671.x.
  • Duncan SM, Jones NG, Mottram JC. Recent advances in Leishmania reverse genetics: manipulating a manipulative parasite. Mol Biochem Parasitol. 2017;216(April):30–38. doi:10.1016/j.molbiopara.2017.06.005.
  • Amaral VF, Teva A, Oliveira-Neto MP, Silva AJ, Pereira MS, Cupolillo E, Porrozzi R, Coutinho SG, Pirmez C, Beverley SM, et al. Study of the safety, immunogenicity and efficacy of attenuated and killed Leishmania (Leishmania) major vaccines in a rhesus monkey (Macaca mulatta) model of the human disease. Mem Inst Oswaldo Cruz. 2002;97(7):1041–48. doi:10.1590/S0074-02762002000700019.
  • Titus RG, Gueiros-Filho FJ, de Freitas LA, Beverley SM. Development of a safe live Leishmania vaccine line by gene replacement. Proc Natl Acad Sci. 2006;92(22):10267–71. doi:10.1073/pnas.92.22.10267.
  • Silvestre R, Cordeiro-Da-Silva A, Santarém N, Vergnes B, Sereno D, Ouaissi A. SIR2-deficient Leishmania infantum induces a defined IFN-gamma/IL-10 pattern that correlates with protection. J Immunol. 2007;179(5):3161–70. doi:10.4049/jimmunol.179.5.3161.
  • Buxbaum LU. A detrimental role for IgG and FcgammaR in Leishmania mexicana infection. Immunol Res. 2008;42(1–3):197–209. doi:10.1007/s12026-008-8074-5.
  • Shaw J. Ecological and evolutionary pressures on leishmanial parasites. Brazilian J Genet. 1997;20(1). doi:10.1590/S0100-84551997000100021.
  • Taylor VM, Muñoz DL, Cedeño DL, Vélez ID, Jones MA, Robledo SM. Leishmania tarentolae: utility as an in vitro model for screening of antileishmanial agents. Exp Parasitol. 2010;126(4):471–75. doi:10.1016/j.exppara.2010.05.016.
  • Abdossamadi Z, Seyed N, Zahedifard F, Taheri T, Taslimi Y, Montakhab-Yeganeh H, Badirzadeh A, Vasei M, Gharibzadeh S, Rafati S, et al. Human Neutrophil Peptide 1 as immunotherapeutic agent against Leishmania infected BALB/c mice. PLoS Negl Trop Dis. 2017;11(12):1–20. doi:10.1371/journal.pntd.0006123.
  • Montakhab-Yeganeh H, Abdossamadi Z, Zahedifard F, Taslimi Y, Badirzadeh A, Saljoughian N, Taheri T, Taghikhani M, Rafati S. Leishmania tarentolae expressing CXCL-10 as an efficient immunotherapy approach against Leishmania major-infected BALB/c mice. Parasite Immunol. 2017;39:10. doi:10.1111/pim.12461.
  • Katebi A, Gholami E, Taheri T, Zahedifard F, Habibzadeh S, Taslimi Y, Shokri F, Papadopoulou B, Kamhawi S, Valenzuela JG, et al. Leishmania tarentolae secreting the sand fly salivary antigen PpSP15 confers protection against Leishmania major infection in a susceptible BALB/c mice model. Mol Immunol. 2015;67(2):501–11. doi:10.1016/j.molimm.2015.08.001.
  • Sundar S, Singh B. Identifying vaccine targets for anti-leishmanial vaccine development. Expert Rev Vaccines. 2014;13(4):489–505. doi:10.1586/14760584.2014.894467.
  • Duarte MC, Lage DP, Martins VT, Costa LE, Carvalho AMRS, Ludolf F, Santos TTDO, Vale DL, Roatt BM, Menezes-Souza D, et al. A vaccine composed of a hypothetical protein and the eukaryotic initiation factor 5a from Leishmania braziliensis cross-protection against Leishmania amazonensis infection. Immunobiology. 2017;222(2):251–60. doi:10.1016/j.imbio.2016.09.015.
  • Graumann K, Premstaller A. Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol J. 2006;1(2):164–86. doi:10.1002/biot.200500051.
  • Josefsberg JO, Buckland B. Vaccine process technology. Biotechnol Bioeng. 2012;109(6):1443–60. doi:10.1002/bit.24493.
  • Bacon KM, Hotez PJ, Kruchten SD, Kamhawi S, Bottazzi ME, Valenzuela JG. The potential economic value of a cutaneous leishmaniasis vaccine in seven endemic countries in the Americas. Vaccine. 2014;31(3):480–86. doi:10.1016/j.vaccine.2012.11.032.The.
