3,363
Views
24
CrossRef citations to date
0
Altmetric
Review

Product of natural evolution (SARS, MERS, and SARS-CoV-2); deadly diseases, from SARS to SARS-CoV-2

ORCID Icon, ORCID Icon & ORCID Icon
Pages 62-83 | Received 15 Apr 2020, Accepted 10 Jul 2020, Published online: 12 Aug 2020

References

  • Huang J, Cao Y, Du J, Bu X, Ma R, Wu C. Printing with SARS CoV S DNA and boosting with SARS CoV S epitopes specific for CD4+ and CD8+ T cells promote cellular immune responses. Vaccine. 2007;25:6981–91. doi:10.1016/j.vaccine.2007.06.047.
  • Kam YW, Kien F, Roberts A, Cheung YC, Lamirande EW, Vogel L, Chu SL, Tse J, Guarner J, Zaki SR, et al. Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry into B cells in vitro. Vaccine. 2007;25:729–40.
  • Chu Y-K, Ali GD, Jia F, Li Q, Kelvin D, Couch RC, Harrod KS, Hutt JA, Cameron C, Weiss SR, et al. The SARS-CoV ferret model in an infection-challenge study. Virology. 2008;374:151–63.
  • Masters PS, Perlman S. Coronaviridae in field,s virology. In: Knipe DM, Howley PM editors. Lippincott. Vol. 1. Philadelphia (USA): Williams & Wilkins; 2013. p. 825–58.
  • Kumaki Y, Wandersee MK, Smith AJ, Zhou Y, Simmons G, Nelson NM, Bailey KW, Vest ZG, Li J-K-K, Chan PK-S, et al. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antiviral Res. 2011;90:22–32. doi:10.1016/j.antiviral.2011.02.003.
  • Bermingham A, Chand MA, Brown CS, Aarons E, Tong C, Langrish C, Zambon M. Severe respiratory illness caused by a novel coronavirus, in a patient transderred to the United Kingdom from the Middle East, September 2012. Euro Surveill. 2012;17:20290.
  • Karypidou K, Ribone SR, Quevedo MA, Persoons L, Pannecouque C, Helsen C, Claessens F, Dehaen W. Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents. Bioorg Med Chem Lett. 2018;28:3472–76. doi:10.1016/j.bmcl.2018.09.019.
  • Chang L, Yan Y, Wang L. Coronavirus disease 2019: coronaviruses and blood safety. Transfus Med Rev. 2020. http://doi.10.1016/j,tmrv.2020.02.003.
  • Akerstrom S, Gunalan V, Tat Keng C, Tan Y-J, Mirazimi A. Dual effect of nitric oxide on SARS-CoV replication: viral RNA production and palmitoylation of the S protein are affected. Virology. 2009;395:1–9. doi:10.1016/j.virol.2009.09.007.
  • Adams MJ, Carstens EB. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2012). Arch Viral. 2012;157:1411–22. doi:10.1007/s00705-012-1299-6.
  • Sims AC, Burkett SE, Yount B, Pickles RJ. SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium. Virus Res. 2008;133:33–44. doi:10.1016/j.virusres.2007.03.013.
  • Lu G, Wang Q, Gao GF. Bat-to-human: spike features determining host jump of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trend Microbiol. 2015;23(8):468–78. doi:10.1016/j.tim.2015.06.003.
  • Ar Gouilh M, Puechmaille SJ, Diancourt L, Vandenbogaert M, Serra-Cobo J, Roig ML, Brown P, Moutou F, Caro V, Vabret A, et al. SARS-CoV related Betacoronavirus and diverse Alphacoronavirus members found in western old-world. Virology. 2018;517:88–97. doi:10.1016/j.virol.2018.01.014.
  • Coleman PM, Lawrence MC. The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol. 2003;4:309–19. doi:10.1038/nrm1076.
  • Chernomordik LV, Kozlov MM. Mechanics of membrane fusion. Nat. Struct. Mol Biol. 2008;15:675–83.
  • Harrison SC. Viral membrane fusion. Nat Struct Mol Biol. 2008;15:690–98. doi:10.1038/nsmb.1456.
  • White JM, Delos SE, Brecher M, Schornberg K. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol. 2008;43:189–219. doi:10.1080/10409230802058320.
  • White JM, Whittaker GR. Fusion of enveloped viruses in endosomes. Traffic. 2016;17:593–614. doi:10.1111/tra.12389.
  • Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003;77:8801–11.
  • Millet JK, Whittaker GR. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology. 2018;517:3–8.
  • Yu P, Hu B, Shi Z-L, Cui J. Geographical structure of bat SARS-related coronaviruses. Infect Genet Evol. 2019;69:224–29.
  • Gillissen A, Ruf BR. Severe acute respiratory syndrome (SARS). Med Klin. 2003;98:319–25.
  • Zhong N-S, Wong GWK. Epidemiology of severe acute respiratory syndrome (SARS): adults and children. Paediatr Respir Rev. 2004;5:270–74.
  • Chu KH, Tsang WK, Tang CS, Lam MF, Lai FM, To KF, Fung KS, Tang HL, Yan WW, Chan HWH, et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int. 2005;67:698–705.
  • Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung S-H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J Med Chem. 2016;59:6595–628. doi:10.1021/acs.jmedchem.5b01461.
  • Zhai S, Liu W, Yan B. Recent patents on treatment of severe acute respiratory syndrome (SARS). Recent Pat Antiinfect Drug Discov. 2007;2:1–10.
  • Hong X, Currier GW, Zhao X, Jiang Y, Zhou W, Wei J. Posttraumatic stress disorder in convalescent severe acute respiratory syndrome patients: a 4-year follow-up study. Gen Hosp Psychiatry. 2009;31:546–54.
  • Yam LY-C, Lau AC-W, Lai FY-L, Shung E, Chan J, Wong V. Corticosteroid treatment of severe acute respiratory syndrome in Hong Kong. J Infect. 2007;54:28–39.
  • Zhang N, Tang J, Lu L, Jiang S, Du L. Receptor-binding domain-based subunit vaccines against MERS-CoV. Virus Res. 2015;202:151–59.
  • Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16:69.
  • Saminathan M, Chakraborty S, Tiwari R, Dhama K, Verma A. Coronavirus infection in equines: a review. Asian J Anim Vet Adv. 2014;9:164–76.
  • Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol. 2003;331:991–1004.
  • Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med. 2006;3(9):e343. doi:10.1371/journal.pmed.0030343.
  • Netland J, DeDiego ML, Zhao J, Fett C, Alvarez E, Nieto-Torres JL, Enjuanes L, Perlman S. Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease. Virology. 2010;399:120–28.
  • DeDiego ML, Alvarez E, Almazan F, Rejas MT, Lamirande E, Roberts A, Shieh WJ, Zaki SR, Subbarao K, Enjuanes L. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol. 2007;81:1701–13.
  • DeDiego ML, Pewe L, Alvarez E, Rejas MT, Perlman S, Enjuanes L. Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice. Virology. 2008;376:379–89.
  • Ohnishi K, Hattori Y, Kobayashi K, Akaji K. Evaluation of a non-prime site substituent and warheads combined with a decahydroisoquinolin scaffold as a SARS 3CL protease inhibitor. Bioorg Med Chem. 2019;27:425–35. doi:10.1016/j.bmc.2018.12.019.
  • Law PYP, Liu Y-M, Geng H, Kwan KH, Waye MM-Y, Ho -Y-Y. Expression and functional characterization of the putative protein 8b of the severe acute respiratory syndrome-associated coronavirus. FEBS Lett. 2006;580:3643–48. doi:10.1016/j.febslet.2006.05.051.
  • Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300:1394–99. doi:10.1126/science.1085952.
  • Shin G-C, Chung Y-S, Kim I-S, Cho H-W, Kang C. Preparation and characterization of a novel monoclonal antibody specific to severe acute respiratory syndrome-coronavirus nucleocapsid protein. Virus Res. 2006;122:109–18. doi:10.1016/j.virusres.2006.07.004.
  • Narayanan K, Huang C, Makino S. SARS coronavirus accessory proteins. Virus Res. 2008;133:113–21. doi:10.1016/j.virusres.2007.10.009.
  • Nguyen TTH, Ryu H-J, Lee S-H, Hwang S, Breton V, Rhee JH, Kim D. Virtual screening identification of novel severe acute respiratory syndrome 3C-like protease inhibitors and in vitro confirmation. Bioorg Med Chem Lett. 2011;21:3088–91. doi:10.1016/j.bmcl.2011.03.034.
  • Liu DX, Fung TS, Chong KKL, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antivir Res. 2014;109:97–109. doi:10.1016/j.antiviral.2014.06.013.
  • Spiegel M, Pichlmair A, Martinez-Sobrido K, Cros J, Garcia-Sastre A, Haller O, Weber F. Inhibition of Beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J Virol. 2005;79:2079–86. doi:10.1128/JVI.79.4.2079-2086.2005.
  • Spiegel M, Pichlmair A, Muhlberger E, Haller O, Weber F. The antiviral effect of interferon-beta against SARS-coronavirus is not mediated by MxA protein. J Clin Virol Off Publ Pan Am Soc Clin Virol. 2004;30:211–13. doi:10.1016/j.jcv.2003.11.013.
