6,342
Views
13
CrossRef citations to date
0
Altmetric
Review

Development of SARS-CoV-2 vaccines: challenges, risks, and the way forward

ORCID Icon &
Pages 1635-1649 | Received 21 Jul 2020, Accepted 29 Oct 2020, Published online: 03 Dec 2020

References

  • World Health Organization. Coronavirus disease (COVID-19) pandemic. 2020. [accessed 2020 Sept 22]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
  • World Health Organization. Draft landscape of COVID-19 candidate vaccines. [accessed 2020 Oct 25]. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
  • Mullard A. COVID-19 vaccine development pipeline gears up. Lancet. 2020;395:751–52.
  • Pronker ES, Weenen TC, Commandeur H, Claassen EHJHM, Osterhaus ADME. Risk in vaccine research and development quantified. PLoS One. 2013;8(3):e57755. doi:10.1371/journal.pone.0057755.
  • Poland GA. Tortoises, hares, and vaccines: a cautionary note for SARS-CoV-2 vaccine development. Vaccine. 2020;38(27):4219–20. doi:10.1016/j.vaccine.2020.04.073.
  • Gouglas D, Thanh LT, Henderson K, Kaloudis A, Danielsen T, Hammersland NC, Robinson JM, Heaton PM, Røttingen J-A. Estimating the cost of vaccine development against epidemic infectious diseases: a cost minimisation study. Lancet Glob Health. 2018;6(12):e1386‐e1396. doi:10.1016/S2214-109X(18)30346-2.
  • Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281–92. doi:10.1016/j.cell.2020.02.058.
  • Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD. Immunology of COVID-19: current state of the science. Immunity. 2020;52(6):910–41. doi:10.1016/j.immuni.2020.05.002.
  • Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, Kratzat H, Hayn M, Mackens-Kiani T, Cheng J, et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science. 2020;369(6508):1249–55. doi:10.1101/2020.05.18.102467.
  • Konno Y, Kimura I, Uriu K, Fukushi M, Irie T, Koyanagi Y, Sauter D, Gifford RJ, Nakagawa S, Sato K, et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant [published online ahead of print, 2020 Sep 4]. Cell Rep. 2020;32(12):108185. doi:10.1016/j.celrep.2020.108185.
  • Golonka RM, Saha P, Yeoh BS, Chattopadhyay S, Gewirtz AT, Joe B, Vijay-Kumar M. Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease. Physiol Genomics. 2020;52(5):217–21. doi:10.1152/physiolgenomics.00033.2020.
  • Chen Y, Tong X, Li Y, Gu B, Yan J, Liu Y, Shen H, Huang R, Wu C. A comprehensive, longitudinal analysis of humoral responses specific to four recombinant antigens of SARS-CoV-2 in severe and non-severe COVID-19 patients. PLoS Pathog. 2020;16(9):e1008796. doi:10.1371/journal.ppat.1008796.
  • Bahar B, Jacquot C, Mo Y, DeBiasi RL, Campos J, Delaney M. Kinetics of viral clearance and antibody production across age groups in SARS-CoV-2 infected children. J Pediatr. 2020. doi:10.1016/j.jpeds.2020.08.078.
  • Wang N, Shang J, Jiang S, Du L. Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol. 2020;11:298. doi:10.3389/fmicb.2020.00298.
  • Callaway E. The race for coronavirus vaccines: a graphical guide. Nature. 2020;580(7805):576–77. doi:10.1038/d41586-020-01221-y.
  • Moore JP, Klasse PJ. SARS-CoV-2 vaccines: ‘Warp Speed’ needs mind melds not warped minds [published online ahead of print, 2020 Jun 26]. J Virol. 2020:JVI.01083–20. doi:10.1128/JVI.01083-20.
  • Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, Agudelo M, Barnes CO, Gazumyan A, Finkin S, et al. Convergent antibody responses to SARS-CoV-2 infection in convalescent individuals. Nature. 2020;584(7821):437–42. doi:10.1038/s41586-020-2456-9.
  • Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465‐469. doi:10.1038/s41586-020-2196-x.
  • Seow J, Graham C, Merrick B, Acors S, Pickering S, Steel KJA, Hemmings O, O'Byrne A, Kouphou N, Galao RP, et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat Microbiol. 2020 Oct 26. doi: 10.1038/s41564-020-00813-8.
