2,790
Views
3
CrossRef citations to date
0
Altmetric
Review

Leveraging on the genomics and immunopathology of SARS-CoV-2 for vaccines development: prospects and challenges

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , , ORCID Icon, , , , , , , ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 620-637 | Received 21 May 2020, Accepted 11 Aug 2020, Published online: 16 Sep 2020

References

  • Worldometers.info. Situation Update Worldwide; Dove, Delaware, USA. 2020; Available from: https://www.worldometers.info/coronavirus/#countries Accessed July 10th, 2020.
  • Adepoju P. Africa’s struggle with inadequate COVID-19 testing. The Lancet Microbe. 2020 May;1(1):e12. doi:10.1016/S2666-5247(20)30014-8.
  • Le Couteur DG, Anderson RM, Newman AB. COVID-19 through the lens of gerontology. J Gerontol A Biol Sci Med Sci. 2020. doi:10.1093/gerona/glaa077.
  • Natale F, Ghio D, Tarchi D et al. COVID-19 cases and case fatality rate by age. Knowledge for policy. 2020 May 4th; https://ec.europa.eu/knowledge4policy/sites/know4pol/files/jrc120420_covid_risk_and_age.pdf
  • World Data. Average life expectancy by country. Worlddata.info. 2020. Accessed 16 August 2020. https://www.worlddata.info/life-expectancy.php.
  • Yang K, Sheng Y, Huang C, Jin Y, Xiong N, Jiang K, Lu H, Liu J, Yang J, Dong Y, et al.. Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: a multicentre, retrospective, cohort study. Lancet Oncol. 2020;21(7):904–13. doi:10.1016/S1470-2045(20)30310-7.
  • Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: Immunology and treatment options. Clin Immunol. 2020;215:108448. doi:10.1016/j.clim.2020.108448.
  • Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: their roles in pathogenesis. J Microbiol Immunol Infect. 2020. doi:10.1016/j.jmii.2020.03.022.
  • Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1–9. doi:10.12932/AP-200220-0772.
  • Wang H, Li X, Li T, Zhang S, Wang L, Wu X, Liu J. The genetic sequence, origin, and diagnosis of SARS-CoV-2. Eur J Clin Microbiol Infect Dis. 2020 Apr 24;1–7. doi:10.1007/s10096-020-03899-4.
  • Giordano G, Blanchini F, Bruno R, Colaneri P, Di Filippo A, Di Matteo A, Colaneri M. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat Med. 2020;26(6):855–60. doi:10.1038/s41591-020-0883-7.
  • D’Arienzo M, Coniglio A. Assessment of the SARS-CoV-2 basic reproduction number, R0, based on the early phase of COVID-19 outbreak in Italy. Biosaf Health. 2020;2(2):57–59. doi:10.1016/j.bsheal.2020.03.004.
  • Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, Lou Y, Gao D, Yang L, He D. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. Int J. Inf Dis. 2020;92:214–17. doi:10.1016/j.ijid.2020.01.050.
  • Read J, Bridgen JR, Cummings DAT, Ho A, Jewell CP. Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. medRxiv. Preprint at medRxiv doi:10.1101/2020.01.23.20018549 2020.
  • Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related?. Clin Microb Infect. 2020;26:729–34. doi:10.1016j.cmi.2020.03.026.
  • Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N Engl J Med [Preprint]. 2020a; Retrieved from: doi:10.1056/NEJMoa2001316. Accessed February 16, 2020. 382 13 1199–207
  • Su S, Wong G, Shi W, Liu J, Lai A, Zhou J,Liu W, Bi Y, Gao GF. Epidemiology, genetic recombination and pathogenesis of coronaviruses. Trends Microbiol. 2016;7:490–502. doi:10.1016/j.tim.2016.03.003.
  • Li H, Liu S, Yu X, Tang S, Tang C. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents. 2020;55(5):105951.
  • Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ,Tan KS, Wang DY, Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—An update on the status. Mil Med Res. 2020;7(11):1–10. doi:10.1186/s40779-020-00240-0.
  • Ramaiah A, Arumugaswami V. Insights into cross-species evolution of novel human coronavirus 2019-nCoV and defining immune determinants for vaccine development. BioRxiv. Epub. 2020; doi: doi:10.1101/2020.01.29.925867.
  • Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P,Meng J, Zhu Z, Zhang Z, Wang J, Sheng J, Quan L, Xia Z, Tan W, Cheng G, Jiang T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020. doi:10.1016/j.chom.2020.02.001.
  • Liu C, Zhou Q, Li Y, Garner L, Watkins S, Carter L, Smoot J, Gregg AC, Daniels AD, Jervey S, et al.. Research and Development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci. 2020;6(3):315–31. doi:10.1021/acscentsci.0c00272.
