908
Views
1
CrossRef citations to date
0
Altmetric
Review

Bispecific antibodies: a novel approach for targeting prominent biomarkers

& ORCID Icon
Pages 2831-2839 | Received 16 Sep 2019, Accepted 27 Feb 2020, Published online: 02 Jul 2020

References

  • TThe Expresswire. Monoclonal antibodies market demand to grow at a CAGR of 8.5% during 2019-2025 – marketWatch [Internet]. 2019 Sep [ accessed 2019 Nov 22]. https://www.marketwatch.com/press-release/monoclonal-antibodies-market-demand-to-grow-at-a-cagr-of-85-during-2019-2025-2019-09-10.
  • Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun. 2012;12:14.
  • Minh Ngoc Duong IS. Advances in bispecific antibodies engineering: novel concepts for immunotherapies. J Blood Disord Transfus. 2015;6:1000243.
  • Pento JT. Monoclonal antibodies for the treatment of cancer. Anticancer Res [Internet]. 2017;37:5935–39 [accessed 2019 Sep 26]. http://www.ncbi.nlm.nih.gov/pubmed/29061772.
  • Staerz UD, Kanagawa O, Bevan MJ. Hybrid antibodies can target sites for attack by T cells. Nature. [Internet]. 1985;314:628–31. doi:10.1038/314628a0.
  • Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, Noppeney R, Viardot A, Hess G, Schuler M, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science [Internet]. 2008;321:974–77 [accessed 2019 Sep 26]. http://www.ncbi.nlm.nih.gov/pubmed/18703743.
  • Chames P, Baty D. Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs. [Internet]. 2009;1:539–47. doi:10.4161/mabs.1.6.10015.
  • Topp MS, Gökbuget N, Stein AS, Zugmaier G, O’Brien S, Bargou RC, Dombret H, Fielding AK, Heffner L, Larson RA, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol [Internet]. 2015;16:57–66. [accessed 2019 Sep 26]. http://www.ncbi.nlm.nih.gov/pubmed/25524800.
  • Liu H, Saxena A, Sidhu SS, Wu D. Fc engineering for developing therapeutic bispecific antibodies and novel scaffolds. Front Immunol [Internet]. 2017;8:38 [accessed 2019 Sep 26]. http://www.ncbi.nlm.nih.gov/pubmed/28184223.
  • Spiess C, Zhai Q, Carter PJ. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol. 2015;67(2):95–106. doi:10.1016/j.molimm.2015.01.003.
  • Kontermann RE, Brinkmann U. Bispecific antibodies; different formats. Drug Discov Today. [Internet]. 2015;20(7):838–47. doi:10.1016/j.drudis.2015.02.008.
  • Chelius D, Ruf P, Gruber P, Plöscher M, Liedtke R, Gansberger E, Hess J, Wasiliu M, Lindhofer H. Structural and functional characterization of the trifunctional antibody catumaxomab. MAbs. 2010;2(3):309–19. doi:10.4161/mabs.2.3.11791.
  • Wang Z, Kim GB, Woo JH, Yuan YL, Mathias A, Stavrou S, Neville DM. Improvement of a recombinant anti-monkey anti-CD3 diphtheria toxin based immunotoxin by yeast display affinity maturation of the scFv. Bioconjug Chem. 2007;18(3):947–55. doi:10.1021/bc0603438.
  • Xu Y, Lee J, Tran C, Heibeck TH, Wang WD, Yang J, Stafford RL, Steiner AR, Sato AK, Hallam TJ, et al. Production of bispecific antibodies in “knobs-into-holes” using a cell-free expression system. MAbs. 2015;7(1):231–42. doi:10.4161/19420862.2015.989013.
  • Dickopf S, Lauer ME, Ringler P, Spick C, Kern P, Brinkmann U. Highly flexible, IgG-shaped, trivalent antibodies effectively target tumor cells and induce T cell-mediated killing. Biol Chem. 2018;400(3):343–350.
  • Ying T, Jung ST, Kontermann RE, Kim Y-S, Ha J-H, Kim J-E. Immunoglobulin Fc heterodimer platform technology: from design to applications in therapeutic antibodies and proteins. Proteins Front Immunol [Internet]. 2016;7:394 [accessed 2020 Jan 16]. www.frontiersin.org.
  • Fan G, Wang Z, Hao M, Li J. Bispecific antibodies and their applications. J Hematol Oncol. 2015;8:130.
  • Yu L, Wang J. T cell-redirecting bispecific antibodies in cancer immunotherapy: recent advances. J Cancer Res Clin Oncol. 2019;145(4):941–56. doi:10.1007/s00432-019-02867-6.
  • Chanier T, Chames P. Nanobody engineering: toward next generation immunotherapies and immunoimaging of cancer. Antibodies. 2019;8(1):13. doi:10.3390/antib8010013.
  • Seifert O, Rau A, Beha N, Richter F, Kontermann RE. Diabody-Ig: a novel platform for the generation of multivalent and multispecific antibody molecules. MAbs. 2019;11(5):919–29. doi:10.1080/19420862.2019.1603024.