  • Salay G, Dorta ML, Santos NM, Mortara RA, Brodskyn C, Oliveira CI, Barbieri CL, Rodrigues MM. Testing of four Leishmania vaccine candidates in a mouse model of infection with Leishmania(Viannia) braziliensis, the main causative agent of cutaneous leishmaniasis in the NewWorld. Clin Vaccine Immunol CVI. 2007;14:1173–81. doi:10.1128/CVI.00060-07.
  • Campbell K, Diao H, Ji J, Soong L. DNA immunization with the gene encoding P4 nuclease of Leishmania amazonensis protects mice against cutaneous Leishmaniasis. Infect Immun. 2003;71:6270–78. doi:10.1128/IAI.71.11.6270-6278.2003.
  • Fedeli CE, Ferreira JH, Mussalem JS, Longo-Maugeri IM, Gentil LG, Dos Santos MR, Katz S, Barbiéri CL. Partial protective responses induced by a recombinant cysteine proteinase from Leishmania (Leishmania) amazonensis in a murine model of cutaneous leishmaniasis. Exp Parasitol. 2010;124:153–58. doi:10.1016/j.exppara.2009.09.003.
  • Montalvo-Alvarez AM, Folgueira C, Carrion J, Monzote-Fidalgo L, Canavate C, Requena JM. The Leishmania HSP20 is antigenic during natural infections, but, as DNA vaccine, it does not protect BALB/c mice against experimental L. amazonensis infection. J Biomed Biotechnol. 2008;2008:695432. doi:10.1155/2008/695432.
  • Champsi J, McMahon-Pratt D. Membrane glycoprotein M-2 protects against Leishmania amazonensis infection. Infect Immun. 1988;56:3272–79.
  • Gonzalez CR, Noriega FR, Huerta S, Santiago A, Vega M, Paniagua J, Ortiz-Navarrete V, Isibasi A, Levine MM. Immunogenicity of a Salmonella typhi CVD 908 candidate vaccine strain expressing the major surface protein gp63 of Leishmania Mexicana mexicana. Vaccine. 1998;16:1043–52. doi:10.1016/S0264-410X(97)00267-3.
  • Mendez S, Gurunathan S, Kamhawi S, Belkaid Y, Moga MA, Skeiky YA, Campos-Neto A, Reed S, Seder RA, Sacks D, et al. The potency and durability of DNA- and protein-based vaccines against Leishmania major evaluated using low-dose, intradermal challenge. J Immunol. 2001;166:5122–28. doi:10.4049/jimmunol.166.8.5122.
  • Rivier D, Bovay P, Shah R, Didisheim S, Mauel J. Vaccination against Leishmania major in a CBA mouse model of infection: role of adjuvants and mechanism of protection. Parasite Immunol. 1999;21:461–73. doi:10.1046/j.1365-3024.1999.00244.x.
  • Sjolander A, Baldwin TM, Curtis JM, Bengtsson KL, Handman E. Vaccination with recombinant Parasite Surface Antigen 2 from Leishmania major induces a Th1 type of immune response but does not protect against infection. Vaccine. 1998;16:2077–84. doi:10.1016/S0264-410X(98)00075-9.
  • Webb JR, Campos-Neto A, Ovendale PJ, Martin TI, Stromberg EJ, Badaro R, Reed SG. Human and murine immune responses to a novel Leishmania major recombinant protein encoded by members of a multicopy gene family. Infect Immun. 1998;66:3279–89.
  • Solioz N, Blum-Tirouvanziam U, Jacquet R, Rafati S, Corradin G, Mauel J, Fasel N. The protective capacities of histone H1 against experimental murine cutaneous leishmaniasis. Vaccine. 1999;18:850–59. doi:10.1016/S0264-410X(99)00340-0.
  • Soussi N, Milon G, Colle JH, Mougneau E, Glaichenhaus N, Goossens PL. Listeria monocytogenes as a short-lived delivery system for the induction of type 1 cell-mediated immunity against the p36/LACK antigen of Leishmania major. Infect Immun. 2000;68:1498–506. doi:10.1128/IAI.68.3.1498-1506.2000.
  • Mougneau E, Altare F, Wakil A, Zheng S, Coppola T, Wang Z, Waldmann R, Locksley R, Glaichenhaus N. Expression cloning of a protective Leishmania antigen. Science. 1995;268(5210):563–66. doi:10.1126/science.7725103.
