3,719
Views
1
CrossRef citations to date
0
Altmetric
Meeting Report

TIPICO X: report of the 10th interactive infectious disease workshop on infectious diseases and vaccines

ORCID Icon, , , , , ORCID Icon, , , , , , , , , , , ORCID Icon & ORCID Icon show all
Pages 759-772 | Received 02 Jun 2020, Accepted 20 Jun 2020, Published online: 05 Aug 2020

References

  • Scheltema NM, Gentile A, Lucion F, Nokes DJ, Munywoki PK, Madhi SA, Groome MJ, Cohen C, Moyes J, Thorburn K, et al. 2017. Global respiratory syncytial virus-associated mortality in young children (RSV GOLD): a retrospective case series. Lancet Glob Health. 5(10):e984–e91. doi:10.1016/s2214-109x(17)30344-3.
  • Shi T, McAllister DA, O’Brien KL, Simoes EAF, Madhi SA, Gessner BD, Polack FP, Balsells E, Acacio S, Aguayo C, et al. 2017. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet. 390(10098):946–58. doi:10.1016/s0140-6736(17)30938-8.
  • Haerskjold A, Kristensen K, Kamper-Jorgensen M, Nybo Andersen AM, Ravn H, Graff Stensballe L. Risk factors for hospitalization for respiratory syncytial virus infection: a population-based cohort study of danish children. Pediatr Infect Dis J. 2016;35(1):61–65. doi:10.1097/inf.0000000000000924.
  • Hall CB, Weinberg GA, Blumkin AK, Edwards KM, Staat MA, Schultz AF, Poehling KA, Szilagyi PG, Griffin MR, Williams JV, et al. Respiratory syncytial virus-associated hospitalizations among children less than 24 months of age. Pediatrics. 2013;132(2):e341–8. doi:10.1542/peds.2013-0303.
  • Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. Respiratory syncytial virus infection in elderly and high-risk adults. N Engl J Med. 2005;352(17):1749–59. doi:10.1056/NEJMoa043951.
  • Bacharier LB, Cohen R, Schweiger T, Yin-Declue H, Christie C, Zheng J, Schechtman KB, Strunk RC, Castro M. Determinants of asthma after severe respiratory syncytial virus bronchiolitis. J Allergy Clin Immunol. 2012;130(1):91–100.e3. doi:10.1016/j.jaci.2012.02.010.
  • Blanken MO, Rovers MM, Molenaar JM, Winkler-Seinstra PL, Meijer A, Kimpen JL, Bont L. Respiratory syncytial virus and recurrent wheeze in healthy preterm infants. N Engl J Med. 2013;368(19):1791–99. doi:10.1056/NEJMoa1211917.
  • Scheltema NM, Kavelaars XM, Thorburn K, Hennus MP, van Woensel JB, van der Ent CK, Borghans JAM, Bont LJ, Drylewicz J. Potential impact of maternal vaccination on life-threatening Respiratory Syncytial Virus infection during infancy. Vaccine. 2018;36(31):4693–700. doi:10.1016/j.vaccine.2018.06.021.
  • Zhu Q, McLellan JS, Kallewaard NL, Ulbrandt ND, Palaszynski S, Zhang J, Moldt B, Khan A, Svabek C, McAuliffe JM, et al. A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants. Sci Transl Med. 2017;9. doi:10.1126/scitranslmed.aaj1928.
  • Zhu Q, Lu B, McTamney P, Palaszynski S, Diallo S, Ren K, Ulbrandt ND, Kallewaard N, Wang W, Fernandes F, et al. 2018. Prevalence and Significance of substitutions in the fusion protein of Respiratory Syncytial Virus resulting in neutralization escape from antibody MEDI8897. J Infect Dis. 218(4):572–80. doi:10.1093/infdis/jiy189.
  • Tang A, Chen Z, Cox KS, Su HP, Callahan C, Fridman A, Zhang L, Patel SB, Cejas PJ, Swoyer R, et al. 2019. A potent broadly neutralizing human RSV antibody targets conserved site IV of the fusion glycoprotein. Nat Commun. 10(1):4153. doi:10.1038/s41467-019-12137-1.
  • Karron RA, Luongo C, Thumar B, Loehr KM, Englund JA, Collins PL, Buchholz UJ. A gene deletion that up-regulates viral gene expression yields an attenuated RSV vaccine with improved antibody responses in children. Sci Transl Med. 2015;7(312):312ra175. doi:10.1126/scitranslmed.aac8463.
  • Taylor G, Thom M, Capone S, Pierantoni A, Guzman E, Herbert R, Scarselli E, Napolitano F, Giuliani A, Folgori A, et al. Efficacy of a virus-vectored vaccine against human and bovine respiratory syncytial virus infections. Sci Transl Med. 2015;7(300):300ra127. doi:10.1126/scitranslmed.aac5757.
  • Crank MC, Ruckwardt TJ, Chen M, Morabito KM, Phung E, Costner PJ, Holman LA, Hickman SP, Berkowitz NM, Gordon IJ, et al. 2019. A proof of concept for structure-based vaccine design targeting RSV in humans. Science. 365(6452):505–09. doi:10.1126/science.aav9033.
  • Weinberger DM, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccination. Lancet. 2011;378(9807):1962–73. doi:10.1016/s0140-6736(10)62225-8.
  • Djennad A, Ramsay ME, Pebody R, Fry NK, Sheppard C, Ladhani SN, Andrews NJ. 2018. Effectiveness of 23-valent polysaccharide pneumococcal vaccine and changes in invasive pneumococcal disease incidence from 2000 to 2017 in those aged 65 and over in England and Wales. EClinicalMedicine. 6:42–50. doi:10.1016/j.eclinm.2018.12.007.
  • Ladhani SN, Collins S, Djennad A, Sheppard CL, Borrow R, Fry NK, Andrews NJ, Miller E, Ramsay ME. Rapid increase in non-vaccine serotypes causing invasive pneumococcal disease in England and Wales, 2000-17: a prospective national observational cohort study. Lancet Infect Dis. 2018;18(4):441–51. doi:10.1016/s1473-3099(18)30052-5.
  • Weinberger DM, Warren JL, Dalby T, Shapiro ED, Valentiner-Branth P, Slotved HC, Harboe ZB. Differences in the impact of pneumococcal serotype replacement in individuals with and without underlying medical conditions. Clin Infect Dis. 2019;69(1):100–06. doi:10.1093/cid/ciy875.
  • Levy C, Varon E, Ouldali N, Bechet S, Bonacorsi S, Cohen R. 2019. Changes in invasive pneumococcal disease spectrum after 13 valent pneumococcal conjugate vaccine implementation. Clin Infect Dis. doi:10.1093/cid/ciz221.
  • DWaC C, Stuart C. The nasopharyngeal microbiome. Emerging Top Life Sci. 2017;1(4):297–312. doi:10.1042/ETLS20170041.
  • Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol. 2018;16(6):355–67. doi:10.1038/s41579-018-0001-8.
  • Danino D, Givon-Lavi N, Ben-Shimol S, Greenberg D, Dagan R. Understanding the evolution of antibiotic-nonsusceptible pneumococcal nasopharyngeal colonization following pneumococcal conjugate vaccine implementation in young children. Clin Infect Dis. 2018;69(4):648–56. doi:10.1093/cid/ciy926.
  • Camilli R, Vescio MF, Giufre M, Daprai L, Garlaschi ML, Cerquetti M, Pantosti A. Carriage of Haemophilus influenzae is associated with pneumococcal vaccination in Italian children. Vaccine. 2015;33(36):4559–64. doi:10.1016/j.vaccine.2015.07.009.
  • Mika M, Maurer J, Korten I, Allemann A, Aebi S, Brugger SD, Qi W, Frey U, Latzin P, Hilty M, et al. 2017. Influence of the pneumococcal conjugate vaccines on the temporal variation of pneumococcal carriage and the nasal microbiota in healthy infants: a longitudinal analysis of a case-control study. Microbiome. 5(1):85. doi:10.1186/s40168-017-0302-6.
  • de Steenhuijsen Piters WA, Heinonen S, Hasrat R, Bunsow E, Smith B, Suarez-Arrabal M-C, Chaussabel D, Cohen DM, Sanders EAM, Ramilo O, et al. 2016. Nasopharyngeal microbiota, host transcriptome, and disease severity in children with Respiratory Syncytial Virus infection. Am J Respir Crit Care Med. 194(9):1104–15. doi:10.1164/rccm.201602-0220OC.
  • Stewart CJ, Hasegawa K, Wong MC, Ajami NJ, Petrosino JF, Piedra PA, Espinola JA, Tierney CN, Camargo CA, Mansbach JM, et al. 2018. Respiratory Syncytial Virus and rhinovirus bronchiolitis are associated with distinct metabolic pathways. J Infect Dis. 217(7):1160–69. doi:10.1093/infdis/jix680.
  • Tate JE, Burton AH, Boschi-Pinto C, Parashar UD. Global, regional, and national estimates of rotavirus mortality in children <5 years of age, 2000-2013. Clin Infect Dis. 2016;62(Suppl 2):S96–s105. doi:10.1093/cid/civ1013.
  • Kovacs SD, Mullholland K, Bosch J, Campbell H, Forouzanfar MH, Khalil I, Lim S, Liu L, Maley SN, Mathers CD, et al. 2015. Deconstructing the differences: a comparison of GBD 2010 and CHERG’s approach to estimating the mortality burden of diarrhea, pneumonia, and their etiologies. BMC Infect Dis. 15(1):16. doi:10.1186/s12879-014-0728-4.
  • Burnett E, Jonesteller CL, Tate JE, Yen C, Parashar UD. Global Impact of Rotavirus Vaccination on Childhood Hospitalizations and Mortality From Diarrhea. J Infect Dis. 2017;215(11):1666–72. doi:10.1093/infdis/jix186.
  • Blutt SE, Matson DO, Crawford SE, Staat MA, Azimi P, Bennett BL, Piedra PA, Conner ME. Rotavirus antigenemia in children is associated with viremia. PLoS Med. 2007;4(4):e121. doi:10.1371/journal.pmed.0040121.
  • Burke RM, Tate JE, Dahl RM, Aliabadi N, Parashar UD. Rotavirus vaccination is associated with reduced seizure hospitalization risk among commercially insured US children. Clin Infect Dis. 2018;67(10):1614–16. doi:10.1093/cid/ciy424.
  • Gomez-Rial J, Sanchez-Batan S, Rivero-Calle I, Pardo-Seco J, Martinon-Martinez JM, Salas A, Martinón-Torres F. 2019. Further considerations on rotavirus vaccination and seizure-related hospitalization rates. Infect Drug Resist. 12:989–91. doi:10.2147/idr.s208756.
  • Gomez-Rial J, Sanchez-Batan S, Rivero-Calle I, Pardo-Seco J, Martinon-Martinez JM, Salas A, Martinon-Torres F. Rotavirus infection beyond the gut. Infect Drug Resist. 2019;12:55–64. doi:10.2147/idr.s186404.
  • Vesikari T, Matson DO, Dennehy P, Van Damme P, Santosham M, Rodriguez Z, Dallas MJ, Heyse JF, Goveia MG, Black SB, et al. 2006. Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. N Engl J Med. 354(1):23–33. doi:10.1056/NEJMoa052664.
  • Ruiz-Palacios GM, Perez-Schael I, Velazquez FR, Abate H, Breuer T, Clemens SC, Cheuvart B, Espinoza F, Gillard P, Innis BL, et al. 2006. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med. 354(1):11–22. doi:10.1056/NEJMoa052434.
  • de Palma O, Cruz L, Ramos H, de Baires A, Villatoro N, Pastor D, de Oliveira LH, Kerin T, Bowen M, Gentsch J, et al. 2010. Effectiveness of rotavirus vaccination against childhood diarrhoea in El salvador: case-control study. Bmj. 340(jun15 2):c2825. doi:10.1136/bmj.c2825.
  • Bar-Zeev N, Jere KC, Bennett A, Pollock L, Tate JE, Nakagomi O, Iturriza-Gomara M, Costello A, Mwansambo C, Parashar UD, et al. 2016. Population Impact and effectiveness of monovalent rotavirus vaccination in Urban malawian children 3 years after vaccine introduction: ecological and case-control analyses. Clin Infect Dis. 62(Suppl 2):S213–9. doi:10.1093/cid/civ1183.
  • Madhi SA, Cunliffe NA, Steele D, Witte D, Kirsten M, Louw C, Ngwira B, Victor JC, Gillard PH, Cheuvart BB, et al. 2010. Effect of human rotavirus vaccine on severe diarrhea in African infants. N Engl J Med.362(4):289–98. doi:10.1056/NEJMoa0904797.
  • Payne DC, Boom JA, Staat MA, Edwards KM, Szilagyi PG, Klein EJ, Selvarangan R, Azimi PH, Harrison C, Moffatt M, et al. 2013. Effectiveness of pentavalent and monovalent rotavirus vaccines in concurrent use among US children. Clin Infect Dis. 57(1):13–20. doi:10.1093/cid/cit164.
  • Payne DC, Selvarangan R, Azimi PH, Boom JA, Englund JA, Staat MA, Halasa NB, Weinberg GA, Szilagyi PG, Chappell J, et al. 2015. Long-term consistency in rotavirus vaccine protection: Rv5 And Rv1 vaccine effectiveness in US children, 2012-2013. Clin Infect Dis. 61(12):1792–99. doi:10.1093/cid/civ872.