  • Kwon NY, Kim Y, Lee JO. Structural diversity and flexibility of diabodies. Methods. 2019;154:136–42. doi:10.1016/j.ymeth.2018.09.005.
  • Satta A, Mezzanzanica D, Turatti F, Canevari S, Figini M. Redirection of T-cell effector functions for cancer therapy: bispecific antibodies and chimeric antigen receptors. Future Oncol. [Internet]. 2013;9(4):527–39. doi:10.2217/fon.12.203.
  • Zugmaier G, Klinger M, Schmidt M, Subklewe M. Clinical overview of anti-CD19 BiTE® and ex vivo data from anti-CD33 BiTE® as examples for retargeting T cells in hematologic malignancies. Mol Immunol. 2015;67(2):58–66. doi:10.1016/j.molimm.2015.02.033.
  • Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. [Internet]. 2009;69(12):4941–44. doi:10.1158/0008-5472.CAN-09-0547.
  • Weidle UH, Kontermann RE, Brinkmann U. Tumor-antigen-binding bispecific antibodies for cancer treatment. Semin Oncol. [Internet]. 2014;41(5):653–60. doi:10.1053/j.seminoncol.2014.08.004.
  • Jäger M, Schoberth A, Ruf P, Hess J, Lindhofer H. The trifunctional antibody ertumaxomab destroys tumor cells that express low levels of human epidermal growth factor receptor. Cancer Res. 2009;69(10):4270–76. doi:10.1158/0008-5472.CAN-08-2861.
  • Kiewe P, Hasmüller S, Kahlert S, Heinrigs M, Rack B, Marmé A, Korfel A, Jäger M, Lindhofer H, Sommer H, et al. Phase I trial of the trifunctional anti-HER2 x anti-CD3 antibody ertumaxomab in metastatic breast cancer. Clin Cancer Res [Internet]. 2006;12:3085–91. [accessed 2019 Sep 26]. http://www.ncbi.nlm.nih.gov/pubmed/16707606.
  • McDonagh CF, Huhalov A, Harms BD, Adams S, Paragas V, Oyama S, Zhang B, Luus L, Overland R, Nguyen S, et al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol Cancer Ther. [Internet]. 2012;11(3):582–93. doi:10.1158/1535-7163.MCT-11-0820.
  • Fitzgerald JB, Johnson BW, Baum J, Adams S, Iadevaia S, Tang J, Rimkunas V, Xu L, Kohli N, Rennard R, et al. MM-141,an IGF-IR-and ErbB3-directed bispecific antibody overcomes network adaptations that limit activity of IGF-IR inhibitors. Mol Cancer Ther. 2014;13(2):410–25. doi:10.1158/1535-7163.MCT-13-0255.
  • Duligotuzumab CP. Human anti-EGFR/anti-HER3 MAb, colorectal cancer therapy, head and neck cancer therapy. Drugs Future. 2015;40(3):167. doi:10.1358/dof.2015.040.03.2312450.
  • Kienast Y, Klein C, Scheuer W, Raemsch R, Lorenzon E, Bernicke D, Herting F, Yu S, The HH, Martarello L, et al. Ang-2-VEGF-A CrossMab, a novel bispecific human IgG1 antibody blocking VEGF-A and Ang-2 functions simultaneously, mediates potent antitumor, antiangiogenic, and antimetastatic efficacy. Clin Cancer Res. [Internet]. 2013;19(24):6730–40. doi:10.1158/1078-0432.CCR-13-0081.
  • Ferrari G, Pollara J, Tomaras GD, Haynes BF. Humoral and innate antiviral immunity as tools to clear persistent HIV infection. J Infect Dis. 2017;215(suppl_3):S152–9. doi:10.1093/infdis/jiw555.
  • Viale G. HER2 in breast cancer: ESMO biomarker factsheet | oncologyPRO [Internet] [ accessed 2019 Sep 26]. https://oncologypro.esmo.org/Education-Library/Factsheets-on-Biomarkers/HER2-in-Breast-Cancer.
  • Rubin I, Yarden Y. The basic biology of HER2. Ann Oncol. 2001;12(Suppl 1): S3–S8.
  • Ferreira PMP, Pessoa C. Molecular biology of human epidermal receptors, signaling pathways and targeted therapy against cancers: new evidences and old challenges. Brazilian J Pharm Sci. 2017;53(2):e16076.
  • National Cancer Institute (NIH). HER2 genetic link to breast cancer – National Cancer Institute [Internet] [ accessed 2019 Sep 26]. https://www.cancer.gov/research/progress/discovery/her2.
  • Duffy MJ. Estrogen receptors: role in breast cancer. Crit Rev Clin Lab Sci. [Internet]. 2006;43:325–47. doi:10.1080/10408360600739218.
  • Fan P, Maximov PY, Curpan RF, Abderrahman B, Jordan VC. The molecular, cellular and clinical consequences of targeting the estrogen receptor following estrogen deprivation therapy. Mol Cell Endocrinol. [Internet]. 2015;418 Pt 3:245–63. doi:10.1016/j.mce.2015.06.004.
  • American Cancer Society. Hormone therapy for breast cancer | American Cancer Society [Internet] [ accessed 2019 Sep 27]. https://www.cancer.org/cancer/breast-cancer/treatment/hormone-therapy-for-breast-cancer.html.