  • Gurunathan S, Sacks DL, Brown DR, Reiner SL, Charest H, Glaichenhaus N, Seder RA. Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. J Exp Med. 1997;186(7):1137–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9314562%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2199076
  • Chenik M, Louzir H, Ksontini H, Dilou A, Abdmouleh I, Dellagi K. Vaccination with the divergent portion of the protein histone H2B of Leishmania protects susceptible BALB/c mice against a virulent challenge with Leishmania major. Vaccine. 2006;24(14):2521–29. doi:10.1016/j.vaccine.2005.12.027.
  • Masina S, Gicheru M, Demotz SO, Fasel NJ. Protection against cutaneous leishmaniasis in outbred vervet monkeys, using a recombinant histone H1 antigen. J Infect Dis. 2003;188(8):1250–57. doi:10.1086/378677.
  • Olobo JO, Anjili CO, Gicheru MM, Mbati PA, Kariuki TM, Githure JI, Koech DK, McMaster WR. Vaccination of vervet monkeys against cutaneous leishmaniosis using recombinant Leishmania “major surface glycoprotein” (gp63). Vet Parasitol. 1995;60(3–4):199–212. doi:10.1016/0304-4017(95)00788-6.
  • Abdelhak S, Louzir H, Timm J, Blel L, Benlasfar Z, Lagranderie M, Gheorghiu M, Dellagi K, Gicquel B. Recombinant BCG expressing the leishmania surface antigen Gp63 induces protective immunity against. Microbiology. 1995;141:1585–92. doi:10.1099/13500872-141-7-1585.
  • González CR, Noriega FR, Huerta S, Santiago A, Vega M, Paniagua J, Ortiz-Navarrete V, Isibasi A, Levine MM. Immunogenicity of a Salmonella typhi CVD 908 candidate vaccine strain expressing the major surface protein gp63 of Leishmania mexicana mexicana. Vaccine. 1998;16(9–10):1043–52. doi:10.1016/S0264-410X(97)00267-3.
  • Goto Y, Bhatia A, Raman VS, Vidal SEZ, Bertholet S, Coler RN, Howard RF, Reed SG. Leishmania infantum sterol 24-c-methyltransferase formulated with MPL-SE induces cross-protection against L. major infection. Vaccine. 2009;27(21):2884–90. doi:10.1016/j.vaccine.2009.02.079.
  • Alves-Silva MV, Nico D, Morrot A, Palatnik M, Palatnik-de-Sousa CB. A chimera containing CD4+ and CD8+ T-cell epitopes of the Leishmania donovani nucleoside hydrolase (NH36) optimizes cross-protection against Leishmania amazonesis infection. Front Immunol. 2017;8(FEB). doi:10.3389/fimmu.2017.00100.
  • Alves-Silva MV, Nico D, de Luca PM, Palatnik De-sousa CB. The F1F3 recombinant chimera of Leishmania donovani-Nucleoside Hydrolase (NH36) and its epitopes induce cross-protection against Leishmania (V.) braziliensis infection in mice. Front Immunol. 2019;10(April):1–21. doi:10.3389/fimmu.2019.00724.
  • Ramírez L, Santos DM, Souza AP, Coelho EAF, Barral A, Alonso C, Escutia MR, Bonay P, de Oliveira CI, Soto M, et al. Evaluation of immune responses and analysis of the effect of vaccination of the Leishmania major recombinant ribosomal proteins L3 or L5 in two different murine models of cutaneous leishmaniasis. Vaccine. 2013;31(9):1312–19. doi:10.1016/j.vaccine.2012.12.071.
  • Lestinova T, Rohousova I, Sima M, de Oliveira CI, Volf P. Insights into the sand fly saliva: blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis. 2017;11(7):1–26. doi:10.1371/journal.pntd.0005600.
  • Martin-Martin I, Chagas AC, Guimaraes-Costa AB, Amo L, Oliveira F, Moore IN, DeSouza-Vieira TS, Sanchez EE, Suntravat M, Valenzuela JG, et al. Immunity to LuloHya and Lundep, the salivary spreading factors from Lutzomyia longipalpis, protects against Leishmania major infection. PLoS Pathog. 2018;14(5):1–26. doi:10.1371/journal.ppat.1007006.
  • Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science. 2000;290(5495):1351–54. doi:10.1126/science.290.5495.1351.
  • Chagas AC, Oliveira F, Debrabant A, Valenzuela JG, Ribeiro JMC, Calvo E. Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits XIIa contact activation in human plasma. PLoS Pathog. 2014;10(2):e1003923. doi:10.1371/journal.ppat.1003923.
  • Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol. 2014;167(9):5226–30. doi:10.4049/jimmunol.167.9.5226.