  • Staat MA, Payne DC, Donauer S, Weinberg GA, Edwards KM, Szilagyi PG, Griffin MR, Hall CB, Curns AT, Gentsch JR, et al. Effectiveness of pentavalent rotavirus vaccine against severe disease. Pediatrics. 2011;128(2):e267–75. doi:10.1542/peds.2010-3722.
  • Carvalho MF, Gill D. Rotavirus vaccine efficacy: current status and areas for improvement. Hum Vaccin Immunother. 2019;15(6):1237–50. doi:10.1080/21645515.2018.1520583.
  • Payne DC, Englund JA, Weinberg GA, Halasa NB, Boom JA, Staat MA, Selvarangan R, Azimi PH, Klein EJ, Szilagyi PG, et al. 2019. Association of rotavirus vaccination with inpatient and emergency department visits among children seeking care for acute gastroenteritis, 2010-2016. JAMA Netw Open. 2(9):e1912242. doi:10.1001/jamanetworkopen.2019.12242.
  • Centers for Disease Control and Prevention (CDC). Three rotavirus outbreaks in the postvaccine era — california, 2017. [ Accessed: February 2020]; https://www.cdc.gov/mmwr/volumes/67/wr/mm6716a3.htm.
  • Mwila K, Chilengi R, Simuyandi M, Permar SR, Becker-Dreps S. 2017. Contribution of maternal immunity to decreased rotavirus vaccine performance in low- and middle-income countries. Clin Vaccine Immunol. 24. doi:10.1128/cvi.00405-16.
  • de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8(2):e180–e90. doi:10.1016/s2214-109x(19)30488-7.
  • Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, et al. 2009. A review of human carcinogens–part B: biological agents. Lancet Oncol. 10(4):321–22. doi:10.1016/s1470-2045(09)70096-8.
  • de Sanjosé S, Serrano B, Tous S, Alejo M, Lloveras B, Quirós B, Clavero O, Vidal A, Ferrándiz-Pulido C, Pavón MA, et al. Burden of Human Papillomavirus (HPV)-Related Cancers Attributable to HPVs 6/11/16/18/31/33/45/52 and 58. JNCI Cancer Spectrum. 2019;2. doi:10.1093/jncics/pky045.
  • Miranda PM, Silva NN, Pitol BC, Silva ID, Lima-Filho JL, Carvalho RF, Stocco RC, Becak W, Lima AA. Persistence or clearance of human papillomavirus infections in women in Ouro Preto, Brazil. Biomed Res Int. 2013;2013:578276. doi:10.1155/2013/578276.
  • World Health Organization (WHO). A Global strategy for elimination of cervical cancer. [ Accessed: May 2020]; https://www.who.int/docs/default-source/cervical-cancer/cervical-cancer-elimination-strategy.pdf?sfvrsn=8a083c4e_0.
  • Cervarix Summary of Product Characteristics. [ Accessed: February 2020]; https://www.ema.europa.eu/en/documents/product-information/cervarix-epar-product-information_en.pdf.
  • Gardasil Summary of Product Characteristics. [ Accessed: February 2020]; https://www.ema.europa.eu/en/documents/product-information/gardasil-epar-product-information_en.pdf.
  • Gardasil 9 Summary of Product Characteristics. [ Accessed: February 2020]; https://www.ema.europa.eu/en/documents/product-information/gardasil-9-epar-product-information_en.pdf.
  • Jafri RZ, Ali A, Messonnier NE, Tevi-Benissan C, Durrheim D, Eskola J, Fermon F, Klugman KP, Ramsay M, Sow S, et al. 2013. Global epidemiology of invasive meningococcal disease. Popul Health Metr. 11(1):17. doi:10.1186/1478-7954-11-17.
  • Pelton SI. The global evolution of meningococcal epidemiology following the introduction of meningococcal vaccines. J Adolesc Health. 2016;59(2):S3–s11. doi:10.1016/j.jadohealth.2016.04.012.
  • Kriz P, Wieffer H, Holl K, Rosenlund M, Budhia S, Vyse A. Changing epidemiology of meningococcal disease in Europe from the mid-20th to the early 21st Century. Expert Rev Vaccines. 2011;10(10):1477–86. doi:10.1586/erv.11.117.
  • MacNeil JR, Bennett N, Farley MM, Harrison LH, Lynfield R, Nichols M, Petit S, Reingold A, Schaffner W, Thomas A, et al. 2015. Epidemiology of infant meningococcal disease in the United States, 2006-2012. Pediatrics. 135(2):e305–e11. doi:10.1542/peds.2014-2035.
  • Harrison LH, Trotter CL, Ramsay ME. Global epidemiology of meningococcal disease. Vaccine. 2009;27(Suppl 2):B51–63. doi:10.1016/j.vaccine.2009.04.063.
  • Sadarangani M, Pollard AJ. Can we control all-cause meningococcal disease in Europe? Clin Microbiol Infect. 2016;22(Suppl 5):S103–s12. doi:10.1016/j.cmi.2016.03.006.
  • Trotter CL, Andrews NJ, Kaczmarski EB, Miller E, Ramsay ME. Effectiveness of meningococcal serogroup C conjugate vaccine 4 years after introduction. Lancet. 2004;364(9431):365–67. doi:10.1016/s0140-6736(04)16725-1.
  • Rivero-Calle I, Raguindin PF, Gomez-Rial J, Rodriguez-Tenreiro C, Martinon-Torres F. 2019. Meningococcal group B vaccine for the prevention of invasive meningococcal disease caused by neisseria meningitidis serogroup B. Infect Drug Resist. 12:3169–88. doi:10.2147/idr.s159952.
  • Perez JL, Absalon J, Beeslaar J, Balmer P, Jansen KU, Jones TR, Harris S, York LJ, Jiang Q, Radley D, et al. From research to licensure and beyond: clinical development of MenB-FHbp, a broadly protective meningococcal B vaccine. Expert Rev Vaccines. 2018;17(6):461–77. doi:10.1080/14760584.2018.1483726.
  • Findlow J, Borrow R, Snape MD, Dawson T, Holland A, John TM, Evans A, Telford K, Ypma E, Toneatto D, et al. 2010. Multicenter, open-label, randomized phase II controlled trial of an investigational recombinant meningococcal serogroup B vaccine with and without outer membrane vesicles, administered in infancy. Clin Infect Dis. 51(10):1127–37. doi:10.1086/656741.
  • Toneatto D, Pizza M, Masignani V, Rappuoli R. Emerging experience with meningococcal serogroup B protein vaccines. Expert Rev Vaccines. 2017;16(5):433–51. doi:10.1080/14760584.2017.1308828.
  • Vogel U, Taha MK, Vazquez JA, Findlow J, Claus H, Stefanelli P, Caugant DA, Kriz P, Abad R, Bambini S, et al. 2013. Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment. Lancet Infect Dis. 13(5):416–25. doi:10.1016/s1473-3099(13)70006-9.