  • Zheng B, He M-L, Wong K-L, Lum CT, Poon LLM, Peng Y, Guan Y, Lin MCM, Kung H-F. Potent inhibition of SARS-associated coronavirus (SCOV) infection and replication by type I interferons (IFN-alpha/beta) but not by type II interferon (IFN-gamma). J Interferon Cytokine Res. 2004;24:388–90. doi:10.1089/1079990041535610.
  • He Y, Zhou Y, Wu H, Luo B, Chen J, Li W, Jiang S. Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines. J Immunol. 2004;173:4050–57. doi:10.4049/jimmunol.173.6.4050.
  • Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis. Virology. 2001;279:371. doi:10.1006/viro.2000.0757.
  • Holmes KV. SARS coronavirus: a new challenge for prevention and therapy. J Clin Invest. 2003;111:1605. doi:10.1172/JCI18819.
  • Holmes KV. SARS-associated coronavirus. N Engl J Med. 2003;348:1948. doi:10.1056/NEJMp030078.
  • Gebauer F, Posthumus WP, Correa I, Sune C, Smerdou C, Sanchez CM, Lenstra JA, Meloen RH, Enjuanes L. Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein. Virology. 1991;183:225. doi:10.1016/0042-6822(91)90135-X.
  • Posthumus WP, Lenstra JA, van Nieuwstadt AP, Schaaper WM, van der Zeijst BA, Meloen RH. Immunogenicity of peptides simulating a neutralization epitope of transmissible gastroenteritis virus. Virology. 1991;182:371. doi:10.1016/0042-6822(91)90684-4.
  • Enjuanes L, Sune F, Gebauer C, Smerdou C, Camacho A, Anton IM, Gonzalez S, Talamillo A, Mendez A, Ballesteros ML, et al. Antigen selection and presentation to protect against transmissible gastroenteritis coronavirus. Vet Microbiol. 1992;33:249. doi:10.1016/0378-1135(92)90053-V.
  • Li G, Chen X, Xu A. Profile of specific antibodies to the SARS-associated coronavirus. N Engl J Med. 2003;349:508. doi:10.1056/NEJM200307313490520.
  • Kuo L, Masters PS. The small envelope protein E is not essential for murine coronavirus replication. J Virol. 2003;77:4597–608. doi:10.1128/JVI.77.8.4597-4608.2003.
  • Ortego J, Ceriani JE, Patino C, Plana J, Enjuanes L. Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway. Virology. 2007;368(2):296–308. doi:10.1016/j.virol.2007.05.032.
  • DeDiego ML, Nieto-Torres JL, Jimenez-Guardeno JM, Regla-Nava JA, Castano-Rodriguez C, Fernandez-Delgado R, Usera F, Enjuanes L. Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res. 2014;194:124–37. doi:10.1016/j.virusres.2014.07.024.
  • DeDiego MK, Nieto-Torres JL, Jimenez-Guardeno JM, Regla-Nava JA, Alvarez E, Oliveros JC, Zhao J, Fett C, Perlman S, Enjuanes L. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis. PLoS Pathog. 2011;7:e1002315. doi:10.1371/journal.ppat.1002315.
  • Nieto-Torres JL, DeDiego ML, Verdia-Baguena C, Jimenez-Guardeno JM, Regla-Nava JA, Fernandez-Delgado R, Castano-Rodriguez C, Alcaraz A, Torres J, Aguilella VM, et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 2014. http://dx.doi.10.1371/journal.ppat.1004077.
  • Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020. doi:10.1038/s41591-020-0820-9.
  • Li T. Diagnosis and clinical management of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection: an operational recommendation of Peking Union Medical College Hospital (V2.0). Emerg Microbes Infect. 2020;9:582–85.
  • Ceccarelli M, Berretta M, Venanzi Rullo E, Nunnari G, Cacopardo B. Editorial- difference and similarities between severe acute respiratory syndrome (SARS)- Coronavirus (CoV) an SARS-CoV-2. Would a rose by another name smell as sweet? Eur Rev Med Pharmacol Sci. 2020;24:2781–83.
  • Chee YC. Severe acute respiratory syndrome (SARS)-150 days on. Ann Acad Med Singapore. 2003;32:277–80.
  • Kissoon N. The threat of severe acute respiratory syndrome (SARS). West Indian Med J. 2003;52:91–94.
  • Thomas PA. Severe acute respiratory syndrome (SARS): a bolt from the blue. Indian J Med Microbiol. 2003;21:150–51.
  • Chowell G, Fenimore PW, Castillo-Garsow MA, Castillo-Chavez C. SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. J Theor Biol. 2003;224:1–8. doi:10.1016/S0022-5193(03)00228-5.
  • Lang Z-W, Zhang L-J, Zhang S-J, Meng X, Li J-Q, Song C-Z, Sun L, Zhou Y-S, Dwyer DE. A clinicopathological study of three cases of severe acute respiratory syndrome (SARS). Pathology. 2003;35(6):526–31. doi:10.1080/00313020310001619118.
  • Ruiz-Contreras A. Case report: caring for suspected severe acute respiratory syndrome (SARS) patients. Dis Manage Response. 2003;1(3):71–75. doi:10.1016/S1540-2487(03)00045-2.
  • Hawkey PM, Bhagani S, Gillespie SH. Severe acute respiratory syndrome (SARS): breath-taking progress. J Med Microbiol. 2003;52:609–13. doi:10.1099/jmm.0.05321-0.
  • Stohr K. World Health Organization multicentre collaborative network for severe acute respiratory syndrome (SARS) diagnosis. A multi-centre collaboration to investigate the cause of severe acute respiratory syndrome. Lancet. 2003;361:1730–33. doi:10.1016/S0140-6736(03)13376-4.
  • Hoheisel G, Luk WK, Winkler J, Gillissen A, Wirtz H, Liebert Y, Hui DS. Severe acute respiratory syndrome (SARS). Med Klin. 2007;101(12):957–63. doi:10.1007/s00063-006-1127-4.
  • Patrick DM. The race to outpace severe acute respiratory syndrome (SARS). Can Med Assoc J. 2003;168:1265–66.
  • Shin G-C, Chung Y-S, Kim I-S, Cho H-W, Kang C. Antigenic characterization of severe acute respiratory syndrome-coronavirus nucleocapsid protein expressed in insect cells: the effect of phosphorylation on immunoreactivity and specificity. Virus Res. 2007;127:71–80. doi:10.1016/j.virusres.2007.03.019.
  • Hui DSC, Zumla A. Severe acute respiratory syndrome: historical, epidemiologic, and clinical features. Infect Dis Clin North Am. 2019;33(4):869–89. doi:10.1016/j.idc.2019.07.001.
  • Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, Dwosh HA, Walmsley SL, Mazzulli T, Avendano M, Derkach P, et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA. 2003. doi:10.1001/jama.289.21.JOC30885.
  • Chan-Yeung M, Yu WC. Outbreak of severe acute respiratory syndrome in Hong Kong special administrative region: case report. BMJ. 2003;326:850–52. doi:10.1136/bmj.326.7394.850.
  • Leung WK, To K-F, Chan PKS, Chan HLY, Wu AKL, Lee N, Yuen KY, Sung JJY. Enteric involvement of severe acute respiratory syndrome associated coronavirus infection. Gastroenterology. 2003;125:1011–17. doi:10.1016/j.gastro.2003.08.001.
  • Zhong NS. The clinical diagnosis and treatment of SARS at present. Zhong Guoyi Xuelun Tanbao. 2003;4:29.
  • Aronin SI, Sadigh M. Severe acute respiratory syndrome. Conn Med. 2004;68:207–15.
  • Shen B, Cheng SKW, Lau KK, Li HL, Chan ELY. The effects of disease severity, use of corticosteroids and social factors on neuropsychiatric complaints in severe acute respiratory syndrome (SARS) patients at acute and convalescent phases. Eur Psychiatr. 2005;20:236–42. doi:10.1016/j.eurpsy.2004.06.023.
  • Lien T-C, Sung C-S, Lee C-H, Kao H-K, Huang Y-C, Liu C-Y, Perng R-P, Wang J-H. Characteristic features and outcomes of severe acute respiratory syndrome found in severe acute respiratory syndrome intensive care unit patients. J Crit Care. 2008;23:557–64. doi:10.1016/j.jcrc.2007.05.004.
  • Ahmad A, Krumkamp R, Reintje R. Controlling SARS: a review on China,s response compared with other SARS-affected countries. Trop Med Int Health. 2009;14(1):36–45. doi:10.1111/j.1365-3156.2008.02146.x.
  • Wang W, Ruan S. Simulating the SARS outbreak in Beijing with limited data. J Theor Biol. 2004;227:369–79. doi:10.1016/j.jtbi.2003.11.014.
  • Derrick JL, Gomersall CD. Protecting healthcare staff from severe acute respiratory syndrome: filtration capacity of multiple surgical masks. J Hosp Infect. 2005;59:365–68. doi:10.1016/j.jhin.2004.10.013.
  • Bryce E, Copes R, Gamage B, Lockhart K, Yassi A. Staff perception and institutional reporting: two views of infection control compliance in British Columbia and Ontario three years after an outbreak of severe acute respiratory syndrome. J Hosp Infect. 2008;69:169–76. doi:10.1016/j.jhin.2008.03.010.