  • Cunha JM, Abbehusen M, Suarez M, Valenzuela J, Teixeira CR. Acta tropica immunization with LJM11 salivary protein protects against infection with Leishmania braziliensis in the presence of Lutzomyia longipalpis saliva. Acta Trop. 2018;177(October 2017):164–70. doi:10.1016/j.actatropica.2017.10.009.
  • Skeiky YAW, Coler RN, Brannon M, Stromberg E, Greeson K, Crane RT, Campos-Neto A, Reed SG. Protective efficacy of a tandemly linked, multi-subunit recombinant leishmanial vaccine (Leish-111f) formulated in MPL® adjuvant. Vaccine. 2002;20(27–28):3292–303. doi:10.1016/S0264-410X(02)00302-X.
  • Peters NC, Bertholet S, Lawyer PG, Charmoy M, Romano A, Ribeiro-Gomes FL, LW S, Sacks DL. Evaluation of recombinant Leishmania poly-protein plus GLA-SE vaccines against sand fly-transmitted Leishmania major in C57Bl/6 mice. J Immunol. 2013;18(9):1199–216. doi:10.1016/j.micinf.2011.07.011.Innate.
  • Zadeh-Vakili A, Taheri T, Taslimi Y, Doustdari F, Salmanian AH, Rafati S. Immunization with the hybrid protein vaccine, consisting of Leishmania major cysteine proteinases Type I (CPB) and Type II (CPA), partially protects against leishmaniasis. Vaccine. 2004;22(15–16):1930–40. doi:10.1016/j.vaccine.2003.11.014.
  • Soong L, Duboise SM, Kima P, McMahon-Pratt D. Leishmania pifanoi amastigote antigens protect mice against cutaneous leishmaniasis. Infect Immun. 1995;63:3559–66.
  • Tang DC, Devit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature. 1992;356(6365):152–54. doi:10.1038/356152a0.
  • Lechardeur D, Lukacs GL. Nucleocytoplasmic transport of plasmid DNA: a perilous journey from the cytoplasm to the nucleus. Hum Gene Ther. 2006;17(9):882–89. doi:10.1089/hum.2006.17.882.
  • Myhr AI. DNA vaccines: regulatory considerations and safety aspects. Curr Issues Mol Biol. 2017;22:79–88. doi:10.21775/cimb.022.079.
  • Kumar A, Samant M. DNA vaccine against visceral leishmaniasis: A promising approach for prevention and control. Parasite Immunol. 2016;38(5):273–81. doi:10.1111/pim.12315.
  • Xu D, Liew FY. Protection against leishmaniasis by injection of DNA encoding a major surface glycoprotein, gp63, of L. major. Immunology. 1995;84:173–76.
  • Xu D, McSorley SJ, Chatfield SJ, Dougan G, Liew FY. Protection against Leishmania major infection in genetically susceptible BALB/c mice by GP63 delivered orally in attenuated Salmonella typhimurium (AroA- AroD-). Immunology. 1995;85:1–7. doi:10.1016/S0378-7788(02)00006-3.
  • Walker PS, Scharton-Kersten T, Rowton ED, Hengge U, Bouloc A, Udey MC, Vogel JC. Genetic immunization with glycoprotein 63 cDNA results in a helper T Cell type 1 immune response and protection in a murine model of leishmaniasis. Hum Gene Ther. 2008;9(13):1899–907. doi:10.1089/hum.1998.9.13-1899.
  • Zanin FHC, Coelho EAF, Tavares CAP, Marques-da-Silva EA, Silva Costa MM, Rezende SA, Gazzinelli RT, Fernandes AP. Evaluation of immune responses and protection induced by A2 and nucleoside hydrolase (NH) DNA vaccines against Leishmania chagasi and Leishmania amazonensis experimental infections. Microbes Infect. 2007;9(9):1070–77. doi:10.1016/j.micinf.2007.05.012.
  • Tabatabaie F, Mahdavi M, Faezi S, Dalimi A, Sharifi Z, Akhlaghi L, Ghaffarifar F. Th1 platform immune responses against Leishmania major induced by thiol-specific antioxidant-based DNA vaccines. Jundishapur J Microbiol. 2014;7(2):1–8. doi:10.5812/jjm.8974.
  • Campos BLS, Silva TN, Ribeiro SP, Carvalho KIL, KallÁs EG, Laurenti MD, Passero LFD. Analysis of iron superoxide dismutase-encoding DNA vaccine on the evolution of the Leishmania amazonensis experimental infection. Parasite Immunol. 2015;37(8):407–16. doi:10.1111/pim.12206.