  • Wang K, Chen W, Zhou Y-S, Lian J-Q, Zhang Z, Du P, et al.. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv. 2020.
  • Duffy S. Why are RNA virus mutation rates so damn high?. PLoS Biol. 2018;16(8):e3000003. doi:10.1371/journal.pbio.3000003.
  • Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P, Masciovecchio C, Angeletti S, Ciccozzi M, Gallo RC, et al.. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med. 2020;18(1). doi:10.1186/s12967-020-02344-6.
  • Yin C. Genotyping coronavirus SARS-CoV-2: methods and implications. Genomics. published online ahead of print. 2020;112(5):3588–96. Apr 27 doi:10.1016/j.ygeno.2020.04.016.
  • Tang X, Wu C, Li X, Song Y, Yao X, Wu X,Duan Y, Zhang H,Wang Y, Qian Z, Cui J, Lu J. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. 2020;7(6):1012–13. doi:10.1093/nsr/nwaa036.
  • Eaaswarkhanth M, Al-Madhoun A, Al-Mulla F. Could the D614G substitution in the SARS-CoV-2 spike (S) protein be associated with higher COVID-19 mortality?. Int J Infect Dis. 2020; 96:459–60. doi:10.1016/j.ijid.2020.05.071.
  • Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Cicozzi M. COVID-2019: the role of the nsp2 and nsp3 in its pathogenesis. J Med Virol. 2020. Epub doi:10.1002/jmv.25719
  • Jin X, Xu K, Jiang P, Lian J, Hao S, Yao H, Jia H, Zhang Y, Zheng L, Zheng N, et al.. Virus strain from a mild COVID-19 patient in Hangzhou represents a new trend in SARS-CoV-2 evolution potentially related to Furin cleavage site. Emerg. Microb. Infect. 2020;9(1):1474–88. doi:10.1080/22221751.2020.1781551.
  • Holland LA, Kaelin EA, Maqsood R, Estifanos B, Wu LI, Varsani A, Halden RU, Hogue BG, Scotch M, Lim ES, et al.. An 81-Nucleotide Deletion in SARS-CoV-2 ORF7a identified from sentinel surveillance in Arizona (January to March 2020). J Virol. 2020;94(14):14. doi:10.1128/JVI.00711-20.
  • van Dorp L, Acman M, Richard D, Shaw LP, Ford CE, Ormond L, Owen CJ, Pang J, Tan CCS, Boshier FAT, et al.. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infect Genet Evol. 2020;83:104351. doi:10.1016/j.meegid.2020.104351.
  • Happi C, Ihekweazu C, Oluniyi P SARS-CoV-2 genomes from Nigeria reveal community transmission, multiple virus lineages and spike protein mutation associated with higher transmission and pathogenicity - novel 2019 coronavirus/Genome Reports - Virological. 2020. Accessed 7 August 2020. https://virological.org/t/sars-cov-2-genomes-from-nigeria-reveal-community-transmission-multiple-virus-lineages-and-spike-protein-mutation-associated-with-higher-transmission-and-pathogenicity/494
  • Abdullahi IN, Emeribe AU, Ajayi OA, Oderinde BS, Amadu DO, Osuji AI. Implications of SARS-CoV-2 genetic diversity and mutations on pathogenicity of COVID-19 and biomedical interventions. J Taibah Univ Med Sci. 2020. doi:10.1016/j.jtumed.2020.06.005.
  • Padron-Regalado E. Vaccines for SARS-CoV-2: lessons from other coronavirus strains. Infect Dis Ther. 2020;23:1–20.
  • Alouane T, Laamarti M, Essabbar A, Hakmi M, Bouricha E, Chemao-Elfihri MW, Kartti  S, Boumajdi N, Bendani H, Laamarti R, Ghrifi F, Allam L. Genomic Diversity And Hotspot Mutations In 30,983 SARS-Cov-2 Genomes: Moving Toward A Universal Vaccine for the “confined virus”?. bioRxiv. 2020. preprint. doi:10.1101/2020.06.20.163188.
  • Bassetti M, Vena A, Giacobbe DR. The novel Chinese coronavirus (2019-nCoV) infections: challenges for fighting the storm. Eur J Clin Invest. 2020:e13209. doi:10.1111/eci.13209.
  • Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al.. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74. doi:10.1016/S0140-6736(20)30251-8.
  • Yang P, Wang X. COVID-19: a new challenge for human beings. Nature. 2020. doi:10.1038/s41423-020-0407-X.