  • Zhang L, Zhang F, Yu W, He T, Yu J, Yi CE, Ba L, Li W, Farzan M, Chen Z, et al. Antibody responses against SARS-Coronavirus are correlated with disease outcome of infected individuals. J Med Virol. 2006;78:1–8. doi:10.1002/jmv.20499.
  • Ma H, Zeng W, He H, Zhao D, Jiang D, Zhou P, Cheng L, Li Y, Ma X, Jin T, et al. Serum IgA, IgM, and IgG responses in COVID-19. Cell Mol Immunol. 2020;17(7):773–75. doi:10.1038/s41423-020-0474-z.
  • Krammer F. The human antibody response to influenza A virus infection and vaccination. Nat Rev Immunol. 2019;19:383–97. doi:10.1038/s41577-019-0143-6.
  • Bao L, Deng W, Gao H, Xiao C, Liu J, Xue J, Lv Q, Liu J, Yu P, Xu Y, et al. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. BioRxiv. 2020. (Preprint posted March 14, 2020). doi:10.1101/2020.03.13.990226.
  • Chandrashekar A, Liu J, Martinot AJ, McMahan K, Mercado NB, Peter L, Tostanoski LH, Yu J, Maliga Z, Nekorchuk M, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques [published online ahead of print, 2020 May 20]. Science. 2020Aug 14;369(6505):812–17.. doi:10.1126/science.abc4776.
  • Ju B, Zhang Q, Ge X, Wang R, Yu J, Shan S, Zhou B, Song S, Tang X, Yu J, et al. Potent human neutralizing antibodies elicited by SARS-CoV-2 infection. bioRxiv. 2020. (Preprint posted March 26, 2020). doi:10.1101/2020.03.21.990770.
  • Wec AZ, Wrapp D, Herbert AS, Maurer DP, Haslwanter D, Sakharkar M, Jangra RK, Dieterle ME, Lilov A, Huang D, et al. Broad neutralization of SARS-related viruses by human monoclonal antibodies [published online ahead of print, 2020 Jun 15]. Science. 2020 Aug 7;369(6504):731–36. doi:10.1126/science.abc7424.
  • Wadman M Eli Lilly reports promising first results for an antibody against COVID-19. [accessed 2020 Sept 21]. https://www.sciencemag.org/news/2020/09/eli-lilly-reports-first-promising-results-antibody-against-covid-19.
  • Padron-Regalado E. Vaccines for SARS-CoV-2: lessons from Other Coronavirus Strains. Infect Dis Ther. 2020;9:1‐20. doi:10.1007/s40121-020-00300-x.
  • Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F, Hippenstiel S, Dingeldey M, Kruse B, Fauchere F, et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. 2020 Jul 29. doi:10.1101/2020.04.17.20061440.
  • Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, Rawlings SA, Sutherland A, Premkumar L, Jadi RS, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals [published online ahead of print, 2020 May 20]. Cell. 2020 Jun 25;181(7):1489–501.e15. doi:10.1016/j.cell.2020.05.015.
  • Pia L. SARS-CoV-2-reactive T cells in patients and healthy donors. Nat Rev Immunol. 2020;20:353. doi:10.1038/s41577-020-0333-2.
  • Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, Chng MHY, Lin M, Tan N, Linster M, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls [published online ahead of print, 2020 Jul 15]. Nature. 2020 Aug;584(7821):457–62. doi:10.1038/s41586-020-2550-z.
  • Zhao J, Zhao J, Mangalam AK, Channappanavar R, Fett C, Meyerholz DK, Agnihothram S, Baric RS, David CS, Perlman S. Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses. Immunity. 2016;44:1379–91.
  • Sette A, Crotty S. Pre-existing immunity to SARS-CoV-2: the knowns and unknowns [published online ahead of print, 2020 Jul 7]. Nat Rev Immunol. 2020:1–2. doi:10.1038/s41577-020-0389-z.
  • Altmann DM, Boyton RJ. SARS-CoV-2 T cell immunity: specificity, function, durability, and role in protection. Sci Immunol. 2020. doi:10.1126/sciimmunol.abd6160.
  • Huang J, Cao Y, Du J, Bu X, Ma R, Wu C. Priming with SARS CoV S DNA and boosting with SARS CoV S epitopes specific for CD4+ and CD8+ T cells promote cellular immune responses. Vaccine. 2007;25:6981‐991. doi:10.1016/j.vaccine.2007.06.047.
  • Leslie M. T cells found in COVID-19 patients ‘bode well’ for long-term immunity. [accessed 2020 Jun 11]. https://www.sciencemag.org/news/2020/05/t-cells-found-covid-19-patients-bode-well-long-term-immunity.
  • Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, Belanger S, Abbott RK, Kim C, Choi J, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020Sep 16:S0092–8674(20)31235–6. doi:10.1016/j.cell.2020.09.038.
  • Frederiksen LSF, Zhang Y, Foged C, Thakur A. The Long Road Toward COVID-19 Herd Immunity: vaccine Platform Technologies and Mass Immunization Strategies. Front Immunol. 2020;11:1817. Published 2020 Jul 21. doi:10.3389/fimmu.2020.01817.
  • See RH, Zakhartchouk AN, Petric M, Lawrence DJ, Mok CPY, Hogan RJ, Rowe T, Zitzow LA, Karunakaran KP, Hitt MM, et al. Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. J Gen Virol. 2006;87(3):641–50. doi:10.1099/vir.0.81579-0.
  • Hassan AO, Kafai NM, Dmitriev IP, Fox JM, Smith BK, Harvey IB, Chen RE, Winkler ES, Wessel AW, Case JB, et al. A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower Respiratory Tracts against SARS-CoV-2. Cell. 2020 Oct 1;183(1):169–184.e13. Epub 2020 Aug 19. PMID: 32931734; PMCID: PMC7437481. doi:10.1016/j.cell.2020.08.026
  • Agnihothram S, Gopal R, Yount BL, Donaldson EF, Menachery VD, Graham RL, Scobey TD, Gralinski LE, Denison MR, Zambon M, et al. Evaluation of serologic and antigenic relationships between Middle Eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses. J Infect Dis. 2013;209:995–1006. doi:10.1093/infdis/jit609.
  • Dai L, Zheng T, Xu K, Han Y, Xu L, Huang E, An Y, Cheng Y, Li S, Liu M, et al. A Universal Design of Betacoronavirus Vaccines against COVID-19, MERS, and SARS. Cell. 2020;182(3):722–733.e11. doi:10.1016/j.cell.2020.06.035.
  • Jia Y, Shen G, Zhang Y, Huang K-S, Ho H-Y, Hor W-S, Yang C-H,  Li C, Wang W-L. Analysis of the mutation dynamics of SARS-CoV-2 reveals the spread history and emergence of RBD mutant with lower ACE2 binding affinity. bioRxiv. 2020:2020.04.09.034942.
  • Phan T. Genetic diversity and evolution of SARS-CoV-2. Infect Genet Evol. 2020;81:104260. doi:10.1016/j.meegid.2020.104260.
  • Tang X, Wu C, Li X, Song Y, Yao X, Wu X, Duan Y, Zhang H,  Wang Y, Qian Z, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. 2020;nwaa036. Published 2020 Mar 3. doi:10.1093/nsr/nwaa036.
  • Korber B, Fischer W, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE, Bhattacharya T, Foley B, et al. On behalf of the Sheffield COVID-19 Genomics Group. Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182(4):812–827.e19. doi:10.1016/j.cell.2020.06.043.
  • Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, Zhao C, Zhang Q, Liu H, Nie L, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell. 2020 Sep 3;182(5):1284–94.e9. doi:10.1016/j.cell.2020.07.012.
  • Zhang A, Stacey HD, Mullarkey CE, Miller MS. Original Antigenic Sin: how First Exposure Shapes Lifelong Anti-Influenza Virus Immune Responses. J Immunol. 2019;202:335‐340. doi:10.4049/jimmunol.1801149.
  • Arvin AM, Fink K, Schmid MA, Cathcart A, Spreafico R, Havenar-Daughton C, Lanzavecchia A, Corti D, Virgin HW, et al. A perspective on potential antibody-dependent enhancement of SARS-CoV-2 [published online ahead of print, 2020 Jul 13]. Nature. 2020 Aug;584(7821):353–63. doi:10.1038/s41586-020-2538-8.
  • Takada A, Kawaoka Y. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol. 2003;13:387‐398. doi:10.1002/rmv.405.
  • Delgado MF, Coviello S, Monsalvo AC, Melendi GA, Hernandez JZ, Batalle JP, Diaz L, Trento A, Chang H-Y, Mitzner W, et al. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat Med. 2009;15(1):34‐41. doi:10.1038/nm.1894.
  • Green DR. SARS-CoV2 vaccines: slow is fast. Science Adv. 2020;6(28):eabc7428. doi:10.1126/Sciadv.abc7428.
