917
Views
10
CrossRef citations to date
0
Altmetric
Short Report

Two approaches for the stabilization of Bacillus anthracis recombinant protective antigen

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 560-565 | Received 30 Mar 2020, Accepted 16 May 2020, Published online: 02 Jul 2020

References

  • Mourez M. Anthrax toxins. Rev Physiol Biochem Pharmacol. 2004;152:135–64. PMID: 15549606. doi:10.1007/s10254-004-0028-2.
  • Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM. Public health assessment of potential biological terrorism agents. Emerg Infect Dis. 2002;8:225–30. PMID: 11897082. doi:10.3201/eid0802.010164.
  • Kondakova OA, Nikitin NA, Evtushenko EA, Ryabchevskaya EM, Atabekov JG, Karpova OV. Vaccines against anthrax based on recombinant protective antigen: problems and solutions. Expert Rev Vaccines. 2019;18(8):813–28. PMID: 31298973. doi:10.1080/14760584.2019.1643242.
  • McComb RC, Martchenko M. Neutralizing antibody and functional mapping of Bacillus anthracis protective antigen - The first step toward a rationally designed anthrax vaccine. Vaccine. 2016;34(1):13–19. PMID: 26611201. doi:10.1016/j.vaccine.2015.11.025.
  • Klimpel K, Molloy S, Thomas G, Leppla SH. Anthrax toxin protective antigen is activated by a cell-surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci USA. 1992;89(21):10277–81. PMID: 1438214. doi:10.1073/pnas.89.21.10277.
  • Singh Y, Klimpel K, Arora N, Sharma M, Leppla SH. The chymotrypsin-sensitive site, Ffd315, in anthrax toxin protective antigen is required for translocation of lethal factor. J Biol Chem. 1994;269(46):29039–46. PMID: 7961869.
  • Verma A, Ngundi MM, Burns DL. Mechanistic Analysis of the Effect of Deamidation on the Immunogenicity of Anthrax Protective Antigen. Clin Vaccine Immunol. 2016;23(5):396–402. PMID: 26912784. doi:10.1128/CVI.00701-15.
  • D’Souza AJ, Mar KD, Huang J, Majumdar S, Ford BM, Dyas B, Ulrich RG, Sullivan VJ. Rapid deamidation of recombinant protective antigen when adsorbed on aluminum hydroxide gel correlates with reduced potency of vaccine. J Pharm Sci. 2013;102(2):454–61. PMID: 23242822. doi:10.1002/jps.23422.
  • Wagner L, Verma A, Meade BD, Reiter K, Narum DL, Brady RA, Little SF, Burns DL. Structural and immunological analysis of anthrax recombinant protective antigen adsorbed to aluminum hydroxide adjuvant. Clin Vaccine Immunol. 2012;19(9):1465–73. PMID: 22815152. doi:10.1128/CVI.00174-12.
  • Domínguez-Castillo RI, Verma A, Amador-Molina JC, Sirota L, Arciniega JL. Ability of ELISA and a toxin neutralization assay to detect changes in immunogenicity of a recombinant Bacillus anthracis protective antigen vaccine upon storage. Biologicals. 2013;41(2):111–14. PMID: 23137818. doi:10.1016/j.biologicals.2012.10.002.
  • Balke I, Zeltins A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv Drug Deliv Rev. 2019;145:119–29. PMID: 30172923. doi:10.1016/j.addr.2018.08.007.
  • Nikitin NA, Malinin AS, Rakhnyanskaya AA, Trifonova EA, Karpova OV, Yaroslavov AA, Atabekov JG. Use of a polycation spacer for noncovalent immobilization of albumin on the thermally modified virus particles. Polym Sci Ser. 2011;53:1026–31. doi:10.1134/S0965545X11110083.
  • Nikitin NA, Trifonova EA, Karpova OV, Atabekov JG. Biosafety of plant viruses for human and animals. Mosc Univ Biol Sci Bull. 2016;71(3):128–34. doi:10.3103/S0096392516030081.
  • Nikitin NA, Zenin VA, Trifonova EA, Ryabchevskaya EM, Kondakova OA, Fedorov AN, Atabekov JG, Karpova OV. Assessment of structurally modified plant virus as a novel adjuvant in toxicity studies. Regul Toxicol Pharmacol. 2018;97:127–33. PMID: 29932979. doi:10.1016/j.yrtph.2018.06.010.
  • Nikitin NA, Zenin VA, Trifonova EA, Ryabchevskaya EM, Yurkova MS, Kondakova OA, Fedorov AN, Atabekov JG, Karpova OV. Data in support of toxicity studies of structurally modified plant virus to safety assessment. Data in Brief. 2018;21:1504–07. doi:10.1016/j.dib.2018.10.102.