  • Wang H, Yang P, Liu K, Guo F, Zhang G, Jiang C. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 2008;18(2):290–301. doi:10.1038/cr.2008.15.
  • Zou X, Chen K, Zou J, Han P, Han Z. The single cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different organs vulnerable to Wuhan 2019-nCoV infection. Front Med. 2020;14(2):185-192.
  • Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al.. Virology, epidemiology, pathogenesis and control of COVID-19. Viruses. 2020;12(4):372. doi:https.//doi.10.3390/v12040372.
  • Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532(1–2):107–10. doi:10.1016/S0014-5793(02)03640-2.
  • Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5:562–69. doi:10.1038/s41564-020-0688-y.
  • Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection – a review of immune changes in patients with viral pneumonia. Emerg Microb infect. 2020;9(1):727–32. doi:10.1080/22221751.2020.1746199.
  • Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020:1–17. doi:https.//doi.10.1016/j.jpha.2020.03.001.
  • Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Dong J, Zhao J, Wang FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Resp Med. 2020. doi:10.1016/S2213-2600(20)30076-X.
  • Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020. doi:https.//doi.10.1016/j.jaut.2020.102433..
  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi:10.1016/S0140-6736(20)30183-5.
  • Wang A, Chao W, Xu Z, Gu J. Timely blood glucose management for the outbreak of 2019 novel coronavirus disease (COVID-19) is urgently needed. Diabetic Res Clin Pract. 2020;162.
  • Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH, LIT LCW, HUI DSC, CHAN MHM, CHUNG SSC, et al.. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136(1):95–103. doi:10.1111/j.1365-2249.2004.02415.x.
  • Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine. 2018;104:8–13. doi:10.1016/j.cyto.2018.01.025.
  • Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al.. A novel coronavirus from patients with pneumonia in China, 2019. New Engl J Med. 2020;382(8):727–33. doi:10.1056/NEJMoa2001017.
  • de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523–34. doi:10.1038/nrmicro.2016.81.
  • Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529–39. doi:10.1007/s00281-017-0629-x.
  • Kindler E, Thiel V, Weber F. Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res. 2016;96:219–43.
  • Perlman S, Dandekar AA. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol. 2005;5(12):917–27. doi:10.1038/nri1732.
  • Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet. 2015;386(9997):995–1007. doi:10.1016/S0140-6736(15)60454-8.
  • Liu WJ, Zhao M, Liu K, Xu K, Wong G, Tan W, Gao GF. T-cell immunity of SARS-CoV: implications for vaccine development against MERS-CoV. Antiviral Res. 2017;137:82–92. doi:10.1016/j.antiviral.2016.11.006.
  • Tsao YP, Lin JY, Jan JT, Leng CH, Chu CC, Yang YC, Chen SL. HLAA*0201 T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus nucleocapsid and spike proteins. Biochem Biophys Res Commun. 2020 2006;344(1):63–71. doi:10.1016/j.bbrc.2006.03.152.
  • Lv Y, Ruan Z, Wang L, Ni B, Wu Y. Identification of a novel conserved HLA-A*0201-restricted epitope from the spike protein of SARS-CoV. BMC Immunol. 2009;10:61. doi:10.1186/1471-2172-10-61.
  • Wang BM, Chen HB, Jiang XD, Zhang MH, Wan T, Li N, Zhou XY, Wu YF, Yang F, Yu YZ, et al.. Identification of an HLA-A*0201-restricted CD8(þ) T-cell epitope SSp-1 of SARS-CoV spike protein. Blood. 2004;104:200e206. doi:10.1182/blood-2003-11-3979.
  • Kohyama S, Ohno S, Suda T, Taneichi M, Yokoyama S, Mori M, Kobayashi A, Hayashi H, Uchida T, Matsui M. Efficient induction of cytotoxic T lymphocytes specific for severe acute respiratory syndrome (SARS)-associated coronavirus by immunization with surface-linked liposomal peptides derived from a non-structural polyprotein 1a. Antivir Res. 2009;84:168e177. doi:10.1016/j.antiviral.2009.09.004.
  • Doytchinova I, Flower D. The HLA-A2-supermotif: a QSAR definition. Organ Biomol Chem. 2003;1:2648e2654.
  • Huang J, Cao Y, Du J, Bu X, Ma R, Wu C. Priming with SARS CoV S DNA and boosting with SARS CoV S epitopes specific for CD4+ and CD8+ T cells promote cellular immune responses. Vaccine. 2007;25:6981e6991. doi:10.1016/j.vaccine.2007.06.047.
  • Du L, Zhao G, Lin Y, Sui H, Chan C, Ma S, He Y, Jiang S, Wu C, Yuen KY, et al.. Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARSCoV infection. J Immunol. 2008;180:948e956.