  • Vesikari T, Ostergaard L, Beeslaar J, Absalon J, Eiden JJ, Jansen KU, Jones TR, Harris SL, Maansson R, Munson S, et al. 2019. Persistence and 4-year boosting of the bactericidal response elicited by two- and three-dose schedules of MenB-FHbp: A phase 3 extension study in adolescents. Vaccine. 37(12):1710–19. doi:10.1016/j.vaccine.2018.11.073.
  • Santolaya ME, O’Ryan M, Valenzuela MT, Prado V, Vergara RF, Munoz A, Toneatto D, Grana G, Wang H, Dull PM. Persistence of antibodies in adolescents 18-24 months after immunization with one, two, or three doses of 4CMenB meningococcal serogroup B vaccine. Hum Vaccin Immunother. 2013;9(11):2304–10. doi:10.4161/hv.25505.
  • Nolan T, Santolaya ME, de Looze F, Marshall H, Richmond P, Henein S, Rheault P, Heaton K, Perrett KP, Garfield H, et al. 2019. Antibody persistence and booster response in adolescents and young adults 4 and 7.5 years after immunization with 4CMenB vaccine. Vaccine. 37(9):1209–18. doi:10.1016/j.vaccine.2018.12.059.
  • Basta NE, Mahmoud AA, Wolfson J, Ploss A, Heller BL, Hanna S, Johnsen P, Izzo R, Grenfell BT, Findlow J, et al. Immunogenicity of a Meningococcal B Vaccine during a University Outbreak. N Engl J Med. 2016;375(3):220–28. doi:10.1056/NEJMoa1514866.
  • Christensen H, May M, Bowen L, Hickman M, Trotter CL. Meningococcal carriage by age: a systematic review and meta-analysis. Lancet Infect Dis. 2010;10(12):853–61. doi:10.1016/s1473-3099(10)70251-6.
  • Read RC, Baxter D, Chadwick DR, Faust SN, Finn A, Gordon SB, Heath PT, Lewis DJM, Pollard AJ, Turner DPJ, et al. 2014. Effect of a quadrivalent meningococcal ACWY glycoconjugate or a serogroup B meningococcal vaccine on meningococcal carriage: an observer-blind, phase 3 randomised clinical trial. Lancet. 384(9960):2123–31. doi:10.1016/s0140-6736(14)60842-4.
  • Soeters HM, Whaley M, Alexander-Scott N, Kanadanian KV, MacNeil JR, Martin SW, McNamara LA, Sicard K, Vanner C, Vuong J, et al. Meningococcal carriage evaluation in response to a serogroup b meningococcal disease outbreak and mass vaccination campaign at a college-rhode Island, 2015-2016. Clin Infect Dis. 2017;64(8):1115–22. doi:10.1093/cid/cix091.
  • Marshall HS, McMillan M, Koehler AP, Lawrence A, Sullivan TR, MacLennan JM, Maiden MCJ, Ladhani SN, Ramsay ME, Trotter C, et al. 2020. Meningococcal B vaccine and meningococcal carriage in adolescents in Australia. N Engl J Med. 382(4):318–27. doi:10.1056/NEJMoa1900236.
  • Christensen H, Trotter CL, Hickman M, Edmunds WJ. Re-evaluating cost effectiveness of universal meningitis vaccination (Bexsero) in England: modelling study. Bmj. 2014;349(oct09 4):g5725. doi:10.1136/bmj.g5725.
  • Parikh SR, Andrews NJ, Beebeejaun K, Campbell H, Ribeiro S, Ward C, White JM, Borrow R, Ramsay ME, Ladhani SN, et al. 2016. Effectiveness and impact of a reduced infant schedule of 4CMenB vaccine against group B meningococcal disease in England: a national observational cohort study. Lancet. 388(10061):2775–82. doi:10.1016/s0140-6736(16)31921-3.
  • De Wals P, Deceuninck G, Lefebvre B, Tsang R, Law D, De Serres G, Gilca V, Gilca R, Boulianne N. Impact of an immunization campaign to control an increased incidence of serogroup B meningococcal disease in one region of Quebec, Canada. Clin Infect Dis. 2017;64(9):1263–67. doi:10.1093/cid/cix154.
  • Deceuninck G, Lefebvre B, Tsang R, Betala-Belinga JF, De Serres G, De Wals P. Impact of a mass vaccination campaign against serogroup b meningococcal disease in the saguenay-lac-saint-jean region of quebec four years after its launch. Vaccine. 2019;37(31):4243–45. doi:10.1016/j.vaccine.2019.06.021.
  • Isitt C, Cosgrove CA, Ramsay ME, Ladhani SN. 2020. Success of 4CMenB in preventing meningococcal disease: evidence from real-world experience. Arch Dis Child. archdischild-2019-318047. doi:10.1136/archdischild-2019-318047.
  • World Health Organization (WHO). Up to 650 000 people die of respiratory diseases linked to seasonal flu each year. [ Accessed: February 2020]; http://www.who.int/mediacentre/news/releases/2017/seasonal-flu/en/.
  • Yan Q. 2010. Systems biology of influenza: understanding multidimensional interactions for personalized prevention and treatment. Methods Mol Biol. 662:285–302. doi:10.1007/978-1-60761-800-3_14.
  • Bommakanti G, Lu X, Citron MP, Najar TA, Heidecker GJ, Ter Meulen J, Varadarajan R, Liang X. Design of Escherichia coli-expressed stalk domain immunogens of H1N1 hemagglutinin that protect mice from lethal challenge. J Virol. 2012;86(24):13434–44. doi:10.1128/jvi.01429-12.
  • Impagliazzo A, Milder F, Kuipers H, Wagner MV, Zhu X, Hoffman RM, van Meersbergen R, Huizingh J, Wanningen P, Verspuij J, et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science. 2015;349:1301–06. doi:10.1126/science.aac7263.
  • Lu Y, Welsh JP, Swartz JR. Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc Natl Acad Sci U S A. 2014;111(1):125–30. doi:10.1073/pnas.1308701110.
  • Mallajosyula VV, Citron M, Ferrara F, Lu X, Callahan C, Heidecker GJ, Sarma SP, Flynn JA, Temperton NJ, Liang X, et al. 2014. Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proc Natl Acad Sci U S A. 111(25):E2514–23. doi:10.1073/pnas.1402766111.
  • Sagawa H, Ohshima A, Kato I, Okuno Y, Isegawa Y. The immunological activity of a deletion mutant of influenza virus haemagglutinin lacking the globular region. J Gen Virol. 1996;77(Pt 7):1483–87. doi:10.1099/0022-1317-77-7-1483.
  • Steel J, Lowen AC, Wang TT, Yondola M, Gao Q, Haye K, Gao Q, Haye K, Garcia-Sastre A, Palese P. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio. 2010;1. doi:10.1128/mBio.00018-10.