  • Tsui WMS. Coronavirus is the cause of the severe acute respiratory syndrome (SARS) outbreak in Hong Kong and worldwide. Adv Anat Pathol. 2003;10(4):236. doi:10.1097/00125480-200307000-00008.
  • Tong TR. Severe acute respiratory syndrome coronavirus (SARS-CoV). Perspect Med Virol. 2006;16:43–95.
  • Wang H, Rao S, Jiang C. Molecular pathogenesis of severe acute respiratory syndrome. Microbes Infect. 2007;9:119–26. doi:10.1016/j.micinf.2006.06.012.
  • Wong CKK, Lai V, Wong YC. Comparison of initial high resolution computed tomography features in viral pneumonia between metapneumovirus infection and severe acute respiratory syndrome. Eur J Radiol. 2012;81:1083–87. doi:10.1016/j.ejrad.2011.02.050.
  • Poon LLM, Chan KH, Nicholls JM, Zheng BJ, Yuen KY, Guan Y, Peiris JSM. Characterization of a novel coronavirus responsible for severe acute respiratory syndrome. Int Congr Ser. 2004;1263:805–08. doi:10.1016/j.ics.2004.02.105.
  • Li G-M, Li Y-G, Yamate M, Li S-M, Ikuta K. Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle. Microbes Infect. 2007;9:96–102. doi:10.1016/j.micinf.2006.10.015.
  • Hafeez R, Aslam M, Aman S, Tahir M. Severe acute respiratory syndrome (SARS): a deadly disease. Ann King Edw Med Univ Pak. 2016;10(1).
  • Wang ZG, Xu SP, Zhang YJ. The possible origin of recent human SARS coronavirus isolate from China. Acta Virol. 2006;50:211–13.
  • Centers for disease control and prevention: updated interim US case definition for severe acute respiratory syndrome (SARS). URL: http://www.cdc.gov/ncidod/sars/casedefinition.htm
  • Woodhead M, Ewig S, Torres A. Severe acute respiratory syndrome (SARS). Eur Respir J. 2003;21:739–40. doi:10.1183/09031936.03.00035403.
  • Dolan SA. A new disease emerges: severe acute respiratory syndrome (SARS). J Spec Pediatr Nurs. 2003;8(2):75–76. doi:10.1111/j.1744-6155.2003.tb00190.x.
  • Wenzel RP, Bearman G, Edmond MB. Lessons from severe acute respiratory syndrome (SARS): implications for infection control. Arch Med Res. 2005;36:610–16. doi:10.1016/j.arcmed.2005.03.040.
  • Xu C, Wang J, Wang L, Cao C. Spatial pattern of severe acute respiratory syndrome in-out flow in 2003 in mainland China. BMC Infect Dis. 2014. doi:10.1186/s12879-014-0721-y.
  • Parashar UD, Anderson LJ. Severe acute respiratory syndrome: review and lessons of the 2003 outbreak. Int J Epidemiol. 2004;33:628–34. doi:10.1093/ije/dyh198.
  • Nie Q-H, Luo X-D, Hui W-L. Advances in clinical diagnosis and treatment of severe acute respiratory syndrome. World J Gastroenterol. 2003;9(6):1139–43. doi:10.3748/wjg.v9.i6.1139.
  • Fujii T, Nakamura T, Iwamoto A. Current concepts in SARS treatment. J Infect Chemother. 2004;10:1–7. doi:10.1007/s10156-003-0296-9.
  • Cheung TMT, Yam LYC, Lau ACW, Kong BMH, Yung RWH. Effectiveness of noninvasive positive pressure ventilation in the treatment of acute respiratory failure in severe acute respiratory syndrome. CHEST. 2004;126:845–50. doi:10.1378/chest.126.3.845.
  • Wong HH, Fung TS, Fang S, Huang M, Le MT, Liu DX. Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3. Virology. 2018;515:165–75. doi:10.1016/j.virol.2017.12.028.
  • Keyaerts E, Vijgen L, Maes P, Neyts J, Ranst MV. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. 2004;323:264–68. doi:10.1016/j.bbrc.2004.08.085.
  • Lau EHY, Cowling BJ, Muller MP, Ho L-M, Tsang T, LoS V, Louie M, Leung GM. Effectiveness of ribavirin and corticosteroids for severe acute respiratory syndrome. Am J Med. 2009;122(12). doi:10.1016/j.amjmed.2009.07.018.
  • Peiris JSM. Severe acute respiratory syndrome (SARS). J Clin Virol. 2003;28(3):245–47. doi:10.1016/j.jcv.2003.08.005.
  • Hui DSC, Chan PKS. Severe acute respiratory syndrome and coronavirus. Infect Dis Clin North Am. 2010;24(3):619–38. doi:10.1016/j.idc.2010.04.009.
  • Ding Y-Q, He L, Zhang Q, Huang Z, Che X, Hou J-L, Wang H, Shen H, Qiu L, Li Z, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203(2):622–30. doi:10.1002/path.1560.
  • Wu G, Yan S. Potential targets for anti-SARS drugs in the structural proteins from SARS related to coronavirus. Peptides. 2004;25(6):901–08. doi:10.1016/j.peptides.2004.03.002.
  • Lu J-H, Zhang D-M, Wang G-L, Guo Z-M, Zhang C-H, Tan B-Y, Ouyang L-P, Lin L, Liu Y-M, Chen W-Q, et al. Variation analysis of the severe acute respiratory syndrome coronavirus putative non-structural protein 2 gene and construction of three-dimensional model. Chin Med J. 2005;118:707–13.
  • Rabenau HF, Kampf G, Cinatl J, Doerr HW. Efficacy of various disinfectants against SARS coronavirus. J Hosp Infect. 2005;61(2):107–11. doi:10.1016/j.jhin.2004.12.023.
  • Cao C, Chen W, Zheng S, Zhao J, Wang J, Cao W. Analysus of spatiotemporal characteristics of pandemic SARS spread in mainland China. Biomed Res Int. 2016;12.
  • Demmler GJ, Ligon BL. Severe acute respiratory syndrome (SARS): a review of the history, epidemiology, prevention and concerns for the future. Semin Pediatr Infect Dis. 2003;14(3):240–44. doi:10.1016/S1045-1870(03)00056-6.
  • Maxwell C, McGeer A, Tai KFY, Sermer MN. 225-management guidelines for obstetric patients and neonates born to mothers with suspected or probable severe acute respiratory syndrome (SARS). J Obstet Gynaecol Can. 2017;39(8):e130–e137. doi:10.1016/j.jogc.2017.04.024.
  • Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, Prentice E, Denison MR, Geisbert TW, Baric RS. Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. PNAS. 2003;100(22):12995–3000. doi:10.1073/pnas.1735582100.
  • Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136–47. doi:10.2353/ajpath.2007.061088.
  • Christian MD, Poutanen SM, Loutfy MR, Muller MP, Low DE. Severe acute respiratory syndrome. Clin Infect Dis. 2004;38:1420–27. doi:10.1086/420743.
  • Hijawi B, Abdallat M, Sayaydeh A, Alqasrawi S, Haddadin A, Jaarour N, et al. Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation. East Mediterr Health J. 2013;19(Suppl 1):S12–8. doi:10.26719/2013.19.supp1.S12.
  • Chan JFW, Lau SKP, To KKW, Cheng VCC, Woo PCY, Yuen KY. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev. 2015;28(2):465–522. doi:10.1128/CMR.00102-14.
  • Al-Tawfiq JA, Memish ZA. Drivers of MERS-CoV transmission: what do we know? Expert Rev Respir Med. 2016;10:331–38. doi:10.1586/17476348.2016.1150784.
  • Kim Y, Lee S, Chu C, Choe S, Hong S, Shin Y. The characteristics of middle eastern respiratory syndrome coronavirus transmission dynamics in South Korea. Osong Public Health Res Perspect. 2016;7:49–55. doi:10.1016/j.phrp.2016.01.001.
  • Jung S-Y, Kang KW, Lee E-Y, Seo D-W, Kim H-L, Kim H, Kwon TW, Park H-L, Kim H, Lee S-M, et al. Heterologous prime-boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus. Vaccine. 2018;36:3468–76. doi:10.1016/j.vaccine.2018.04.082.
  • Ko J-H, Kim S-H, Lee NY, Kim Y-J, Cho SY, Kang C-I, Chung DR, Peck KR. Effects of environmental disinfection on the isolation of vancomycin-resistant Enterococcus after a hospital-associated outbreak of Middle East respiratory syndrome. Am J Infect Control. 2019;47:1516–18. doi:10.1016/j.ajic.2019.05.032.
  • De, Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, Fouchier RA, Galiano M, Gorbalenya AE, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol. 2013;87:7790–92. doi:10.1128/JVI.01244-13.
  • Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814–20. doi:10.1056/NEJMoa1211721.
  • Eifan SA, Nour I, Hanif A, Zamzam AMM, Aljohani SM. A pandemic risk assessment of middle east respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia. Saudi J Biol Sci. 2017;24:1631–38. doi:10.1016/j.sjbs.2017.06.001.