  • Zhi Y, Kobinger GP, Jordan H, Suchma K, Weiss SR, Shen H, Schumer G, Gao G, Boyer JL, Crystal RG, et al.. Identification of murine CD8 T cell epitopes in codon-optimized SARS-associated coronavirus spike protein. Virol. 2005;335:34e45. doi:10.1016/j.virol.2005.01.050.
  • Zhao J, Zhao J, Perlman S. T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. JVirol. 2010;84:9318e9325. doi:10.1128/JVI.01049-10.
  • Poh WP, Narasaraju T, Pereira NA, Zhong F, Phoon MC, Macary PA, Wong SH, Lu J, Koh DR, Chow VT. Characterization of cytotoxic Tlymphocyte epitopes and immune responses to SARS coronavirus spike DNA vaccine expressing the RGD-integrin-binding motif. J MedVirol. 2009;81:1131e1139.
  • Rivino L, Tan AT, Chia A, Kumaran EA, Grotenbreg GM, MacAry PA, Bertoletti A. Defining CD8+ T cell determinants during human viral infection in populations of Asian ethnicity. J Immunol. 2013;191:4010e4019. doi:10.4049/jimmunol.1301507.
  • Ohno S, Kohyama S, Taneichi M, Moriya O, Hayash H, Oda H, Mori M, Kobayashi A, Akatsuka T, Uchida T, et al.. Synthetic peptides coupled to the surface of liposomes effectively induce SARS coronavirusspecific cytotoxic T lymphocytes and viral clearance in HLA-A*0201 transgenic mice. Vaccine. 2009;27:3912e3920. doi:10.1016/j.vaccine.2009.04.001.
  • Oh HL, Chia A, Chang CX, Leong HN, Ling KL, Grotenbreg GM, Gehring AJ, Tan YJ, Bertoletti A. Engineering T cells specific for a dominant severe acute respiratory syndrome coronavirus CD8 T cell epitope. JVirol. 2011;85:10464e10471. doi:10.1128/JVI.05039-11.
  • Ng OW, Chia A, Tan AT, Jadi RS, Leong HN, Bertoletti A, Tan YJ. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. 2016;34:2008e2014. doi:10.1016/j.vaccine.2016.02.063.
  • Cheung YK, Cheng SC, Sin FW, Chan KT, Xie Y. Induction of T-cell response by a DNA vaccine encoding a novel HLA-A*0201 severe acute respiratory syndrome coronavirus epitope. Vaccine. 2007;25:6070e6077. doi:10.1016/j.vaccine.2007.05.025.
  • Liu J, Wu P, Gao F, Qi J, Kawana-Tachikawa A, Xie J, Vavricka CJ, Iwamoto A, Li T, Gao GF. Novel immunodominant peptide presentation strategy: a featured HLA-A*2402-restricted cytotoxic T-lymphocyte epitope stabilized by intrachain hydrogen bonds from severe acute respiratory syndrome coronavirus nucleocapsid protein. JVirol. 2010;84:11849e11857. doi:10.1128/JVI.01464-10.
  • Blicher T, Kastrup JS, Buus S, Gajhede M. High-resolution structure of HLA-A*1101 in complex with SARS nucleocapsid peptide. Acta Crystallogr D Biol Crystallogr. 2005;61:1031e1040.
  • Roder G, Kristensen O, Kastrup JS, Buus S, Gajhede M. Structure of a SARS coronavirus-derived peptide bound to the human major histocompatibility complex class I molecule HLA-B*1501. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008;64:459e462. doi:10.1107/S1744309108012396.
  • Zhao J, Zhao J, Mangalam AK, Channappanavar R, Fett C, Meyerholz DK, Agnihothram S, Baric RS, David CS, Perlman S. Airway memory CD4(þ) T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity. 2016;44:1379e1391.
  • Tully, Claire M. Novel bivalent viral-vectored vaccines induce potent humoral and cellular immune responses conferring protection against stringent influenza A virus challenge. J Immunol. 2017;199(4):1333–41. doi:10.4049/jimmunol.1600939.
  • Liu W, Fontanet A, Zhang PH, Zhan L, Xin ZT, Baril L, ang F, Lv H, Cao W. Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J Infect Dis. 2006;193(6):792–95. doi:10.1086/500469.
  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020. [Preprint]. doi:10.1038/s41586-020-2012-7.
  • Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CRRawlings SA, Sutherland A, Premkumar L, Jadi RS, Marrama D, de Silva AM, Frazier A, Carlin AF, Greenbaum JA, Peters B, Krammer F, Smith DM, Crotty S, Sette A. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020 Jun 25;181(7):1489–501. e15. doi:10.1016/j.cell.2020.05.015
  • Li CK, Wu H, Yan H, Ma S, Wang L, Zhang M, Tang X, Temperton NJ, Weiss RA, Brenchley JM, et al.. T cell responses to whole SARS coronavirus in humans. J Immunol. 2008;181(8):5490–500. doi:10.4049/jimmunol.181.8.5490.
  • Kumar S, Nyodu R, Maurya VK, Saxena SK. Host immune response and immunobiology of human SARS-CoV-2 infection. Saxena S. editor. Coronavirus Disease 2019 (COVID-19). Medical Virology:. 2020. From pathogenesis to disease control; Gateway East, Singapore: Springer; 43-53.
  • Remy V, Largeron N, Quilici S, Carroll S. The economic value of vaccination: why prevention is wealth. Value Health J Int Soc Pharmacoecon Outcomes Res. 2014;17:A450. doi:10.1016/j.jval.2014.08.1211.
  • Neher RA, Dyrdak R, Druelle V, Hodcroft EB, Albert J. Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. MedRxiv. 2020. doi:10.1101/2020.02.13.20022806.
  • Zhang J, Zeng H, Gu J, Li H, Zheng L, Zou Q. Progress and prospects on vaccine development against SARS-CoV-2. Vaccines. 2020;8(2):153. doi:10.3390/vaccines8020153..
  • Leroy O, Geels M, Korejwo J, Dodet B, Imbault N, Jungbluth S. Roadmap for the establishment of a European vaccine R&D infrastructure. Vaccine. 2014;32:7021–24. doi:10.1016/j.vaccine.2014.08.014.
  • Rémy V, Largeron N, Quilici S, Carroll S. The economic value of vaccination: why prevention is wealth. J Mark Access Health Policy. 2015. 3:10.3402/jmahp.v3.29414. Published 2015Aug:12. doi:10.3402/jmahp.v3.29414.
  • Sim S, Jit M, Constenla D, Peters D, Hutubessy RA. Scoping review of investment cases for vaccines and immunization programs. Value Health. 2019;22(8):942–52. doi:10.1016/j.jval.2019.04.002.
  • Gates B. Responding to Covid-19 — A once-in-a-century pandemic?. New Engl J Med. 2020;382(18):1677–79. doi:10.1056/NEJMp2003762.
  • Gouglas D, Thanh Le T, Henderson K, Kaloudis A, Danielsen T, Hammersland NC, Robinson JM, Heaton PM, Røttingen JA. Estimating the cost of vaccine development against epidemic infectious diseases: a cost minimization study. Lancet Glob Health. 2018;6(12):e1386–e1396. doi:10.1016/S2214-109X(18)30346-2.
  • CBC. 2020. The Economics of Finding A Vaccine For COVID-19 | CBC Radio. [online] Available at: <https://www.cbc.ca/radio/costofliving/dispatches-from-the-small-businesses-struggling-with-covid-19-and-the-economics-of-creating-a-vaccine-1.5503847/the-economics-of-finding-a-vaccine-for-covid-19-1.5505056> [ Accessed 19 April 2020]
  • Abedi M Canada To Spend $192M On Developing COVID-19 Vaccine. [online] Global News. 2020; Available at: <https://globalnews.ca/news/6717883/coronavirus-canada-vaccine-spending/> [ Accessed April 20, 2020].
  • Dunn A The Wuhan Coronavirus Has Now Claimed More Lives Than SARS. Top Scientists Told Us It Could Take Years and Cost $1 Billion To Make A Vaccine to Fight the Epidemic …. [online] Business Insider. 2020; https://www.businessinsider.com/wuhan-coronavirus-vaccine-could-take-years-timeline-and-cost-2020-2. Accessed April 20, 2020.
  • Pang J, Wang M, Ang I, Tan S, Lewis R, Chen J, Gutierrez RA, Gwee SXW, Chua PEY, Yang Q, et al.. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): a systematic review. J Clin Med. 2020;9(3):623. doi:10.3390/jcm9030623.