  • Wohlbold TJ, Nachbagauer R, Margine I, Tan GS, Hirsh A, Krammer F. Vaccination with soluble headless hemagglutinin protects mice from challenge with divergent influenza viruses. Vaccine. 2015;33(29):3314–21. doi:10.1016/j.vaccine.2015.05.038.
  • Yassine HM, Boyington JC, McTamney PM, Wei CJ, Kanekiyo M, Kong WP, Gallagher JR, Wang L, Zhang Y, Joyce MG, et al. 2015. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat Med. 21(9):1065–70. doi:10.1038/nm.3927.
  • Krammer F, Pica N, Hai R, Margine I, Palese P. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J Virol. 2013;87(12):6542–50. doi:10.1128/jvi.00641-13.
  • Nachbagauer R, Kinzler D, Choi A, Hirsh A, Beaulieu E, Lecrenier N, Innis BL, Palese P, Mallett CP, Krammer F, et al. 2016. A chimeric haemagglutinin-based influenza split virion vaccine adjuvanted with AS03 induces protective stalk-reactive antibodies in mice. NPJ Vaccines. 1(1):16015. doi:10.1038/npjvaccines.2016.15.
  • Nachbagauer R, Liu WC, Choi A, Wohlbold TJ, Atlas T, Rajendran M, Solórzano A, Berlanda-Scorza F, García-Sastre A, Palese P, et al. 2017. A universal influenza virus vaccine candidate confers protection against pandemic H1N1 infection in preclinical ferret studies. NPJ Vaccines. 2(1):26. doi:10.1038/s41541-017-0026-4.
  • Nachbagauer R, Miller MS, Hai R, Ryder AB, Rose JK, Palese P, García-Sastre A, Krammer F, Albrecht RA. Hemagglutinin stalk immunity reduces influenza virus replication and transmission in ferrets. J Virol. 2015;90(6):3268–73. doi:10.1128/jvi.02481-15.
  • Han L, Chen C, Han X, Lin S, Ao X, Han X, Wang J, Ye H. Structural insights for anti-influenza vaccine design. Comput Struct Biotechnol J. 2019;17:475–83. doi:10.1016/j.csbj.2019.03.009.
  • Bernstein DI, Guptill J, Naficy A, Nachbagauer R, Berlanda-Scorza F, Feser J, Wilson PC, Solórzano A, Van der Wielen M, Walter EB, et al. 2020. Immunogenicity of chimeric haemagglutinin-based, universal influenza virus vaccine candidates: interim results of a randomised, placebo-controlled, phase 1 clinical trial. Lancet Infect Dis. 20(1):80–91. doi:10.1016/s1473-3099(19)30393-7.
  • Stadlbauer D, Zhu X, McMahon M, Turner JS, Wohlbold TJ, Schmitz AJ, Strohmeier S, Yu W, Nachbagauer R, Mudd PA, et al. 2019. Broadly protective human antibodies that target the active site of influenza virus neuraminidase. Science. 366(6464):499–504. doi:10.1126/science.aay0678.
  • Lee DY, Lee E, Park H, Kim S. Availability of clean tap water and medical services prevents the incidence of typhoid fever. Osong Public Health Res Perspect. 2013;4(2):68–71. doi:10.1016/j.phrp.2013.03.005.
  • European Centre for Disease Prevention and Control (ECDC). Typhoid and paratyphoid fevers - annual epidemiological report for 2016. [ Accessed: February 2020]; https://www.ecdc.europa.eu/en/publications-data/typhoid-and-paratyphoid-fevers-annual-epidemiological-report-2016.
  • World Health O. Typhoid vaccines: WHO position paper, March 2018 - recommendations. Vaccine. 2019;37(2):214–16. doi:10.1016/j.vaccine.2018.04.022.
  • Anwar E, Goldberg E, Fraser A, Acosta CJ, Paul M, Leibovici L. 2014. Vaccines for preventing typhoid fever. Cochrane Database Syst Rev. Cd001261. doi:10.1002/14651858.CD001261.pub3.
  • Waddington CS, Darton TC, Jones C, Haworth K, Peters A, John T, Thompson BAV, Kerridge SA, Kingsley RA, Zhou L, et al. 2014. An outpatient, ambulant-design, controlled human infection model using escalating doses of salmonella typhi challenge delivered in sodium bicarbonate solution. Clin Infect Dis. 58(9):1230–40. doi:10.1093/cid/ciu078.
  • Mohan VK, Varanasi V, Singh A, Pasetti MF, Levine MM, Venkatesan R, Ella KM. Safety and immunogenicity of a Vi polysaccharide-tetanus toxoid conjugate vaccine (Typbar-TCV) in healthy infants, children, and adults in typhoid endemic areas: a multicenter, 2-cohort, open-label, double-blind, randomized controlled phase 3 study. Clin Infect Dis. 2015;61(3):393–402. doi:10.1093/cid/civ295.
  • Dahora LC, Jin C, Spreng RL, Feely F, Mathura R, Seaton KE, Zhang L, Hill J, Jones E, Alam SM, et al. 2019. IgA and IgG1 Specific to Vi polysaccharide of salmonella typhi correlate with protection status in a typhoid fever controlled human infection model. Front Immunol. 10:2582. doi:10.3389/fimmu.2019.02582.
  • World Health Organization (WHO). Typhoid vaccines: who position paper- March 2018. [ Accessed: February 2020]; https://apps.who.int/iris/bitstream/handle/10665/272272/WER9313.pdf?ua=1.
  • The Typhoid Vaccine Acceleration Consortium (TyVAC). [ Accessed: February 2020]; https://www.ovg.ox.ac.uk/publications/723918.
  • Aronson NE, Santosham M, Comstock GW, Howard RS, Moulton LH, Rhoades ER, Harrison LH. Long-term efficacy of BCG vaccine in American Indians and Alaska natives: a 60-year follow-up study. Jama. 2004;291(17):2086–91. doi:10.1001/jama.291.17.2086.
  • Usher NT, Chang S, Howard RS, Martinez A, Harrison LH, Santosham M, Aronson NE. Association of BCG vaccination in childhood with subsequent cancer diagnoses: a 60-year follow-up of a clinical trial. JAMA Netw Open. 2019;2(9):e1912014. doi:10.1001/jamanetworkopen.2019.12014.
  • Aaby P, Roth A, Ravn H, Napirna BM, Rodrigues A, Lisse IM, Stensballe L, Diness BR, Lausch KR, Lund N, et al. 2011. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? J Infect Dis. 204(2):245–52. doi:10.1093/infdis/jir240.
  • de Castro MJ, Pardo-Seco J, Martinon-Torres F. Nonspecific (Heterologous) protection of neonatal BCG vaccination against hospitalization due to respiratory infection and sepsis. Clin Infect Dis. 2015;60(11):1611–19. doi:10.1093/cid/civ144.
  • Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F, Bilek N, Mabwe S, Makhethe L, Erasmus M, Toefy A, et al. 2018. Prevention of M. tuberculosis Infection with H4:IC31 vaccine or BCG revaccination. N Engl J Med. 379(2):138–49. doi:10.1056/NEJMoa1714021.
  • Ristori G, Romano S, Cannoni S, Visconti A, Tinelli E, Mendozzi L, Cecconi P, Lanzillo R, Quarantelli M, Buttinelli C, et al. 2014. Effects of bacille calmette-guerin after the first demyelinating event in the CNS. Neurology. 82(1):41–48. doi:10.1212/01.wnl.0000438216.93319.ab.
  • Yong J, Lacan G, Dang H, Hsieh T, Middleton B, Wasserfall C, Tian J, Melega WP, Kaufman DL. BCG vaccine-induced neuroprotection in a mouse model of Parkinson’s disease. PLoS One. 2011;6(1):e16610. doi:10.1371/journal.pone.0016610.
  • Gofrit ON, Klein BY, Cohen IR, Ben-Hur T, Greenblatt CL, Bacillus Calmette-Guerin BH. (BCG) therapy lowers the incidence of alzheimer’s disease in bladder cancer patients. PLoS One. 2019;14(11):e0224433. doi:10.1371/journal.pone.0224433.
  • Faustman DL, Wang L, Okubo Y, Burger D, Ban L, Man G, Zheng H, Schoenfeld D, Pompei R, Avruch J, et al. 2012. Proof-of-concept, randomized, controlled clinical trial of Bacillus-Calmette-Guerin for treatment of long-term type 1 diabetes. PLoS One. 7(8):e41756. doi:10.1371/journal.pone.0041756.
  • Sanjeevi CB, Das AK, Shtauvere-Brameus A. BCG vaccination and GAD65 and IA-2 autoantibodies in autoimmune diabetes in southern India. Ann N Y Acad Sci. 2002;958(1):293–96. doi:10.1111/j.1749-6632.2002.tb02990.x.
  • Ban L, Zhang J, Wang L, Kuhtreiber W, Burger D, Faustman DL. Selective death of autoreactive T cells in human diabetes by TNF or TNF receptor 2 agonism. Proc Natl Acad Sci U S A. 2008;105(36):13644–49. doi:10.1073/pnas.0803429105.
  • Kühtreiber WM, Tran L, Kim T, Dybala M, Nguyen B, Plager S, Huang D, Janes S, Defusco A, Baum D, et al. 2018. Long-term reduction in hyperglycemia in advanced type 1 diabetes: the value of induced aerobic glycolysis with BCG vaccinations. Npj Vaccines. 3(1):23. doi:10.1038/s41541-018-0062-8.
  • KuhtreiberWM, Tran L, Kim T, Dybala M, Nguyen B, Plager S, Huang D, Janes S, Defusco A, Baum D, et al. Long-term reduction in hyperglycemia in advanced type 1 diabetes: the value of induced aerobic glycolysis with BCG vaccinations. NPJ Vaccines. 2018;3(1):23. doi:10.1038/s41541-018-0062-8.
  • Leong I, Amory JK. BCG vaccination for type 1 diabetes mellitus. Nat Rev Endocrinol. 2018;14(12):503. doi:10.1038/s41574-018-0064-7.
  • Perrett KP, Jachno K, Nolan TM, Harrison LC. Association of rotavirus vaccination with the incidence of type 1 diabetes in children. JAMA Pediatr. 2019;173(3):280–82. doi:10.1001/jamapediatrics.2018.4578.
  • Honeyman MC, Coulson BS, Stone NL, Gellert SA, Goldwater PN, Steele CE, Couper JJ, Tait BD, Colman PG, Harrison LC, et al. 2000. Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes. 49(8):1319–24. doi:10.2337/diabetes.49.8.1319.
  • Perrett KP, Jachno K, Nolan TM, Harrison LC. 2019. Coding error in study of rotavirus vaccination and type 1 diabetes in children. JAMA Pediatr. doi:10.1001/jamapediatrics.2019.2463.
  • Honeyman MC, Laine D, Zhan Y, Londrigan S, Kirkwood C, Harrison LC. Rotavirus infection induces transient pancreatic involution and hyperglycemia in weanling mice. PLoS One. 2014;9(9):e106560. doi:10.1371/journal.pone.0106560.
  • Rogers MAM, Basu T, Kim C. Lower incidence rate of type 1 diabetes after receipt of the rotavirus vaccine in the United States, 2001-2017. Sci Rep. 2019;9(1):7727. doi:10.1038/s41598-019-44193-4.
  • Payne DC, Baggs J, Zerr DM, Klein NP, Yih K, Glanz J, Curns AT, Weintraub E, Parashar UD. Protective association between rotavirus vaccination and childhood seizures in the year following vaccination in US children. Clin Infect Dis. 2014;58(2):173–77. doi:10.1093/cid/cit671.
  • Pardo-Seco J, Cebey-Lopez M, Martinon-Torres N, Salas A, Gomez-Rial J, Rodriguez-Tenreiro C, Martinon-Sanchez JM, Martinon-Torres F. Impact of rotavirus vaccination on childhood hospitalization for seizures. Pediatr Infect Dis J. 2015;34(7):769–73. doi:10.1097/inf.0000000000000723.
  • Reperant LA, Cornaglia G, Osterhaus AD. 2013. The importance of understanding the human-animal interface: from early hominins to global citizens. Curr Top Microbiol Immunol. 365:49–81. doi:10.1007/82_2012_269.
  • Pelkonen PM, Tarvainen K, Hynninen A, Kallio ER, Henttonen K, Palva A, Vaheri A, Vapalahti O. Cowpox with severe generalized eruption, Finland. Emerg Infect Dis. 2003;9(11):1458–61. doi:10.3201/eid0911.020814.
  • Stittelaar KJ, Neyts J, Naesens L, van Amerongen G, van Lavieren RF, Holy A, De Clercq E, Niesters HGM, Fries E, Maas C, et al. 2006. Antiviral treatment is more effective than smallpox vaccination upon lethal monkeypox virus infection. Nature. 439(7077):745–48. doi:10.1038/nature04295.
  • de Swart RL, Duprex WP, Osterhaus AD. Rinderpest eradication: lessons for measles eradication? Curr Opin Virol. 2012;2(3):330–34. doi:10.1016/j.coviro.2012.02.010.
  • Mina MJ, Metcalf CJ, de Swart RL, Osterhaus AD, Grenfell BT. Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science. 2015;348(6235):694–99. doi:10.1126/science.aaa3662.
  • de Vries RD, McQuaid S, van Amerongen G, Yuksel S, Verburgh RJ, Osterhaus AD, Duprex WP, de Swart RL. Measles immune suppression: lessons from the macaque model. PLoS Pathog. 2012;8(8):e1002885. doi:10.1371/journal.ppat.1002885.