  • Daniel AR, Hagan CR, Lange CA. Progesterone receptor action: defining a role in breast cancer. Expert Rev Endocrinol Metab. 2011;6:359–69. doi:10.1586/eem.11.25.
  • Lim E, Palmieri C, Tilley WD. Renewed interest in the progesterone receptor in breast cancer. Br J Cancer. 2016;115:909–11. doi:10.1038/bjc.2016.303.
  • Ratini M. Types of breast cancer: triple negative, ER-positive, HER2-positive [Internet] [ accessed 2019 Sep 27]. https://www.webmd.com/breast-cancer/breast-cancer-types-er-positive-her2-positive#1.
  • Ghosh A, Heston WDW. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem. 2004;91:528–39. doi:10.1002/jcb.10661.
  • Li Y, Cozzi PJ, Russell PJ. Promising tumor-associated antigens for future prostate cancer therapy. Med Res Rev [Internet]. 2010;30:67–101 [accessed 2019 Sep 27]. http://www.ncbi.nlm.nih.gov/pubmed/19536865.
  • Liu H, Moy P, Kim S, Xia Y, Rajasekaran A, Navarro V, Knudsen B, Bander NH. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res [Internet]. 1997;57:3629–34 [accessed 2019 Sep 27]. http://www.ncbi.nlm.nih.gov/pubmed/9288760.
  • Tagawa ST, Vallabhajosula S, Christos PJ, Jhanwar YS, Batra JS, Lam L, Osborne J, Beltran H, Molina AM, Goldsmith SJ, et al. Phase 1/2 study of fractionated dose lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 (177 Lu-J591) for metastatic castration-resistant prostate cancer. Cancer [Internet]. 2019;125:2561–69 [accessed 2019 Sep 27]. http://www.ncbi.nlm.nih.gov/pubmed/31012963.
  • Kahn D, Williams RD, Manyak MJ, Haseman MK, Seldin DW, Libertino JA, Maguire RT. 111Indium-capromab pendetide in the evaluation of patients with residual or recurrent prostate cancer after radical prostatectomy. The ProstaScint Study Group. J Urol. [Internet]. 1998;159:2041–46. discussion 2046-7. doi:10.1016/S0022-5347(01)63239-7.
  • Somoza JR, Ho JD, Luong C, Ghate M, Sprengeler PA, Mortara K, Shrader WD, Sperandio D, Chan H, McGrath ME, et al. The structure of the extracellular region of human hepsin reveals a serine protease domain and a novel scavenger receptor cysteine-rich (SRCR) domain. Structure [Internet]. 2003;11:1123–31 [accessed 2019 Sep 27]. http://www.ncbi.nlm.nih.gov/pubmed/12962630.
  • Zhang C, Zhang M, Wu Q, Peng J, Ruan Y, Gu J. Hepsin inhibits CDK11p58 IRES activity by suppressing unr expression and eIF-2α phosphorylation in prostate cancer. Cell Signal. [Internet]. 2015;27:789–97. doi:10.1016/j.cellsig.2014.12.020.
  • Klezovitch O, Chevillet J, Mirosevich J, Roberts RL, Matusik RJ, Vasioukhin V. Hepsin promotes prostate cancer progression and metastasis. Cancer Cell. [Internet]. 2004;6:185–95. doi:10.1016/j.ccr.2004.07.008.
  • Barwe SP, Maul RS, Christiansen JJ, Anilkumar G, Cooper CR, Kohn DB, Rajasekaran AK. Preferential association of prostate cancer cells expressing prostate specific membrane antigen to bone marrow matrix. Int J Oncol [Internet]. 2007;30:899–904 [accessed 2019 Sep 27]. http://www.ncbi.nlm.nih.gov/pubmed/17332929.
  • World Health Organization (WHO). Cancer [Internet]. [ accessed 2019 Sep 26]. https://www.who.int/health-topics/cancer#tab=tab_1.
  • Ganesan R, Zhang Y, Landgraf KE, Lin SJ, Moran P, Kirchhofer D. An allosteric anti-hepsin antibody derived from a constrained phage display library. Protein Eng Des Sel. 2012;25:127–33. doi:10.1093/protein/gzr067.
  • Spasevska I, Master. An outlook on bispecific antibodies: methods of production and therapeutic benefits. BioSciences Master Reviews; 2014.
  • Zhang X, Yang Y, Fan D, Xiong D. The development of bispecific antibodies and their applications in tumor immune escape. Exp Hematol Oncol. [Internet]. 2017;6:12. doi:10.1186/s40164-017-0072-7.
  • Yang F, Wen W, Qin W. Bispecific antibodies as a development platform for new concepts and treatment strategies. Int J Mol Sci [Internet]. 2016;18 [accessed 2019 Sep 27]. http://www.ncbi.nlm.nih.gov/pubmed/28036020.
  • van Gils MJ, Sanders RW. Opposites attract in bispecific antibody engineering. J Biol Chem. [Internet]. 2017;292:14718–19. doi:10.1074/jbc.H117.793497.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.