  • World Health Organization. Draft landscape of COVID-19 candidate vaccines as at 31st July, 2020. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines Accessed 10th August, 2020
  • Pagliusi S, Jarrett S, Hayman B, Kreysa U, Prasad SD, Reers M, Hong Thai P, Wu K, Zhang YT, Baek YO, et al.. Emerging manufacturers engagements in the COVID −19 vaccine research, development and supply. Vaccine. 2020;38(34):5418–542375. doi:10.1016/j.vaccine.2020.06.022. Yamey G, Schäferhoff M, Pate M, Chawla M, Ranson K, Zhao F, Hatchett R, Wilder R. Funding the development and manufacturing of COVID-19 vaccines: Background paper for the World Bank/CEPI financing COVID-19 vaccine development consultation on February 20, 2020. The Center for Policy Impact in Global Health. Duke Global Working Paper Series: number 20, March 2020. Available at: http://centerforpolicyimpact.org/ourwork/our-publications/funding-development-and-manufacturing-of-covid-19-vaccines/Roy M. Moderna Receives $483 Million BARDA Award For COVID-19 Vaccine Development. [online] Financial Post. 2020; https://business.financialpost.com/pmn/business-pmn/moderna-receives-483-million-barda-award-for-covid-19-vaccine-development. Accessed April 22, 2020.
  • Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 Vaccines at Pandemic Speed. New Engl J Med. 2020;382(21):1969–73. doi:10.1056/NEJMp2005630.
  • Hotez PJ, Bottazzi ME. Developing a Low-Cost and Accessible COVID-19 Vaccine for Global Health. Preprints. PLoS Negl Trop Dis. 2020;14(7):e0008548. doi:10.1371/journal.pntd.0008548
  • Bregu M, Draper SJ, Hill AV, Greenwood BM. Accelerating vaccine development and deployment: report of a royal society satellite meeting. Philos Trans R Soc B:Biol Sci. 2011;366(1579):2841–49. doi:10.1098/rstb.2011.0100.
  • Wiedermann U, Garner-Spitzer E, Wagner A. “Primary vaccine failure to routine vaccines: why and what to do?”. Hum Vaccin Immunother. 2016;12(1):239–43. doi:10.1080/21645515.2015.1093263.
  • vfa. Vaccines to protect against Covid-19, the new coronavirus infection. Verband Forschender Arzneimittelhersteller. May 16, 2020. Accessed 20 July 2020. https://www.vfa.de/de/arzneimittel-forschung/woran-wir-forschen/impfstoffe-zum-schutz-vor-coronavirus-2019-ncov
  • Netea MG, Joosten LAB, Latz E, Mills KHG, Natoli G, Stunnenberg HG, ONeill LAJ, Xavier RJ. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352(6284):aaf1098. doi:10.1126/science.aaf1098.
  • Arts RJW, Moorlag SJCFM, Novakovic B, Li Y, Wang SY, Oosting M, Kumar V, Xavier RJ, Wijmenga C, Joosten LAB, Reusken CBEM, Benn CS, Aaby P, Koopmans MP, Stunnenberg HG, van Crevel R, Netea MG. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe. 2018;23(1):89–100. e5. doi:10.1016/j.chom.2017.12.010.
  • Moorlag S. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect. 2019;25:1473–78. doi:10.1016/j.cmi.2019.04.020.
  • O’Neill LAJ, Netea MG. BCG-induced trained immunity: can it offer protection against COVID-19?. Nat Rev Immunol. 2020;20:335–37. doi:10.1038/s41577-020-0337-y.
  • O’Connor E, Teh J, Kamat AM, Lawrentschuk N. Bacillus Calmette Guérin (BCG) vaccination use in the fight against COVID-19 - what’s old is new again?. Future Oncol. 2020;16(19):1323–25. doi:10.2217/fon-2020-0381.
  • Le TT, Andreadakis Z, Kumar A, Román RG, Tollefsen S, Saville M The COVID-19 vaccine development landscape [Internet]. Nat Rev Drug Discov. Nature Publishing Group. 2020. Accessed 20 July 2020. https://www.ncbi.nlm.nih.gov/pubmed/32273591.
  • CEPI. IVI, INOVIO, and KNIH to partner with CEPI in a Phase I/ II clinical trial of INOVIO’s COVID-19 DNA vaccine in South Korea. 2020a. Accessed 20 July 2020. https://cepi.net/news_cepi/ivi-inovio-and-knih-to-partner-with-cepi-in-a-phase-i-ii-clinical-trial-of-inovios-covid-19-dna-vaccine-in-south-korea/.
  • Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z, et al.. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020;369(6499):77–81. doi:10.1126/science.abc1932.
  • Gendon IUZ. Advantages and disadvantages of inactivated and live influenza vaccine. Vopr Virusol. 2004;49:4.
  • Broderick KE, Humeau LM. Enhanced Delivery of DNA or RNA Vaccines by Electroporation. Methods Mol Biol. 2017;1499:193-200. doi:10.1007/978-1-4939-6481-9_12.
  • Vartak A, Sucheck SJ. Recent advances in subunit vaccine carriers. Vaccines. 2016;4(2):12. doi:10.3390/vaccines4020012.