  • Laksono BM, de Vries RD, Verburgh RJ, Visser EG, de Jong A, Fraaij PLA, Ruijs WLM, Nieuwenhuijse DF, van den Ham H-J, Koopmans MPG, et al. 2018. Studies into the mechanism of measles-associated immune suppression during a measles outbreak in the Netherlands. Nat Commun. 9(1):4944. doi:10.1038/s41467-018-07515-0.
  • Siegl G. Molecular biology and pathogenicity of human and animal parvoviruses. Behring Inst Mitt. 1990;(85):6–13.
  • Suresh S, Forgie S, Robinson J. Non-polio Enterovirus detection with acute flaccid paralysis: A systematic review. J Med Virol. 2018;90(1):3–7. doi:10.1002/jmv.24933.
  • Vu D-L, Sabrià A, Aregall N, Michl K, Rodriguez Garrido V, Goterris L, Bosch A, Pintó RM, Guix S. Novel human astroviruses: prevalence and association with common enteric viruses in undiagnosed gastroenteritis cases in Spain. Viruses. 2019;11(7):585. doi:10.3390/v11070585.
  • O’Brien KL, Baggett HC, Brooks WA, Feikin DR, Hammitt LL, Higdon MM, Howie SRC, Deloria Knoll M, Kotloff KL, Levine OS; neumonia Etiology Research for Child Health (PERCH) Study Group. 2019. Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study. Lancet. 394(10200):757–79. doi:10.1016/s0140-6736(19)30721-4.
  • van den Hoogen BG, de Jong JC, Groen J, Kuiken T, de Groot R, Fouchier RA, Osterhaus AD. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001;7(6):719–24. doi:10.1038/89098.
  • Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RAM, et al. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 348(20):1967–76. doi:10.1056/NEJMoa030747.
  • Fouchier RA, Hartwig NG, Bestebroer TM, Niemeyer B, de Jong JC, Simon JH, Osterhaus AD. A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci U S A. 2004;101(16):6212–16. doi:10.1073/pnas.0400762101.
  • Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300(5624):1394–99. doi:10.1126/science.1085952.
  • van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, Wolthers KC, Wertheim-van Dillen PME, Kaandorp J, Spaargaren J, Berkhout B, et al. 2004. Identification of a new human coronavirus. Nat Med. 10(4):368–73. doi:10.1038/nm1024.
  • Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, Wong BH, Poon RW, Cai JJ, Luk WK, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79(2):884–95. doi:10.1128/jvi.79.2.884-895.2005.
  • Saunders-Hastings PR, Krewski D. 2016. Reviewing the history of pandemic influenza: understanding patterns of emergence and transmission. Pathogens. 5. doi:10.3390/pathogens5040066.
  • Ducatez MF, Olinger CM, Owoade AA, De Landtsheer S, Ammerlaan W, Niesters HG, Osterhaus ADME, Fouchier RAM, Muller CP. Avian flu: multiple introductions of H5N1 in Nigeria. Nature. 2006;442(7098):37. doi:10.1038/442037a.
  • Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, Munster V, Kuiken T, Rimmelzwaan GF, Schutten M, Van Doornum GJ, et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A. 2004;101(5):1356–61. doi:10.1073/pnas.0308352100.
  • Zoonoses Anticipation and Preparedness Initiative (ZAPI). [ Accessed: February 2020]; https://zapi-imi.eu/home-page.
  • Plotkin SA. Vaccines for epidemic infections and the role of CEPI. Hum Vaccin Immunother. 2017;13(12):2755–62. doi:10.1080/21645515.2017.1306615.
  • World Health Organization (WHO). Measles in Europe: record number of both sick and immunized. [ Accessed: February 2020]; http://www.euro.who.int/en/media-centre/sections/press-releases/2019/measles-in-europe-record-number-of-both-sick-and-immunized.
  • World Health Organization (WHO). Report of the SAGE working group on vaccine hesitancy [Accessed: December 2019]; http://www.who.int/immunization/sage/meetings/2014/october/SAGE_working_group_revised_report_vaccine_hesitancy.pdf
  • Chang AY, Riumallo-Herl C, Perales NA, Clark S, Clark A, Constenla D, Garske T, Jackson ML, Jean K, Jit M, et al. 2018. The equity impact vaccines may have on averting deaths and medical impoverishment in developing countries. Health Aff. 37(2):316–24. doi:10.1377/hlthaff.2017.0861.
  • UNICEF. 2017. UNICEF journey to immunization social data workshop. Amman (Jordan) [Accessed: July 2020]; https://www.unicef.org/about/annualreport/files/Jordan_2017_COAR.pdf
  • Community & Regional Resilience Institute. Definitions of community resilience: an analysis. A carry report. [ Accessed: February 2020]; https://docplayer.net/23232115-Definitions-of-community-resilience-an-analysis-a-carri-report.html.
  • World Health Organization (WHO). Vaccine safety and false contraindications to vaccination. Training manual. [ Accessed: May 2020]; http://www.euro.who.int/__data/assets/pdf_file/0009/351927/WHO-Vaccine-Manual.pdf.
  • Quinlan A. Resilience and adaptive capacity: key components of sustainable social-ecological systems. Newsl Int Hum Dimens Program Global Environ Change (IHDP). 2003;2:4–5.
  • Gangarosa EJ, Galazka AM, Wolfe CR, Phillips LM, Gangarosa RE, Miller E, Chen RT. Impact of anti-vaccine movements on pertussis control: the untold story. Lancet. 1998;351(9099):356–61. doi:10.1016/s0140-6736(97)04334-1.0
  • Kwan SY, Petersen PE, Pine CM, Borutta A. Health-promoting schools: an opportunity for oral health promotion. Bull World Health Organ. 2005;83(9):677–85. doi:/S0042-96862005000900013.
  • Buijs G, Dadaczynski K, Schulz A, Vilaça T. Equity, education and health: learning from practice. Case studies of practice presented during the 4th European Conference on Health Promoting Schools; 2013 Oct 7–9; Odense, Denmark.
  • Palmu AA, Jokinen J, Nieminen H, Rinta-Kokko H, Ruokokoski E, Puumalainen T, Moreira M, Schuerman L, Borys D, Kilpi TM, et al. 2018. Vaccine-preventable disease incidence of pneumococcal conjugate vaccine in the Finnish invasive pneumococcal disease vaccine trial. Vaccine. 36(14):1816–22. doi:10.1016/j.vaccine.2018.02.088.
  • Gessner BD, Jiang Q, Van Werkhoven CH, Sings HL, Webber C, Scott D, Neuzil KM, O’Brien KL, Wunderink RG, Grobbee DE, et al. 2019. A public health evaluation of 13-valent pneumococcal conjugate vaccine impact on adult disease outcomes from a randomized clinical trial in the Netherlands. Vaccine. 37(38):5777–87. doi:10.1016/j.vaccine.2018.05.097.