  • Adegboye O, Saffary T, Adegboye M, Elfaki F. Individual and network characteristics associated with hospital-acquired Middle East Respiratory Syndrome coronavirus. J Infect Public Health. 2019;12:343–49. doi:10.1016/j.jiph.2018.12.002.
  • World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV): Thailand. Disease outbreak news. World Health Organization; 2015. http://www.who.int/csr/don/20-june-2015-mers-thailand/en/
  • Cha MJ, Chung MJ, Kim K, Lee KS, Kim TJ, Kim TS. Clinical implication of radiographic scores in acute Middle East respiratory syndrome coronavirus pneumonia: report from a single tertiary-referral center of South Korea. Eur J Radiol. 2018;107:196–202. doi:10.1016/j.ejrad.2018.09.008.
  • Yavarian J, Shafiei Jandaghi NZ, Naseri M, Hemmati P, Dadras M, Gouya MM, Azad TM. Influenza virus but not MERS coronavirus circulation in Iran, 2013–2016: comparison between pilgrims and general population. Travel Med Infect Dis. 2018;21:51–55. doi:10.1016/j.tmaid.2017.10.007.
  • Al-Tawfiq JA, Memish ZA. Emerging respiratory viral infections: MERS-CoV and influenza. Lancet Respir Med. 2014;2(1):23–25. doi:10.1016/S2213-2600(13)70255-8.
  • Almaghrabi RS, Omrani AS. Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Br J Hosp Med (Lond). 2017;78(1):23–26. doi:10.12968/hmed.2017.78.1.23.
  • Mailles A, Blanckaert K, Chaud P, van der Werf S, Lina B, Caro V, et al. First cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infections in France, investigations and implications for the prevention of human-to-human transmission, France, May 2013. Euro Surveill. 2013;18(24).
  • Choudhry H, Bakhrebah MA, Abdulaal WH, Zamzami MA, Baothman OA, Hassan MA, Zeyadi M, Helmi N, Alzahrani FA, Ali A, et al. Middle East respiratory syndrome: pathogenesis and therapeutic developments. Future Virol. 2019;14(4):237–46. doi:10.2217/fvl-2018-0201.
  • Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DA, Alabdullatid ZN, Assad M, Almulhim A, Makhdoom H, et al. Hospital outbreak or Middle East respiratory syndrome coronavirus. N Engl J Med. 2013;369(5):407–16. doi:10.1056/NEJMoa1306742.
  • Arabi YM, Arifi AA, Kalkhy HH, Najm H, Aldawwod AS, Ghabashi A, et al. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med. 2014;160:389–97. doi:10.7326/M13-2486.
  • Al-Tawfiq JA, Zumla A, Memish ZA. Travel implications of emerging coronaviruses: SARS and MERS-CoV. Travel Med Infect Dis. 2014;12:422–28. doi:10.1016/j.tmaid.2014.06.007.
  • Noorwali AA, Turkistani AM, Asiri SI, Trabulsi FA, Alwafi OM, Alzahrani SH, et al. Descriptive epidemiology and characteristics of confirmed cases of Middle East respiratory syndrome coronavirus infection in the Makkah Region of Saudi Arabia. March to June 2014. Ann Saudi Med. 2015;35:203–09. doi:10.5144/0256-4947.2015.203.
  • Shalhoub S, Farahat F, Al-Jiffri A, Simhairi R, Shamma O, Siddiqi N, et al. IFN-α2a or IFN-β1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study. Antimicrob Chemother. 2015;70:2129–32. doi:10.1093/jac/dkv085.
  • Memish ZA, Zumla AI, Assiri A. Middle East respiratory syndrome coronavirus infections in health care workers. N Eng J Med. 2013;369:884–86. doi:10.1056/NEJMc1308698.
  • Memish ZA, Al-Tawfiq JA. Middle East respiratory syndrome coronavirus infection control: the missing piece? Am J Infect Control. 2014;42. doi:10.1016/j.ajic.2014.08.003.
  • Assiri A, Abedi GR, Saeed AAB, Abdalla MA, al-Masry M. Multifacility outbreak of Middle East respiratory syndrome in Tarif. Saudi Arabia Emerg Infect Dis. 2016;22:32–40. doi:10.3201/eid2201.151370.
  • Hui DS, Perlman S, Zumla A. Spread of MERS to South Korea and China. Lancet Respir Med. 2015;3:509–10. doi:10.1016/S2213-2600(15)00238-6.
  • De Wit E, Munster VJ. MERS-CoV: the intermediate host identified? Lancet Infect Dis. 2013;13:827–28. doi:10.1016/S1473-3099(13)70193-2.
  • Corman VM, Olschlager S, Wendtner C-M, Drexler JF, Hess M, Drosten C. Performance and clinical validation of the RealStar MERS-CoV kit for detection of Middle East respiratory syndrome coronavirus RNA. J Clin Virol. 2014;60:168–71. doi:10.1016/j.jcv.2014.03.012.
  • Munster VJ, Adney DR, van Doremalen N, Brown VR, Miazgowicz KL, Milne-Price S, Bushmaker T, Rosenke R, Scott D, Hawkinson A, et al. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Sci Rep. 2016;6:21878. doi:10.1038/srep21878.
  • Meyerholz DK, Lambertz AM, McCray Jr PB. Dipeptidyl peptidase 4 distribution in the human respiratory tract. Am J Pathol. 2016;186(1):78–86. doi:10.1016/j.ajpath.2015.09.014.
  • World Health Organization. Middle East respiratory syndrome coronavirus [MERS-CoV]; 2016. (http://www,who.int/emergencies/mers-cov/en/)
  • Alagaili AN, Briese T, Amor NMS, Mohammed OB, Lipkin WI. Waterpipe smoking as a public health risk: potential risk for transmission of MERS-CoV. Saudi J Biol Sci. 2019;26:938–41. doi:10.1016/j.sjbs.2018.05.006.
  • Poissy J, Goffard A, Parmentier-Decruq E, Favory R, Kauv M, Kipnis E, Mathieu D, Guery B. The MERS-CoV Biology Group. 2014. Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases. J Clin Virol. 2014;61:275–78. doi:10.1016/j.jcv.2014.07.002.
  • Faridi U. Middle East respiratory syndrome coronavirus (MERS-CoV): impact on Saudi Arabia, 2015. Saudi J Biol Sci. 2018;25:1402–05. doi:10.1016/j.sjbs.2016.09.020.
  • Amer H, Alqahtani AS, Alaklobi F, Altayeb J, Memish ZA. Healthcare worker exposure to Middle East respiratory syndrome coronavirus (MERS-CoV): revision of screening strategies urgently needed. Int J Infect Dis. 2018;71:113–16. doi:10.1016/j.ijid.2018.04.001.
  • Park SY, Lee JS, Son JS, Ko JH, Peck KR, Jung Y, Woo HJ, Joo YS, Eom JS, Shi H. Post-exposure prophylaxis for Middle East respiratory syndrome in healthcare workers. J Hosp Infect. 2019;101:42–46. doi:10.1016/j.jhin.2018.09.005.
  • Chowell G, Blumberg S, Simonsen L, Miller MA, Viboud C. Synthesizing data and models for the spread of MERS-CoV, 2013; key role of index cases and hospital transmission. Epidemics. 2014;9:40–51. doi:10.1016/j.epidem.2014.09.011.
  • Cowling BJ, Park M, Fang VJ, Wu P, Leung GM, Wu JT. Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015. Eurosurveillance. 2015;20(25). doi:10.2807/1560-7917.ES2015.20.25.21163.
  • Kucharski AJ, Althaus CL. The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission. Eurosurveillance. 2015;20(25). doi:10.2807/1560-7917.ES2015.20.25.21167.
  • Al-Jasser FS, Nouh RM, Youssef RM. Epidemiology and predictors of survival of MERS-CoV infections in Riyadh region, 2014–2015. J Infect Public Health. 2019;12:171–77. doi:10.1016/j.jiph.2018.09.008.
  • Poletto C, Gomes MF, Pastore Y, Piontti A, Rossi L, Bioglio L, Chao DL, Longini IM, Halloran ME, Colizza A, et al. Assessing the impact of travel restrictions on international spread of the 2014 West African Ebola epidemic. Euro Surveill. 2014;19(42). doi:10.2807/1560-7917.ES2014.19.42.20936.
  • Bogoch II, Creatore MI, Cetron MS, Brownstein JS, Pesik N, Miniota J, Tam T, Hu W, Nicolucci A, Ahmed S, et al. Assessment of the potential for international dissemination of Ebola virus via commercial air travel during the 2014 west African outbreak. Lancet. 2015;385(9962):29–35. doi:10.1016/S0140-6736(14)61828-6.
  • Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013;23(8):986–93. doi:10.1038/cr.2013.92.
  • Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses-drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15:327–47. doi:10.1038/nrd.2015.37.
  • Wernery U, Lau SKP, Woo PCY. Middle East respiratory syndrome (MERS) coronavirus and dromedaries. Vet J. 2017;220:75–79. doi:10.1016/j.tvjl.2016.12.020.