  • Yao H, Lu X, Chen Q, Xu K, Chen Y, Cheng L, Liu F, Wu Z, Wu H, Jin C, Zheng M, Wu N, Jiang C, Li L. Patient-derived mutations impact pathogenicity of SARS-CoV-2. MedRxiv. 2020. doi:10.1101/2020.04.14.20060160.
  • CEPI. 2020b. Netherlands and Switzerland join the search for COVID-19 vaccines. Accessed 20 July 2020. https://cepi.net/news_cepi/netherlands-and-switzerland-join-the-search-for-covid-19-vaccines/.
  • Science. COVID-19 vaccine protects monkeys from new coronavirus, Chinese biotech reports. Health, Coronavirus. 2020. Accessed 20 July 2020. https://www.sciencemag.org/news/2020/04/covid-19-vaccine-protects-monkeys-new-coronavirus-chinese-biotech-reports.
  • University of Oxford Covid-19 vaccine: everything we know so far. Telegram. 2020. Accessed 20 July 2020.https://www.telegraph.co.uk/global-health/science-and-disease/oxford-universitycoronavirusvaccine-covid/.
  • Bao LL, Deng W, Huang B, Gao H, Ren L, Wei Q. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. bioRxiv. 2020. preprint doi:10.1101/2020.03.13.990226
  • Hui DS, Azhar E, Madani TA, Ntoumi F, Kock R, Dar O, Ippolito G, McHugh TD, Memish ZA, Drosten C. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264–66. IJID Off. Publications of International Society of Infectious Diseases.
  • Amanat A, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immun. 2020 March 007. [Epub ahead of print]. doi:https://dx.doi.10.1016%2Fj.immuni.2020.03.007.
  • Linda JS Vaccines for COVID-19: perspectives, prospects, and challenges based on candidate SARS, MERS, and animal coronavirus vaccines. 2020. Accessed 20 July 2020. https://www.emjreviews.com/allergy-immunology/article/vaccines-for-covid-19-perspectives-prospects-and-challenges-based-on-candidate-sars-mers-and-animal-coronavirus-vaccines/.
  • World Health Organization. Draft landscape of Covid-19 candidate vaccines. 2020a; https://www.who.int/who-documents-detail/draft-landscape-of-covid-19-candidate-vaccines. Accessed May 19, 2020.
  • Rauch S. New vaccine technologies to combat outbreak situations. Front Immunol. 2018;9:1963. doi:10.3389/fimmu.2018.01963.
  • Jaimes JA, André NM, Chappie JS, Millet JK, Whittaker GR. Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop. J Mol Biol. 2020;432(10):3309-3325. doi:10.1016/j.jmb.2020.04.009.
  • Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, Chaicumpa W. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vaccin Immunother. 2020;16(6):1232-1238. doi:10.1080/21645515.2020.1735227.
  • Jordan B. Vaccination against infectious bronchitis virus: a continuous challenge. Vet Microbiol. 2017;206:137–43. doi:10.1016/j.vetmic.2017.01.002.
  • Schindewolf C, Menachery VD. Middle east respiratory syndrome vaccine candidates: cautious optimism. Viruses. 2019;11(1):e74. doi:10.3390/v11010074.
  • Jin H, Xiao C, Chen Z, Kang Y, Ma Y, Zhu K, Xie Q, Tu Y, Yu Y, Wang B, et al.. Induction of Th1 type response by DNA vaccinations with N, M, and E genes against SARS-CoV in mice. Biochem Biophys Res Commun. 2005;328(4):979. doi:10.1016/j.bbrc.2005.01.048.
  • Shang W, Yang Y, Rao Y, Rao X. The outbreak of SARSCoV-2 pneumonia calls for viral vaccines. NPJ Vaccines. 2020;5(1):1–3. doi:10.1038/s41541-020-0170-0.
  • Lynne P Avoiding pitfalls in the pursuit of a COVID-19 vaccine. 2020; www.pnas.org/cgi/doi/10.1073/pnas.2005456117. Accessed April 18, 2020.
  • Laura G-R, Subbarao K Emerging Respiratory Viruses: Challenges and Vaccine Strategies. Laboratory of infectious diseases, national institute of allergy and infectious diseases, National institutes of health, Bethesda, Maryland 20892. 2006; https://cmr.asm.org/content/cmr/19/4/614.full.pdf. Accessed April 27, 2020.
  • Ricke D, Malone R. Medical countermeasures analysis of 2019-nCoV and vaccine risks for antibody-dependent enhancement (ADE). SSRN Electronic Journal. 2020. v1 doi:10.20944/preprints202003.0138
  • Coalition for Epidemic Preparedness Innovations (CEPI). CEPI collaborates with the Institut Pasteur in a consortium to develop COVID-19 vaccine. 2020c; https://cepi.net/news_cepi/cepi-collaborates-withthe-institut-pasteur-in-a-consortium-to-develop-covid-19-vaccine/. Accessed April 19, 2020.