  • Huang AT, Garcia-Carreras B, Hitchings MDT, Yang B, Katzelnick LC, Rattigan SM, Borgert BA, Moreno CA, Solomon BD, Rodriguez-Barraquer I, et al. A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. medRxiv. 2020 Apr 17:2020.04.14.20065771. (Preprint posted April 17, 2020). doi:10.1101/2020.04.14.20065771.
  • Lv H, Wu NC, Tsang OT, Yuan M, Perera RAPM, Leung WS, So RTY, Chan JMC, Yip GK, Chik TSH, et al. Cross-reactive Antibody Response between SARS-CoV-2 and SARS-CoV Infections. Cell Rep. 2020;31(9):107725. doi:10.1016/j.celrep.2020.107725.
  • Graham BS. Rapid COVID-19 vaccine development. Science. 2020;368(6494):945–46. doi:10.1126/science.abb8923.
  • Liu W, Fontanet A, Zhang PH, Zhan L, Xin Z-T, Baril L, Tang F, Lv H, Cao W-C. Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J Infect Dis. 2006;193(6):792‐795. doi:10.1086/500469.
  • Regalado A What if immunity to Covid19 doesn’t last? MiT Technology review. 2020 April 27. [accessed 2020 May 29]. https://www.technologyreview.com/2020/04/27/1000569/how-long-are-people-immune-to-covid-19/.
  • Callow KA, Parry HF, Sergeant M, Tyrrell DA. The time course of the immune response to experimental coronavirus infection of man. Epidemiol Infect. 1990;105(2):435–46. doi:10.1017/S0950268800048019.
  • Edridge AWD, Kaczorowska J, Hoste ACR, Bakker M, Klein M, Jebbink MF, Matser A,  Kinsella CM, Rueda P, Prins M, et al. Human coronavirus reinfection dynamics: lessons for SARS-CoV-2. medRxiv. 2020. (preprint posted May 18, 2020). doi:10.1101/2020.05.11.20086439.
  • Wu LP, Wang NC, Chang YH, Tian X-Y, Na D-Y, Zhang L-Y, Zheng L, Lan T, Wang L-F, Liang G-D. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis. 2007;13(10):1562‐1564. doi:10.3201/eid1310.070576.
  • Tang F, Quan Y, Xin ZT, Wrammert J, Ma M-J, Lv H, Wang T-B, Yang H, Richardus JH, Liu W, et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol. 2011;186(12):7264‐7268. doi:10.4049/jimmunol.0903490.
  • Payne DC, Iblan I, Rha B, Alqasrawi S, Haddadin A, Al Nsour M, Alsanouri T, Ali SS, Harcourt J, Miao C, et al. Persistence of antibodies against Middle East respiratory syndrome coronavirus. Emerg Infect Dis. 2016;22(10):1824–26. doi:10.3201/eid2210.160706.
  • Ng OW, Chia A, Tan AT, Jadi RS, Leong HN, Bertoletti A, Tan Y-J. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. 2016;34(17):2008–14. doi:10.1016/j.vaccine.2016.02.063.
  • Lin Q, Zhu L, Ni Z, Meng H, You L. Duration of serum neutralizing antibodies for SARS-CoV-2: lessons from SARS-CoV infection [published online ahead of print, 2020 Mar 25]. J Microbiol Immunol Infect. 2020:S1684-1182(20)30075-X. doi:10.1016/j.jmii.2020.03.015.
  • Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H, Eythorsson E, Arnthorsson AO, Helgason D, Bjarnadottir K, Ingvarsson RF, et al. Humoral Immune Response to SARS-CoV-2 in Iceland [published online ahead of print, 2020 Sep 1]. N Engl J Med. 2020. doi:10.1056/NEJMoa2026116.
  • Cañete PF, Vinuesa CG. COVID-19 makes B cells forget, but T cells remember. Cell. 2020;183(1):13–15. doi:10.1016/j.cell.2020.09.013.
  • Rodda LB, et al. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Preprint at medRxiv. 2020  Oct 29;383(18):1724–34. doi:10.1101/2020.08.11.20171843.
  • McMichael TM, Currie DW, Clark S, Pogosjans S, Kay M, Schwartz NG, Lewis J, Baer A, Kawakami V, Lukoff MD. Epidemiology of Covid-19 in a long-term care facility in King County, Washington. N Engl J Med. 2020;382(21):2005‐2011. doi:10.1056/NEJMoa2005412.