  • Haverkamp A-K, Bosch BJ, Spitzbarth I, Lehmbecker A, Te N, Bensaid A, Segales J, Baumgartner W. Detection of MERS-CoV antigen on formalin-fixed paraffin-embedded nasal tissue of alpacas by immunohistochemistry using human monoclonal antibodies directed against different epitopes of the spike protein. Vet Immunol Immunopathol. 2019;218:109939. doi:10.1016/j.vetimm.2019.109939.
  • Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, Zhang Y, Zhang W, Yuan Y, Bao J, et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature. 2013;500:227–31. doi:10.1038/nature12328.
  • Inn K-S, Kim Y, Aigerim A, Park U, Hwang E-S, Choi M-S, Kim Y-S, Cho N-H. Reduction of soluble dipeptidyl peptidase 4 levels in plasma of patients infected with Middle East respiratory syndrome coronavirus. Virology. 2018;518:324–27. doi:10.1016/j.virol.2018.03.015.
  • Li W, Hulswit RJG, Widjaja I, Raj VS, McBride R, Peng W, Widagdo W, Tortotici MA, van Dieren B, Lang Y, et al. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc Natl Acad Sci U S A. 2017;114:E8508–E8517. doi:10.1073/pnas.1712592114.
  • Du L, Yang Y, Zhou Y, Lu L, Li F, Jiang S. MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets. 2017;21:131–43. doi:10.1080/14728222.2017.1271415.
  • Wang Q, Wong G, Lu G, Yan J, Gao GF. MERS-CoV spike protein: targets for vaccines and therapeutics. Antiviral Res. 2016;133:165–77. doi:10.1016/j.antiviral.2016.07.015.
  • Du LY, He YX, Zhou YS, Liu SW, Zheng BJ, Jiang SB. The spike protein of SARS-CoV- a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7:226–36. doi:10.1038/nrmicro2090.
  • Zhang N, Jiang S, Du L. Current advancements and potential strategies in the development of MERS-CoV vaccines. Expert Rev Vaccines. 2014;13:761–74. doi:10.1586/14760584.2014.912134.
  • Papaneri AB, Johnson RF, Wada J, Bollinger L, Jahrling PB, Kuhn JH. Middle East respiratory syndrome: obstacles and prospects for vaccine development. Expert Rev Vaccines. 2015;14:949–62. doi:10.1586/14760584.2015.1036033.
  • Raj VS, Mou H, Smits SL, Dekkers DHW, Muller MA, Dijkman R, Muth D, Demmers JAA, Zaki A, Fouchier RAM, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495:251–54. doi:10.1038/nature12005.
  • Pallesen J, Wang N, Corbett KS, Warpp D, Kirchdoerfer RN, Turner HL, Cottrell CA, Becker MM, Wang L, Shi W, et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci U S A. 2017;114:E7348–E7357. doi:10.1073/pnas.1707304114.
  • Meyer B, Muller MA, Corman VM, Reusken CB, Ritz D, Godeke GJ, Lattwein E, Kallies S, Siemens A, van Beek J, et al. Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013. Emerg Infect Dis. 2014;20(4):552–59. doi:10.3201/eid2004.131746.
  • Muller MA, Meyer B, Corman VM, Al-Masri M, Turkestani A, Ritz D, Sieberg A, Aldabbagh S, Bosch BJ, Lattwein E, et al. Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study. Lancet Infect Dis. 2015;15(5):559–64. doi:10.1016/S1473-3099(15)70090-3.
  • Song F, Fux R, Provacia LB, Volz A, Eickmann M, Becker S, et al. Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccine virus Ankara efficiently induces virus-neutralizing antibodies. J Virol. 2013;87:11950–54. doi:10.1128/JVI.01672-13.
  • Kim E, Okada K, Kenniston T, Raj VS, AlHajri MN, Farag EA, et al. Immunogenicity of an adenoviral-based Middle East respiratory syndrome coronavirus vaccine in BALB/c mice. Vaccine. 2014;32:5975–82. doi:10.1016/j.vaccine.2014.08.058.
  • Guo X, Deng Y, Chen H, Lan J, Wang W, Zou X, et al. Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus. Immunology. 2015;145:476–84. doi:10.1111/imm.12462.
  • Volz A, Kupke A, Song F, Jany S, Fux R, Shams-Eldin H, et al. Protective efficacy of recombinant modified vaccinia virus Ankara delivering Middle East respiratory syndrome coronavirus spike glycoprotein. J Virol. 2015;89(16):8651–56. doi:10.1128/JVI.00614-15.
  • Alharbi NK, Padron-Regalado E, Thompson CP, Kupke A, Wells D, Sloan MA, et al. ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralizing antibodies and cellular immune responses in mice. Vaccine. 2017;35:3780–88. doi:10.1016/j.vaccine.2017.05.032.
  • Ma C, Li Y, Wang L, Zhao G, Tao X, Tseng CT, et al. Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: implication for designing novel mucosal MERS vaccines. Vaccine. 2014;32(18):2100–08. doi:10.1016/j.vaccine.2014.02.004.
  • Tang J, Zhang N, Tao X, Zhao G, Guo Y, Tseng CT, et al. Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus. Hum Vaccin Immunother. 2015;11:1244–50. doi:10.1080/21645515.2015.1021527.
  • Coleman CM, Venkataraman T, Liu YV, Glenn GM, Smith GE, Flyer DC, et al. MERS-CoV spike nanoparticles protect mice from MERS-CoV infection. Vaccine. 2017;35(12):1586–89. doi:10.1016/j.vaccine.2017.02.012.
  • Wang L, Shi W, Joyce MG, Modjarrad K, Zhang Y, Leung K, et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun. 2015;6:7712. doi:10.1038/ncomms8712.
  • Muthumani K, Falzarano D, Reuschel EL, Tingey C, Flingai S, Villarreal DO, et al. A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med. 2015;7(301):301ra132. doi:10.1126/scitranslmed.aac7462.
  • Al-Tawfiq JA, Pear TM. Middle East respiratory syndrome coronavirus in healthcare settings. Curr Opin Infect Dis. 2015;28:392–96. doi:10.1097/QCO.0000000000000178.
  • Ahmadzadeh J, Mobaraki K, Mousavi SJ, Aghazadeh-Attari J, Mirza-Aghazadeh-Attari M, Mohebbi I. The risk factors associated with MERS-CoV patient fatality: a global survey. Diagn Microbiol Infect Dis. 2020;96:114876. doi:10.1016/j.diagmicrobio.2019.114876.
  • Nah K, Otsuki S, Chowell G, Nishiura H. Predicting the international spread of Middle East respiratory syndrome (MERS). BMC Infect Dis. 2016;16:356.
  • Wang Y, Sun J, Zhu A, Zhao J, Zhao J. Current understanding of middle east respiratory syndrome coronavirus infection in human and animal models. J Thorac Dis. 2018;10:S2260–S2271.
  • Al-Omari A, Rabaan AA, Salih S, Al-Tawfiq JA, Memish ZA. MERS coronavirus outbreak: implications for emerging viral infections. Diagn Microbiol Infect Dis. 2019;93:265–85.
  • Masters PS. Coronavirus genomic RNA packaging. Virology. 2019;537:198–207.
  • Kasem S, Qasim I, Al-Hufofi A, Hashim O, Alkarar A, Abu-Obeida A, Gaafer A, Elfadil A, Zaki A, Al-Romaihi A, et al. Cross-sectional study of MERS-CoV-specific RNA and antibodies in animals that have had contact with MERS patients in Saudi Arabia. J Infect Public Health. 2018;11:331–38.
  • Dighe A, Jombart T, Van Kerkhove MD, Ferguson N. A systematic review of MERS-CoV seroprevalence and RNA prevalence in dromedary camels: implications for animal vaccination. Epidemics. 2019;29:100350.
  • Al-Tawfiq JA, Rabaan AA, Hinedi K. Influenza is more common than Middle East respiratory syndrome coronavirus (MERS-CoV) among hospitalized adult Saudi patients. Travel Med Infect Dis. 2017;20:56–60.
  • Alfaraj SH, Al-Tawfiq JA, Assiri AY, Alzahrani NA, Alanazi AA, Memish ZA. Clinical predictors of mortality of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: a cohort study. Travel Med Infect Dis. 2019;29:48–50.
  • Corman VM, Ithete NL, Richards LR, Schoeman MC, Presier W, Drosten C, Drexler JF. Rooting the phylogenetic tree o Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from and African bat. J Virol. 2014;88:11297–303.
  • Yoon JH, Lee JY, Lee J, Shin YS, Jeon S, Kim DE, Min JS, Song JH, Kim S, Kwon S, et al. Synthesis and biological evaluation of 3-acyl-2-phenylamino-1,4-dihydroquinolin-4(1H)-one derivatives as potential MERS-CoV inhibitors. Bioorg Med Chem Lett. 2019;29:126727.
  • Qiu H, Sun S, Xiao H, Feng J, Guo Y, Tai WY, Du L, Zhao G, Zhou Y. Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection. Antiviral Res. 2016;132:141–48.
  • Park HY, Lee EJ, Ryu YA, Kim Y, Kim H, Lee H, et al. Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, May to June 2015. Eurosurveillance. 2015;20(June25):21169.
  • Ahmed AE. Diagnostic delays 537 symptomatic cases of Middle East respiratory syndrome coronavirus infection in Saudi Arabia. Int J Infect Dis. 2017;62:47–51.