  • Craven J COVID-19 vaccine tracker and regulatory focus. 2020;https://www. raps.org/news-and-articles/news-articles/2020/3/covid-19-vaccine-tracker. Accessed April 18, 2020.
  • CanSinoBIO. CanSinoBIO’s investigational vaccine against COVID-19 approved for phase 1 clinical trial in China. 2020; http://www.cansinotech.com/homes/article/show/56/153.html. Accessed April 18, 2020.
  • INOVIO. Inovio accelerates timeline for COVID-19 DNA vaccine INO-4800. 2020; http://ir.inovio.com/news-and-media/news/press-release-details/2020/Inovio-Accelerates-Timeline-for-COVID-19-DNA-VaccineINO-4800/default.aspx. Accessed April 18, 2020.
  • Kramps T, Elbers K. RNA vaccines: methods and protocols. 2017. New York, NY: Humana Press. doi:10.1007/978-1-4939-6481-9.
  • Cohen J. With record-setting speed, vaccine makers take their first shots at the new coronavirus. Science. March 31, 2020 2020. https://www.sciencemag.org/news/2020/03/recordsetting-speed-vaccine-makers-take-their-first-shots-newcoronavirus Accessed April 18, 2020
  • Garde D An updated guide to the coronavirus drugs and vaccines in development. 2020; https://www.statnews.com/2020/03/19/an-updated-guide-to-thecoronavirus-drugs-and-vaccines-in-development/. Accessed April 18, 2020.
  • Tregoning JS, Kinnear E. Using plasmids as DNA vaccines for infectious diseases. Microbiol Spectr. 2014;2(6):6. doi:10.1128/microbiolspec.PLAS-0028-2014.
  • Melin AD, Janiak MC, Marrone F, Arora PS, Higham JP. Comparative ACE2 variation and primate COVID-19 risk. 2020. bioRxiv. 2020. 04.09.034967 doi:10.1101/2020.04.09.034967
  • Munster VJ, Feldmann F, Williamson BN, van Doremalen N, Pérez-Pérez L, Schulz J, Meade-White K, Okumura A, Callison J, Brumbaugh B, Avanzato VA, Rosenke R, Hanley PW, Saturday G, Scott D, Fischer ER, de Wit E. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature. 2020. doi:10.1038/s41586-020-2324-7.
  • Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Munnink BB, de Meulder D, van Amerongen G, van den Brand J, Okba NMA, et al.. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020;eabb7314. doi:10.1126/science.abb7314.
  • Cameron MJ, Kelvin AA, Leon AJ, Cameron CM, Ran L, Xu L, Chu Y, Danesh A. Lack of innate interferon responses during SARS coronavirus infection in a vaccination and reinfection ferret model. PLoS One. 2020. doi:10.1371/journal.pone.0045842.
  • Callaway E. Labs rush to study coronavirus in transgenic animals - some are in short supply. Nature. 2020;579:183. doi:10.1038/d41586-020-00698-x.
  • Kim YI, Kim SG, Kim SE, Kim EH, Park SJ, Chang JH, Chang J-H, Kim EJ, Lee S, Casel MAB. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe. 2020;27(5):704–709.e2. doi:10.1016/j.chom.2020.03.023.
  • Bijayeeta D, Hemal S, Goel S. Current global vaccine and drug efforts against COVID-19: pros and cons of bypassing animal trials. J Biosci. 2020;45:82. doi:10.1007/s12038-020-00053-2.
  • Chan JF, Zhang AJ, Yuan S, Poon VK, Chan CC, Lee AC, Chan WM, Fan Z, Tsoi HW. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa325.
  • McCray PB, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, Netland J, Jia HP, Halabi C, Sigmund CD. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 2007;81(2):813–21. doi:10.1128/JVI.02012-06.
  • Bao LD, Huang B, Gao H, Liu J, Ren L, Wei Q, Yu P. The pathogenicity of SARS-CoV-2 in hACE2 transgenic Mice. Nature. 2020. doi:10.1038/s41586-020-2312.
  • Zhou M, Xu D, Li X, Li H, Shan M, Tang J, Wang M, Wang FS, Zhu X, Tao H, et al.. Screening and identification of severe acute respiratory syndrome-associated coronavirus-specific CTL epitopes. J Immunol. 2006;177(4):2138–45. doi:10.4049/jimmunol.177.4.2138..

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.