  • Atabekov JG, Nikitin NA, Arkhipenko MV, Chirkov SV, Karpova OV. Thermal transition of native TMV and RNA-free viral proteins into spherical nanoparticles. J Gen Virol. 2011;92:453–56. PMID: 20980527. doi:10.1099/vir.0.024356-0.
  • Atabekov JG, Nikitin NA, Karpova OV. New type of platforms for in vitro vaccine assembly. Moscow Univ Biol Sci Bull. 2015;70:177–83. doi:10.3103/S0096392515040045.
  • Karpova OV, Nikitin NA, Chirkov SN, Trifonova EA, Sheveleva AA, Lazareva EA, Atabekov JG. Immunogenic compositions assembled from tobacco mosaic virus-generated spherical particle platforms and foreign antigens. J Gen Virol. 2012;93:400–07. PMID: 22049093. doi:10.1099/vir.0.036293-0.
  • Trifonova EA, Nikitin NA, Gmyl AA, Lazareva EA, Karpova OV, Atabekov JG. Complexes assembled from TMV-derived spherical particles and entire virions of heterogeneous nature. J Biomol Struct Dyn. 2014;32:1193–201. PMID: 24099636. doi:10.1080/07391102.2013.816868.
  • Trifonova EA, Zenin VA, Nikitin NA, Yurkova MS, Ryabchevskaya EM, Putlyaev EV, Donchenko EK, Kondakova OA, Fedorov AN, Atabekov JG, et al. Study of rubella candidate vaccine based on a structurally modified plant virus. Antivir Res. 2017;144:27–33. PMID: 28511994. doi:10.1016/j.antiviral.2017.05.006.
  • Little SF, Novak JM, Lowe JR, Leppla SH, Singh Y, Klimpel KR, Lidgerding BC, Friedlander AM. Characterization of lethal factor binding and cell receptor binding domains of protective antigen of Bacillus anthracis using monoclonal antibodies. Microbiology. 1996;142:707–15. PMID: 8868446. doi:10.1099/13500872-142-3-707.
  • Crowe SR, Ash LL, Engler RJM, Ballard JD, Harley JB, Farris AD, James JA. Select human anthrax protective antigen epitope-specific antibodies provide protection from lethal toxin challenge. J Infect Dis. 2010;202:251–60. PMID: 20533877. doi:10.1086/653495.
  • Little S, Leppla S, Cora E. Production and characterization of monoclonal-antibodies to the protective antigen component of Bacillus–Anthracis toxin. Infect Immun. 1988;56:1807–13. PMID: 3384478. doi:10.1128/IAI.56.7.1807-1813.1988.
  • Laffly E, Danjou L, Condemine F, Vidal D, Drouet E, Lefranc MP, Bottex C, Thullier P. Selection of a macaque Fab with framework regions like those in humans, high affinity, and ability to neutralize the protective antigen (PA) of Bacillus anthracis by binding to the segment of PA between residues 686 and 694. Antimicrob Agents Chemother. 2005;49:3414–20. PMID: 16048955. doi:10.1128/AAC.49.8.3414-3420.2005.
  • Kelly-Cirino CD, Mantis NJ. Neutralizing monoclonal antibodies directed against defined linear epitopes on domain 4 of anthrax protective antigen. Infect Immun. 2009;77:4859–67. PMID: 19703971. doi:10.1128/IAI.00117-09.
  • Verma A, Burns DL. Improving the stability of recombinant anthrax protective antigen vaccine. Vaccine. 2018;36(43):6379–82. PMID: 30228030. doi:10.1016/j.vaccine.2018.09.012.
  • Trifonova EA, Nikitin NA, Kirpichnikov MP, Karpova OV, Atabekov JG. Obtaining and characterization of spherical particles – new biogenic platforms. Moscow Univ Biol Sci Bull. 2015;70:194–97. doi:10.3103/S0096392515040094.
  • Flick-Smith HC, Walker NJ, Gibson P, Bullifent H, Hayward S, Miller J, Titball RW, Williamson ED. A recombinant carboxy-terminal domain of the protective antigen of Bacillus anthracis protects mice against anthrax infection. Infect Immun. 2002;70(3):1653–56. PMID: 11854261. doi:10.1128/iai.70.3.1653-1656.2002.
  • Lacy DB, Wigelsworth DJ, Melnyk RA, Harrison SC, Collier RJ. Structure of heptameric protective antigen bound to an anthrax toxin receptor: a role for receptor in pH-dependent pore formation. Proc Natl Acad Sci U S A. 2004;101:13147–51. PMID: 15326297. doi:10.1073/pnas.0405405101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.