  • Theilacker C, Vyse A, Jodar L, Gessner BD. 2019. Evaluations of the public health impact of adult vaccination with pneumococcal vaccines should include reductions in all-cause Pneumonia. Clin Infect Dis. doi:10.1093/cid/ciz882.
  • Attwell K, Navin MC. Childhood vaccination mandates: scope, sanctions, severity, selectivity, and salience. Milbank Q. 2019;97(4):978–1014. doi:10.1111/1468-0009.12417.
  • Lévy-Bruhl D, Desenclos JC, Quelet S, Bourdillon F. 2018. Extension of French vaccination mandates: from the recommendation of the steering committee of the citizen consultation on vaccination to the law. Euro Surveill. 23. doi:10.2807/1560-7917.es.2018.23.17.18-00048.
  • D’Ancona F, D’Amario C, Maraglino F, Rezza G, Iannazzo S. 2019. The law on compulsory vaccination in Italy: an update 2 years after the introduction. Euro Surveill. 24. doi:10.2807/1560-7917.es.2019.24.26.1900371.
  • Lee C, Robinson JL. Systematic review of the effect of immunization mandates on uptake of routine childhood immunizations. J Infeencect. 2016;72(6):659–66. doi:10.1016/j.jinf.2016.04.002.
  • Trent MJ, Zhang EJ, Chughtai AA, MacIntyre CR. Parental opinions towards the “No Jab, No Pay” policy in Australia. Vaccine. 2019;37(36):5250–56. doi:10.1016/j.vaccine.2019.07.066.
  • Trentini F, Poletti P, Melegaro A, Merler S. The introduction of ‘No jab, No school’ policy and the refinement of measles immunisation strategies in high-income countries. BMC Med. 2019;17(1):86. doi:10.1186/s12916-019-1318-5.
  • Action plan on Science in Society related issues in Epidemics and Total pandemics (ASSET). Compulsory vaccination and rates of coverage immunisation in Europe. [ Accessed: February 2020]; http://www.asset-scienceinsociety.eu/reports/page1.html.
  • Mahase E. 2019. Mandatory childhood vaccination could cause “irreparable damage,” says expert panel. Bmj. 367:l5995. doi:10.1136/bmj.l5995.
  • Arede M, Bravo-Araya M, Bouchard E, Singh Gill G, Plajer V, Shehraj A, Adam Shuaib Y. Combating vaccine hesitancy: teaching the next generation to navigate through the post truth era. Front Public Health. 2018;6:381. doi:10.3389/fpubh.2018.00381.
  • Sydnor E, Perl TM. Healthcare providers as sources of vaccine-preventable diseases. Vaccine. 2014;32(38):4814–22. doi:10.1016/j.vaccine.2014.03.097.
  • World Health Organization (WHO). European vaccine action plan 2015-2020 (2014). [ Accessed: February 2020]; http://www.euro.who.int/en/health-topics/disease-prevention/vaccines-and-immunization/publications/2014/european-vaccine-action-plan-20152020-2014.
  • Holcomb ZE, Tsalik EL, Woods CW, McClain MT. Host-based peripheral blood gene expression analysis for diagnosis of infectious diseases. J Clin Microbiol. 2017;55(2):360–68. doi:10.1128/jcm.01057-16.
  • Gliddon HD, Herberg JA, Levin M, Kaforou M. Genome-wide host RNA signatures of infectious diseases: discovery and clinical translation. Immunology. 2018;153(2):171–78. doi:10.1111/imm.12841.
  • Anderson ST, Kaforou M, Brent AJ, Wright VJ, Banwell CM, Chagaluka G, Crampin AC, Dockrell HM, French N, Hamilton MS, et al. 2014. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N Engl J Med. 370(18):1712–23. doi:10.1056/NEJMoa1303657.
  • Herberg JA, Kaforou M, Wright VJ, Shailes H, Eleftherohorinou H, Hoggart CJ, Cebey-López M, Carter MJ, Janes VA, Gormley S, et al. 2016. Diagnostic test accuracy of a 2-transcript host RNA Signature for discriminating bacterial vs viral infection in febrile children. Jama. 316(8):835–45. doi:10.1001/jama.2016.11236.
  •  Martinon-Torres F, Salas A, Rivero-Calle I, Cebey-Lopez M, Pardo-Seco J, Herberg JA, Boeddha NP, Klobassa DS, Secka F, Paulus S, et al. Life-threatening infections in children in Europe (the EUCLIDS Project): a prospective cohort study. Lancet Child Adolesc Health. 2018;2(6):404–14. doi:10.1016/s2352-4642(18)30113-5.
  • Kaforou M, Herberg JA, Wright VJ, Coin LJM, Levin M. Diagnosis of Bacterial Infection Using a 2-Transcript Host RNA Signature in Febrile Infants 60 Days or Younger. Jama. 2017;317(15):1577–78. doi:10.1001/jama.2017.1365.
  • Mahajan P, Kuppermann N, Mejias A, Suarez N, Chaussabel D, Casper TC, Smith B, Alpern ER, Anders J, Atabaki SM, et al. 2016. Association of RNA biosignatures with bacterial infections in febrile infants aged 60 days or younger. Jama. 316(8):846–57. doi:10.1001/jama.2016.9207.
  • Gómez-Carballa A, Cebey-López M, Pardo-Seco J, Barral-Arca R, Rivero-Calle I, Pischedda S, Currás-Tuala MJ, Gómez-Rial J, Barros F, Martinón-Torres F, et al. 2019. A qPCR expression assay of IFI44L gene differentiates viral from bacterial infections in febrile children. Sci Rep. 9(1):11780. doi:10.1038/s41598-019-48162-9.
  • Castelvecchi D. Black hole pictured for first time - in spectacular detail. Nature. 2019;568(7752):284–85. doi:10.1038/d41586-019-01155-0.
  • Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HY, Chen R, Miriami E, Karczewski K, Hariharan M, Dewey F, et al. 2012. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell. 148(6):1293–307. doi:10.1016/j.cell.2012.02.009.
  • Wetterstrand KA. DNA sequencing costs: data from the NHGRI Genome Sequencing Program (GSP). [ Accessed: February 2020]; www.genome.gov/sequencingcostsdata.
  • Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–18. doi:10.1038/nature21056.
  • Daoud H, Bayoumi MA. Efficient Epileptic Seizure Prediction Based on Deep Learning. IEEE Trans Biomed Circuits Syst. 2019;13(5):804–13. doi:10.1109/tbcas.2019.2929053.
  • Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F, Jung K, Heller K, Kale D, Saeed M, et al. 2019. Do no harm: a roadmap for responsible machine learning for health care. Nat Med. 25(9):1337–40. doi:10.1038/s41591-019-0548-6.