  • Ahmed AE. Diagnostic delays in Middle East respiratory syndrome coronavirus patients and health systems. J Infect Public Health. 2019;12:767–71.
  • Lee A, Cho J. The impact of city epidemics on rural labor market: the Korean Middle East Respiratory Syndrome case. Japan World Econ. 2017;43:30–40.
  • Tang B, Bragazzi NL, Li Q, Tang S, Xiao Y, Wu J. An updated estimating of the risk of transmission of the novel coronavirus (2019-nCov). Infect Dis Model. 2020;5:248–55.
  • Badawi A, Ryoo SG. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. Int J Infect Dis. 2016;49:129–33.
  • Alqahtani AS, Rashid H, Basyouni MH, Alhawassi TM, BinDhim NF. Public response to MERS-CoV in the Middle East: iPhone survey in six countries. J Infect Public Health. 2017;10:534–40.
  • Almutairi KM, Al Helih EM, Moussa M, Boshaigah AE, Saleh Alajilan A, Vinluan JM, et al. Awareness, attitude, and practices related to coronavirus pandemic among public in Saudi Arabia. Farm Community Health. 2015;38(4):332–40.
  • Kharma MY, Alalwani MS, Amer MF, Tarakji B, Aws G. Assessing of the awareness level of dental students toward Middle East Respiratory Syndrome-coronavirus. J Int Soc Prev Community Dent. 2015;5:163–69.
  • Al-Mohrej OA, Al-Shirian SD, Al-Otaibi SK, Tamim HM, Masuadi EM, Fakhoury HM. Is the Saudi public aware of Middle East respiratory syndrome? J Infect Public Health. 2016;9:259–66.
  • Bawazir A, Al-Mazroo E, Jradi H, Ahmed A, Badir M. MERS-CoV infection: mind the public knowledge gap. J Infect Public Health. 2018;11:89–93.
  • Al-Tawfiq JA. Middle East Respiratory Syndrome-coronavirus infection: an overview. J Infect Public Health. 2013;6:319–22.
  • Hashem AM, Al-Amri SS, Al-Subhi TL, Siddiq LA, Hassan AM, Alawi MM, Alhabbab RY, Hindawi SI, Mohammed OB, Amor NS, et al. Development and validation of different indirect ELISAs for MERS-CoV serological testing. J Immunol Methods. 2019;466:41–46.
  • Al-Tawfiq JA, Auwaerter PG. Healthcare-associated infections: the hallmark of Middle East respiratory syndrome coronavirus with review of the literature. J Hosp Infect. 2019;101:20–29.
  • Kim Y. Nurses, experiences of care for patients with Middle East respiratory syndrome-coronavirus in South Korea. Am J Infect Control. 2018;46:781–87.
  • Al-Tawfiq JA, Abdrabalnabi R, Taher A, Mathew S, Rahman KA. Infection control influence of Middle East respiratory syndrome coronavirus: a hospital-based analysis. Am J Infect Control. 2019;47:431–34.
  • Douglas MG, Kocher JF, Scobey T, Baric RS, Cockrell AS. Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease. Virology. 2018;517:98–107.
  • Nikiforuk AM, Leung A, Cook BWM, Court DA, Kobasa D, Theriault SS. Rapid one-step construction of a Middle East Respiratory Syndrome (MERS-CoV) infectious clone system by homologous recombination. J Virol Methods. 2016;236:178–83.
  • Ebihara H, Groseth A, Neumann G, Kawaoka Y, Feldmann H. The role of reverse genetics system in studying viral hemorrhagic fevers. Thromb Haemost. 2005;94:240–53.
  • Letko M, Miazgowicz K, McMinn R, Seifert SN, Sola I, Enjuanes L, Carmody A, van Doremalen N, Munster V. Adaptive evolution of MERS-CoV to species variation in DPP4. Cell Rep. 2018;24:1730–37.
  • Zhang S, Zhou P, Wang P, Li Y, Jiang L, Jia W, Wang H, Fan A, Wang D, Shi X, et al. Structural definition of a unique neutralization epitope on the receptor-binding domain of MERS-CoV spike glycoprotein. Cell Rep. 2018;24:441–52.
  • Mustafa S, Balkhy H, Gabere MN. Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): a review. J Infect Public Health. 2018;11:9–17.
  • Baharoon S, Memish ZA. MERS-CoV as an emerging respiratory illness: a review of prevention methods. Travel Med Infect Dis. 2019;32:101520.
  • Widagdo W, Okba NMA, Raj VS, Haagmans BL. MERS-coronavirus: from discovery to intervention. One Health. 2017;3:11–16.
  • Liu H, Wang -L-L, Zhao S-J, Kwak-Kim J, Mor G, Liao A-H. Why are pregnant women susceptible to COVID-19? An immunological viewpoint. J Reprod Immunol. 2020;139:103122.
  • Banik GR, Khandaker G, Rashid H. Middle East Respiratory Syndrome Coronavirus “MERS-CoV”: current knowledge gaps. Paediatr Respir Rev. 2015;16:197–202.
  • Cunha CB, Opal SM. Middle East respiratory syndrome (MERS). Virulence. 2014;5:650–54.
  • Hui DS, Azhar E, Kim Y-J, Memish ZA, Oh M-D, Zumla A. Middle East respiratory syndrome coronavirus: risj factors and determinants of primary, household, and nosocomial transmission. Lancet Infect Dis. 2018;18:e217–227.
  • Arabi Y, Balkhy H, Hajeer AH, et al. Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol. Springerplus. 2015;4:709.
  • Rabaan AA, Alahmed SH, Bazzi AM, Alhani HM. A review of candidate therapies for Middle East respiratory syndrome from a molecular perspective. J Med Microbiol. 2017;66:1261–74.
  • Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(1):1–14.
  • Agostini ML, Pruijssers AJ, Chappell JD, et al. Small-molecule antiviral beta-d-n4-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance. J Virol. 2019;93:e01348–19.
  • Behzadi MA, Leyva-Grado VH. Overview of current therapeutics and novel candidates against influenza, respiratory syncytial virus, and Middle East respiratory syndrome coronavirus infections. Front Microiol. 2019;10:1327.
  • Beigel JH, Nam HH, Adams PL, et al. Advances in respiratory virus therapeutics- a meeting report from the 6th ISIRV antiviral group conference. Antiviral Res. 2019;167:45–67.
  • Momattin H, Al-Ali AY, Al-Tawfiq JA. A systematic review of therapeutic agents for the treatment of the Middle East respiratory syndrome coronavirus (MERS-CoV). Travel Med Infect Dis. 2019;30:9–18.
  • Zhou Y, Yang Y, Huang J, Jiang S, Du L. Advances in MERS-CoV vaccines and therapeutics based on the receptor-binding domain. Viruses. 2019;11:60.
  • Memish ZA, Perlman S, van Kerkove MD, Zumla A. Middle East respiratory syndrome. Lancet. 2020;395:1063–77.
  • Perlman S, Vijay R. Middle East respiratory syndrome vaccines. Middle East respiratory syndrome vaccines. Int J Infect Dis. 2016;47:23–28.
  • Dyall J, Cross R, Kindrachuk J, Johnson RF, Olinger GG, Hensley LE, Frieman MB, Jahrling PB. Middle East respiratory syndrome and severe acute respiratory syndrome: current therapeutic options and potential targets for novel therapies. Drugs. 2017;77:1935–66.
  • Tai DYH. Pharmacologic treatment of SARS: current knowledge and recommendations. Ann Acad Med. 2007;36:438–43.
  • Bal A, Destras G, Gaymard A, Bouscambert-Duchamp M, Valette M, Escuret V, Frobert E, Billaud G, Trouillet-Assant S, Cheynet V, et al. Molecular characterization of SARS-CoV-2 in the first COVID-19 cluster in France reveals an amino-acid deletion in nsp2 (Asp268Del). Clin Microbiol Infect. 2020. http://doi.10.1016/j.cmi.2020.03.020.
  • Abduljali JM, Abduljali BM. Epidemiology, genome and clinical features of the pandemic SARS-CoV-2: a recent view. New Microbes New Infect. 2020. http://doi.10.1016/j.nmni.2020.100672.
  • Benvenuto D, Giovanetti M, Vassallo L, Angeletti S, Ciccozzi M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Brief. 2020;29:105340.
  • Hsih W-H, Cheng M-Y, Ho M-W, Chou C-H, Lin P-C, Chi C-Y, Liao W-C, Chen C-Y, Leong L-Y, Tien N, et al. Featuring COVID-19 cases via screening symptomatic patients with epidemiologic link during flu season in a medical center of central Taiwan. J Microbiol Immunol Infect. 2020. http://doi.10.1016/j.jmii.2020.03.008.
  • Lai -C-C, Liu YH, Wang C-Y, Wang Y-H, Hsueh S-C, Yen M-Y, Ko W-C, Hsueh P-R. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronaviurs 2(SARS-CoV-2): fact and myths. J Microbiol Immunol Infect. 2020. doi:10.1016/j.jmii.2020.02.012.
  • Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020. doi:10.1016/j.cmi.2020.03.026.
  • Robson B. Computers and viral disease. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventive peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput Biol Med. 2020;119:103670.