  • Carrión J. Mechanisms of immunity to Leishmania major infection in mice: the contribution of DNA vaccines coding for two novel sets of histones (H2A-H2B or H3-H4). Comp Immunol Microbiol Infect Dis. 2011;34(5):381–86. doi:10.1016/j.cimid.2011.06.002.
  • Carneiro MW, Santos DM, Fukutani KF, Clarencio J, Miranda JC, Brodskyn C, Barral A, Barral-Netto M, Soto M, de Oliveira CI, et al. Vaccination with L. infantum chagasi nucleosomal histones confers protection against New World cutaneous leishmaniasis caused by leishmania braziliensis. PLoS One. 2012;7(12). doi:10.1371/journal.pone.0052296.
  • Iborra S, Soto M, Carrión J, Alonso C, Requena J. Vaccination with a plasmid DNA cocktail encoding the nucleosomal histones of Leishmania confers protection against murine cutaneous leishmaniosis. Vaccine. 2004;22(29–30):3865–76. doi:10.1016/j.vaccine.2004.04.015.
  • Maspi N, Ghaffarifar F, Sharifi Z, Dalimi A, Khademi SZ. DNA vaccination with a plasmid encoding LACK-TSA fusion against leishmania major infection in BALB/c mice. Malays J Pathol. 2017;39:267–75.
  • Hekele A, Bertholet S, Archer J, Gibson DG, Palladino G, Brito LA, Otten GR, Brazzoli M, Buccato S, Bonci A, et al. Rapidly produced SAM ® vaccine against H7N9 influenza is immunogenic in mice. Emerg Microbes Infect. 2013;2(July):1–7. doi:10.1038/emi.2013.54.
  • Bogers WM, Oostermeijer H, Mooij P, Koopman G, Verschoor EJ, Davis D, Ulmer JB, Brito LA, Cu Y, Banerjee K, et al. Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion. J Infect Dis. 2015;211(6):947–55. doi:10.1093/infdis/jiu522.
  • Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, Cu Y, Beard CW, Brito LA, Krucker T, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci. 2012;109(36):14604–09. doi:10.1073/pnas.1209367109.
  • Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, Schlake T, Thess A, Kallen K-J, Stitz L, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. 2012;30(12):1210–16. doi:10.1038/nbt.2436.
  • Erasmus JH, Khandhar AP, Guderian J, Granger B, Archer J, Archer M, Gage E, Fuerte-Stone J, Larson E, Lin S, et al. A nanostructured lipid carrier for delivery of a replicating viral RNA provides single, low-dose protection against Zika. Mol Ther. 2018;26:2507–22. doi:10.1016/j.ymthe.2018.07.010.
  • Das A, Ali N. Vaccine prospects of killed but metabolically active Leishmania against visceral leishmaniasis. Expert Rev Vaccines. 2012;11(7):783–85. doi:10.1586/erv.12.50.
  • Mortazavidehkordi N, Fallah A, Abdollahi A, Kia V, Khanahmad H, Najafabadi ZG, Hashemi N, Estiri B, Roudbari Z, Najafi A, et al. A lentiviral vaccine expressing KMP11-HASPB fusion protein increases immune response to Leishmania major in BALB/C. Parasitol Res. 2018;117(7):2265–73. doi:10.1007/s00436-018-5915-6.
  • Kedzierska K, Curtis JM, Valkenburg SA, Hatton LA, Kiu H, Peter C. Induction of Protective CD4 + T Cell-Mediated Immunity by a Leishmania Peptide Delivered in Recombinant Influenza Viruses. 2012;7(3):1–10. doi:10.1371/journal.pone.0033161.
  • Osman M, Mistry A, Keding A, Gabe R, Cook E, Forrester S, Wiggins R, Di Marco S, Colloca S, Siani L, et al. A third generation vaccine for human visceral leishmaniasis and post kala azar dermal leishmaniasis: first-in-human trial of ChAd63-KH. PLoS Negl Trop Dis. 2017;11(5). doi:10.1371/journal.pntd.0005527.
  • Schroeder J, Aebischer T. Vaccines for leishmaniasis: from proteome to vaccine candidates. Hum Vaccine. 2011;7(10):10–15. doi:10.4161/hv.7.0.14556.
  • Duthie MS, Van Hoeven N, MacMillen Z, Picone A, Mohamath R, Erasmus J, Hsu F-C, Stinchcomb DT, Reed SG. Heterologous immunization with defined RNA and subunit vaccines enhances T cell responses that protect against leishmania donovani. Front Immunol. 2018;9. doi:10.3389/fimmu.2018.02420.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.