  • Roda WC, Varughese MB, Han D, Li MY. Why is it difficult to accurately predict the COVID-19 epidemic? Infect Dis Model. 2020;5:271–81.
  • Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020.
  • Li C, Yang Y, Ren L. Genetic evolution analysis of 2019 novel coronavirus and coronavirus from other species. Infect Genet Evol. 2020;82:104285.
  • Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020;525:135–40.
  • Cheng S-C, Chang Y-C, Chiang Y-LF, Chien Y-C, Cheng M, Yang C-H, Huang C-H, Hsu Y-N. First case of coronavirus disease 2019 (COVID-19) pneumonia in Taiwan. J Formos Med Assoc. 2020;119:747–51.
  • Yu Jun IS, Anderson DE, Zheng Kang AE, Wang L-F, Rao P, Young BE, Lye DC, Agrawal R. Assessing viral shedding and infectivity of tears in coronavirus disease 2019 (COVID-19) patients. Ophthalmology. 2020. doi:10.1016/j.ophtha.2020.03.026.
  • Gralinski LE, Menachery VD. Return of the Coronavirus: 2019-nCoV. Viruses. 2020;12:135. doi:10.3390/v12020135.
  • Lupia T, Scabini S, Pinna SM, Di Perri G, De Rosa FG, Corcione S. 2019 novel coronavirus (2019-nCoV) outbreak: a new challenge. J Glob Antimicrob Resist. 2020;21:22–27.
  • Cyranoski D. Mystery deepens over animal source of coronavirus. Nature. 2020;579:18–19. doi:10.1038/d41586-020-00548-w.
  • Ji W, Wang W, Zhao X, Zai J, Li X. Cross species transmission of the newly identified coronavirus 2019-nCoV-Ji-2020. J Med Virol. 2020;92:433–40.
  • Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. Clinica Chimica Acta. 2020;505:190–91.
  • Lu D, Wang H, Yu R, Yang H, Zhao Y. Integrated infection control strategy to minimize nosocomial infection of coronavirus disease 2019 among ENT healthcare workers. J Hosp Infect. 2020. doi:10.1016/j.jhin.2020.02.018.
  • Yuan M, Yin W, Tao Z, Tan W, Hu Y. Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan. Plos One. 2020;15(3):e0230548. doi:10.1371/journal.pone.0230548.
  • Sun K, Chen J, Viboud C. Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. Lancet Digital Health. 2020;2:e201–208.
  • Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91–98.
  • Kang S, Peng W, Zhu Y, Lu S, Zhou M, Lin W, Wu W, Huang S, Jiang L, Luo X, et al. Recent progress in understanding 2019 novel coronavirus associated with human respiratory disease: detection, mechanism and treatment. Int J Antimicrob Agents. 2020. doi:10.1016/j.ijantimicag.2020.105950.
  • Tseng C-T, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, Peters CJ, Couch RB. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with SARS virus. PLoS ONE. 2012;7:e35421.
  • Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun. 2017;8:15092.
  • Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furinlike cleavage site absent in CoV of the same clade. Antiviral Res. 2020;176:104742.
  • Yu F, Du L, Ojcius DM, Pan C, Jiang S. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes Infect. 2020;22:74–79.
  • Matsuyama S, Nao N, Shirato K, Kawase M, Saito S, Takayama I, Nagata N, Sekizuka T, Katoh H, Kato F, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A. 2020. doi:10.1073/pnas.2002589117.
  • Rasmussen SA, Smulian JC, Lednicky JA, Wen TS, Jamieson DJ. Coronavirus disease 2019 (COVID-19) and pregnancy: what obstetricians needs to know. Am J Obstet Gynecol. 2020. doi:10.1016/j,ajog.2020.02.017.
  • Chan JF-W, Yuan S, Kok K-H, To KK-W, Chu H, Yang J, Xing F, Liu J, Yip CC-Y, Poon RW-S, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514–23.
  • Khan S, Nabi G, Han G, Siddique R, Lian S, Shi H, Bashir N, Ali A, Adnan Shereen M. Novel coronavirus: how things are in Wuhan. Clin Microbiol Infect. 2020. doi:10.1016/j.cmi.2020.02.005.
  • Liu K-C, Xu P, Lv W-F, Qiu X-H, Yao J-L, Gu J-F, Wei W. CT manifestations of coronavirus disease-2019: a retrospective analysis of 73 cases by disease severity. Eur J Radiol. 2020;126:108941.
  • Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020. doi:10.1016/j.jaut.2020.102433.
  • Han Q, Lin Q, Jin S, You L. Coronavirus 2019-nCoV: a brief perspective from the front line. J Infect. 2020;80:373–77.
  • Sigrist CJA, Bridge A, Le Mercier P. A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral Res. 2020;177:104759.
  • Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for the virus origins and receptor binding. Lancet. 2020;395:565–74.
  • Luan J, Lu Y, Jin X, Zhang L. Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochem Biophys Res Commun. 2020. doi:10.1016/j.bbrc.2020.03.047.
  • Wall AC, Park Y-J, Tortoici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020. doi:10.1016/j.cell.2020.02.058.
  • Tian S, Hu N, Lou J, Chen K, Kang X, Xiang Z, Chen H, Wang D, Liu N, Liu D, et al. Characteristics of COVID-19 infection in Beijing. J Infect. 2020;80:401–06.
  • El-Zowalaty ME, Jarhult JD. From SARS to COVID-19: a previously unknown SARS-related coronavirus (SARS-CoV-2) of pandemic potential infecting humans- Call for a One Health approach. One Health. 2020;9:100124.
  • Jiang X, Deng L, Zhu Y, Ji H, Tao L, Liu L, Yang D, Ji W. Psychological crisis intervention during the outbreak period of new coronavirus pneumonia from experience in Shanghai. Psychiatry Res. 2020;286:112903.
  • Du H-Z, Hou X-Y, Miao Y-H, Huang D-S, Liu D-H. Traditional Chinese medicine: an effective treatment for 2019 novel coronavirus pneumonia (NCP). Chin J Nat Med. 2020;18:206–10.
  • Long C, Xu H, Shen Q, Zhang X, Fan B, Wang C, Zeng B, Li Z, Li X, Li H. Diagnosis of the coronavirus disease (COVID-19): rRT-PCR or CT? Eur J Radiol. 2020;126:108961.
  • Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3).
  • Rello J, Tejada S, Userovici C, Arvaniti K, Pugin J, Waterer G. Coronavirus Disease 2019 (COVID-19): a critical care perspective beyond China. Anaesth Crit Care Pain Med. 2020. doi:10.1016/j.accpm.2020.03.001.
  • Rubin EJ, Baden LR, Morrissey S, Campion EW. Campion, Medical Journals and the 2019-nCoV Outbreak. N Engl J Med. 2020.
  • Pang J, Wang MX, Ang IYH, Tan SHX, Lewis RF, Chen JI-P, Gutierrez RA, Gwee SXW, Chua PEY, Yang Q, et al. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): a systematic review. J Clin Med. 2020;9:623.
  • Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;1–3.
  • Lin Q, Zhao S, Gao D, Lou Y, Yang S, Musa SS, Wang MH, Cai Y, Wang W, Yang L, et al. A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int J Infect Dis. 2020;93:211–16.
  • Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modeling study. Lancet Public Health. 2020. doi:10.1016/S2468-2667(20)30073-6.
  • Sun Z, Thilakavathy K, Kumar SS, He G, Liu SV. Potential factors influencing repated SARS outbreaks in China. Int J Environ Res Public Health. 2020;17:1633.
  • Kobayashi T, Jung S-M, Linton NM, Kinoshita R, Hayashi K, Miyama T, Anzai A, Yang Y, Yuan B, Akhmetzhanov AR, et al. Communicating the risk of death from novel coronavirus disease (COVID-19). J Clin Med. 2020;9:580.
  • Grubaugh ND, Petrone ME, Holmes EC. We should not worry when a virus mutates during disease outbreaks. Nat Microbiol. 2020. doi:10.1038/s41564-020-0690-4.
  • Zhang Y-Z, Holmes EC. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell. 2020. doi:10.1016/j.cell.2020.03.035.
  • Zhao S, Ling K, Yan H, Zhong L, Peng X, Yao S, Huang J, Chen X. Anesthetic management of patients with COVID 19, infections during emergency procedures. J Cardiothorac Vasc Anesth. 2020;34:1125–31.
  • Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clinica Chimica Acta. 2020;506:145–48.
  • Lv D-F, Ying Q-M, Weng Y-S, Shen C-B, Chu J-G, Kong J-P, Sun D-H, Gao X, Weng X-B, Chen X-Q. Dynamic change process of target genes by RT-PCR testing of SARS-CoV-2 during the course of a Coronavirus Disease 2019 patient. Clinica Chimica Acta. 2020;506:172–75.
  • Xie C, Jiang L, Huang G, Pu H, Gong B, Lin H, Ma S, Chen X, Long B, Si G, et al. Comparison of different samples for 2019 novel coronavirus detection by nucleic acid amplification tests. Int J Infect Dis. 2020;93:264–67.
  • Guo H, Zhou Y, Liu X, Tan J. The impact of the COVID-19 epidemic on the utilization of emergency dental services. J Dent Sci. 2020. doi:10.1016/j.jds.2020.02.002.
  • Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020.
  • Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017;9:eaal3653.
  • Wang K, Kang S, Tian R, Zhang X, Zhang X, Wang Y. Imaging manifestations and diagnostic value of chest CT of coronavirus disease 2019 (COVID-19) in the Xiaogan area. Clin Radiol. 2020. doi:10.1016/j.crad.2020.03.004.
  • Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020.
  • Shen M, Zhou Y, Ye J, Al-maskri AAA, Kang Y, Zeng S, Cai S. Recent advances and perspectives of nucleic acid detection for coronavirus. J Pharm Anal. 2020. doi:10.1016/j.jpha.2020.02.010.
  • Seah I, Agrawal R. Can the coronavirus disease 2019 (COVID-19) affect the eyes? A review of coronaviruses and ocular implications in humans and animals. Ocul Immunol Inflamm. 2020. doi:10.1080/09273948.2020.1738501.
  • Ghinai I, McPherson TD, Hunter JC, Kirking HL, Christiansen D, Joshi K, Rubin R, Morales-Estrada S, Black SR, Pacilli M, et al. First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. Lancet. 2020. doi:10.1016/S0140-6736(20)30607-3.
  • Bai L, Yang D, Wang X, Tong L, Zhu X, Zhong N, Bai C, et al. Chinese experts, consensus on the Internet of Things-aided diagnosis and treatment of coronavirus disease 2019 (COVID-19). Clin eHealth. 2020;3:7–15.
  • Li L, Yang Z, Dang Z, Meng C, Huang J, Meng H, Wang D, Chen G, Zhang J, Peng H, et al. Propagation analysis and prediction of the COVID-19. Infect Dis Model. 2020;5:282–92.
  • Skariyachan S, Challapilli SB, Packirisamy S, Kumargowda ST, Sridhar VS. Recent aspects on the pathogenesis mechanism, animal models and novel therapeutic interventions for Middle East respiratory syndrome coronavirus infections. Front Microbiol. 2019;10:569.
  • Zhao J, Li K, Wohlford-Lenane C, et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci USA. 2014;111:4970–75.
  • Agrawal AS, Tao X, Algaissi A, et al. Immunization with inactivated Middle East respiratory syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Human Vaccine Immunother. 2016;12:2351–56.
  • Spruth M, et al. A double-inactivated whole virus candidate SARS coronavirus vaccine stimulate neutralizing and protective anibody responses. Vaccine. 2006;24:652–61.
  • Bolles M, et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon. J Virol. 2011;85:12201–15.
  • Hilgenfeld R, Peiris M. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antivir Res. 2013;100:286–95.
  • Zuma A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet. 2015;386:995–1007.
  • Liu R, Wang J, Shao Y, Wang X, Zhang H, Shuai L, Ge J, Wen Z, Bu Z. A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization. Antiviral Res. 2018;150:30–38.
  • Nyon MP, Du L, Tseng C-TK, Seid CA, Pollet J, Naceanceno KS, Agrawal A, Algaissi A, Peng B-H, Tai W, et al. Engineering a stable CHO cell line for the expression of a MERS-coronavirus vaccine antigen. Vaccine. 2018;36:1853–62.
  • Ma C, Wang L, Tao X, Zhang N, Yang Y, Tseng C-TK, Li F, Zhou Y, Jiang S, Du L. Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments- The importance of immunofocusing in subunit vaccine design. Vaccine. 2014;32:6170–76.
  • Ma C, Li Y, Wang L, Zhao G, Tao X, Tseng C-TK, Zhou Y, Du L, Jiang S. Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: implication of designing novel mucosal MERS vaccines. Vaccine. 2014;32:2100–08.
  • Wang C, Zheng X, Gai W, Wong G, Wang H, Jin H, Feng N, Zhao Y, Zhang W, Li N, et al. Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice. Antivir Res. 2017;140:55–61.
  • Okada M, Okuno Y, Hashimoto S, Kita T, Kanamaru N, et al. Development of vaccines and passive immunotherapy against SARS corona virus using SCID-PBL/hu mouse models. Vaccine. 2007;25:3038–40.
  • Huang J, Ma R, Wu C-Y. Immunization with SARS-CoV S DNA vaccine generates memory CD4+ and CD8+ T cell immune responses. Vaccine. 2006;24:4905–13.
  • He Y, Zhou Y, Siddiqui P, Jiang S. Inactivated SARS-CoV vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entry. Biochem Biophys Res Commun. 2004;325:445–52.
  • Kuate S, Cinatl J, Doerr HW, Uberla K. Exosomal vaccines containing the S protin of the SARS coronavirus induce high levels of neutralizing antibodies. Virology. 2007;362:26–37.
  • Wang X, Xu W, Tong D, Ni J, Gao H, Wang Y, Chu Y, Li P, Yang X, Xiong S. A chimeric multi-epitope DNA vaccine elicited specific antibody response against sevre acute respiratory syndrome-associated coronavirus which attenuated the virulence of SARS-CoV in vitro. Immunol Lett. 2008;119:71–77.
  • Xiong S, Wang Y-F, Zhang M-Y, Liu X-J, Zhang C-H, Liu -S-S, Qian C-W, Li J-X, Lu J-H, Wan Z-Y, et al. Immunogenicity of SARS inactivated vaccine in BALB/c mice. Immunol Lett. 2004;95:139–43.
  • Zhou Z, Post P, Chubet R, Holtz K, McPherson C, Petric M, Cox M. A recombinant baculovirus-expressed S glycoprotein vaccine elicits high titers of SARS-associated coronavirus (SARS-CoV) neutralizing antibodies in mice. Vaccine. 2006;24:3624–31.
  • Zakhartchouk AN, Liu Q, Petric M, Babiuk LA. Augmentation of immune responses to SARS coronavirus by a combination of DNA and whole killed virus vaccines. Vaccine. 2005;23:4385–91.
  • Kapadia SU, Simon ID, Rose JK. SARS vaccine based on a replication-defective recombinant vesicular stomatitis virus is more potent than one based on a replication-competent vector. Virology. 2008;376:165–72.
  • Herst CV, Burkholz S, Sidney J, Sette A, Harris PE, et al. An effective CTL peptide vaccine for Eolca Zaire based on the survivors, CD8+ targeting of a particular nucleocapsid protein epitope with potential implications for COVID-19 vaccine design. Vaccine. 2020.
  • Shoenfeld Y. Corona (COVID-19) time musings: our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmun Rev. 2010;19:102538.
  • Ji H, Yan Y, Ding B, Guo W, Brunswick M, Niethammer A, SooHoo W, Smith R, Nahama A, Zhang Y. Novel decoy cellular vaccine strategy utilizing transgenic antigen-expressin cells as immune presenter and adjuvant in vaccine prototype against SARS-CoV-2 virus. Med Drug Discov. 2020;5:100026.
  • Amanat F, Krammer R. SARS-CoV-2 vaccines: status report. Immunity. 2020;52:583–89.
  • Taylor A, et al. Fc receptors in antibody-dependent enhancement of viral infection. Immunol Rev. 2015;268:340–64.
  • Smatti MK, et al. Viral-induced enhanced disease illness. Front Microb. 2018;9:2991.
  • Wan Y, et al. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol. 2020;94:e02015–19.
  • Qin C, et al. Dysregulation of the immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020.
  • Ricke D, Malone R Medical countermeasures analysis of 2019-nCoV and vaccine risks for antibody-dependent enhancement (ADE). 2020.
  • Quinlan BD, et al. The SARS-CoV-2 receptor-binding elicits a potent neutralizing response without antibody-dependent enhancement. Immunity. 2020.
  • Zhang B, et al. Immune phenotyping based on neutrophil-to-lymphocyte ration and lgC predicts severity and outcome for patients with COVID-19. medRxiv 2020.
  • Zhao J, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis. 2020.
  • Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020.
  • Du L, et al. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine. 2007;25:2832–38.
  • Chen WH, et al. Optimization of the production process and characterization of the yeast-expressed SARS-CoV recombinant receptor-binding domain (RBD219-N1), a SARS vaccine candidate. J Pharm Sci. 2017;106:1961–70.
  • Yip MS, et al. Antibody-dependent enhancement of SARS coronavirus infection and its role in the pathogenesis of SARS. Hong Kong Med J. 2016;22:25–31.
  • Wang SF, et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun. 2014;451:208–14.
  • Liu L, et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019;4:e123158.
  • Tan W, et al. Viral kinetics and antibody responses in pateitns with COVID-10. Preprint at medRxiv 10.1101/2020.03.24.20042382 2020.
  • Jiang H-W, et al. Global profiling of SARS-CoV-2 specific lgG/lgM responses of convalescents using proteome microarray. Preprint at medRxiv 10.1101/2020.03.20.20039495 2020.
  • Wu F, et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. Preprint at medRxiv Doi:10.1101/2020.03.30.20047365 2020.
  • Iwasaki A, Yang Y. The potential danger of suboptimal antibody responses in COVID-19. Nature. 2020;20:339–41.
  • Wang J, Zand MS. The potential for antibody-dependent enhancement of SARS-CoV-2 infection: translational implications for vaccine development. J Clin Transl Sci. 2020;1–4. doi:10.1017/cts.2020.39.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.