  • Sakurai A, Sasaki T, Kato S, Hayashi M, Tsuzuki SI, Ishihara T, Iwata M, Morise Z,Doi Y, et al. Natural History of Asymptomatic SARS-CoV-2 Infection [published online ahead of print, 2020 Jun 12]. N Engl J Med. 2020 Aug 27;383(9):885–86. doi:10.1056/NEJMc2013020.
  • Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science. 2020;368(6493):860‐868. doi:10.1126/science.abb5793.
  • French J, Deshpande S, Evans W, Obregon R. Key Guidelines in Developing a Pre-Emptive COVID-19 Vaccination Uptake Promotion Strategy. Int J Environ Res Public Health. 2020;17(16)):E5893. doi:10.3390/ijerph17165893.
  • Hosangadi D, Warmbrod KL, Martin EK, Adalja A, Cicero A, Inglesby T, Watson C, Watson M, Connell N. Enabling emergency mass vaccination: innovations in manufacturing and administration during a pandemic. Vaccine. 2020;38(26):4167–69. doi:10.1016/j.vaccine.2020.04.037.
  • World Health Organization. A Coordinated Global Research Roadmap: 2019 Novel Coronavirus. [accessed 2020 May 26]. https://www.who.int/blueprint/priority-diseases/key-action/Coronavirus_Roadmap_V9.pdf?ua=1.
  • World Health Organization. An international randomised trial of candidate vaccines against COVID-19. [accessed 2020 May 26]. https://www.who.int/publications-detail/an-international-randomised-trial-of-candidate-vaccines-against-covid-19.
  • Callaway E. Scores of coronavirus vaccines are in competition - how will scientists choose the best? [published online ahead of print, 2020 Apr 30]. Nature. 2020. doi:10.1038/d41586-020-01247-2.
  • Roper RL, Rehm KE. SARS vaccines: where are we? Expert Rev Vaccines. 2009;8:887‐98.
  • Kituyi M (The World Economic Forum COVID Action Platform). COVID-19: collaboration is the engine of global science – especially for developing countries. [accessed 2020 May 23]. https://www.weforum.org/agenda/2020/05/global-science-collaboration-open-source-covid-19/.
  • Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 vaccines at pandemic speed. N Engl J Med. 2020;382(21):1969‐1973. doi:10.1056/NEJMp2005630.
  • Trump Administration Selects Five Coronavirus Vaccine Candidates as Finalists. [accessed 2020 Jun 14]. https://www.nytimes.com/2020/06/03/us/politics/coronavirus-vaccine-trump-moderna.html.
  • Corum J, Zimmer C Coronavirus Vaccine Tracker. [accessed 2020 Jun 28]. https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html.
  • Corum J, Sheikh K, Zimmer C Different Approaches to a Coronavirus Vaccine. [accessed 2020 Jun 28]. https://www.nytimes.com/interactive/2020/05/20/science/coronavirus-vaccine-development.html.
  • Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586(7830):516–27. doi:10.1038/s41586-020-2798-3.
  • Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z, et al. Development of an inactivated vaccine candidate for SARS-CoV-2 [published online ahead of print, 2020 May 6]. Science. 2020 Jul 3;369(6499):77–81. doi:10.1126/science.abc1932.
  • vanvan Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, Avanzato VA, Bushmaker T, Flaxman A, Ulaszewska M, et al. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020Oct;586(7830):578–82. (Preprint posted May 13, 2020). doi:10.1101/2020.05.13.093195.
  • Guebre-Xabier M, Patel N, Tian JH, Zhou B, Maciejewski S, Lam K, Portnoff AD, Massare MJ, Frieman MB, Piedra PA, et al. NVX CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge. Vaccine. 2020 Oct 23:S0264-410X(20)31373–6. doi:10.1016/j.vaccine.2020.10.064.
  • Wang, et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell. 2020 Aug 6;182(3):713–21.e9. doi:10.1016/j.cell.2020.06.008.
  • Yadav P, Ella R, Kumar S, Patil D, Mohandas S, Shet A, Bhati G, Sapkal G, Kaushal H, Patil S, et al. Remarkable immunogenicity, and protective efficacy of BBV152, an inactivated SARS-CoV-2 vaccine in rhesus macaques. 2020 Sept 10. PREPRINT (Version 1) available at Research Square. doi: 10.21203/rs.3.rs-65715/v1.
  • Mercado NB, Zahn R, Wegmann F, Loos C, Chandrashekar A, Yu J, Liu J, Peter L, McMahan K, Tostanoski LH, et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature. 2020 Jul 30;586(7830):583–88. Epub ahead of print. PMID: 32731257. doi:10.1038/s41586-020-2607-z.
  • Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, Flach B, O'Connell S, Bock KW, Minai M, et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med. 2020 . Epub ahead of print. PMID: 32722908; PMCID: PMC7449230. doi:10.1056/NEJMoa2024671.
  • Haseltine WA 2020. Did the Oxford Covid vaccine work in monkeys? Not really. [accessed 2020 Jun 15]. https://www.forbes.com/sites/williamhaseltine/2020/05/16/did-the-oxford-covid-vaccine-workin-monkeys-not-really/#5bb8bd883c71.
  • Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, Wu SP, Wang BS, Wang Z, Wang L, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845–54. doi:10.1016/S0140-6736(20)31208-3.
  • Zhu FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, Li JX, Yang BF, Wang L, Wang WJ, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020 Aug 15;396(10249):479–88. doi:10.1016/S0140-6736(20)31605-6.
  • Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report [published online ahead of print, 2020 Jul 14]. N Engl J Med. doi:10.1056/NEJMoa2022483.
  • Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, McCullough MP, Chappell JD, Denison MR, Stevens LJ, et al. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. N Engl J Med. 2020 Jul 14:NEJMoa2022483.
  • Folegatti PM, Ewer KJ, Angus B, Angus B, Becker S, Belij-Rammerstorfer S, Bellamy D, Bibi S, Bittaye M, Clutterbuck EA, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine againstSARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2000;396:467–78. doi:10.1016/S0140-6736(20)31604-4.
  • Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M, Baum A, Pascal K, Quandt J, Maurus D, et al. Concurrent human antibody and TH1 type T-cell responses elicited by a COVID-19 RNA vaccine. medRxiv Preprint. 2020. doi:10.1101/2020.07.17.20140533.
  • Walsh EE, Frenck R, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, et al. Safety and immunogenicity of two RNA-based covid-19 vaccine candidates. New Eng J Med. 2020. doi:10.1056/NEJMoa2027906.
  • Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatullin AI, Shcheblyakov DV, Dzharullaeva AS, Grousova DM, Erokhova AS, Kovyrshina AV, Botikov AG, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, nonrandomized phase 1/2 studies from Russia. Lancet. 2020Sep 26;396(10255):887–97. doi:10.1016/S0140-6736(20)31866-3.
  • Zhang Y-J, Zeng G, Pan HX, Li C-G, Kan B, Hu Y-L, Mao H-Y, Xin Q-Q, Chu K, Han W-X, et al. Immunogenicity and safety of a SARS-CoV-2 inactivated vaccine in healthy adults aged 18-59 years: report of the randomized, double-blind, and placebo-controlled phase 2 clinical trial. MedRxiv. Preprint. 2020. doi:10.1101/2020.07.31.20161216.
  • Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, Plested JS, Zhu M, Cloney-Clark S, Zhou H, et al. Phase 1-2 Trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020 Sep 2:NEJMoa2026920. doi:10.1056/NEJMoa2026920.
  • Trusheim MR, Shrier AA, Antonijevic Z, Beckman RA, Campbell RK, Chen C, Flaherty KT, Loewy J, Lacombe D, Madhavan S, et al. PIPELINEs: creating comparable clinical knowledge efficiently by linking trial platforms. Clin Pharmacol Ther. 2016;100(6):713–29. doi:10.1002/cpt.514.
  • Plotkin SA, Caplan A. Extraordinary diseases require extraordinary solutions. Vaccine. 2020;38(24):3987–88. doi:10.1016/j.vaccine.2020.04.039.
  • Shah SK, Miller FG, Darton TC, Duenas D, Emerson C, Lynch HF, Jamrozik E, Jecker NS, Kamuya D, Kapulu M, et al. Ethics of controlled human infection to address COVID-19. Science. 2020;368(6493):832–34. doi:10.1126/science.abc1076.
  • Corey L, Mascola JR, Fauci AS, Collins FS. A strategic approach to COVID-19 vaccine R&D. Science. 2020;368(6494):948‐950. doi:10.1126/science.abc5312.
  • Jamrozik E, Selgelid MJ. COVID-19 human challenge studies: ethical issues [published online ahead of print, 2020 May 29]. Lancet Infect Dis. 2020:S1473-3099(20)30438–2. doi:10.1016/S1473-3099(20)30438-2.
  • Calina D, Hartung T, Docea AO, Spandidos DA, Egorov AM, Shtilman MI, Carvalho F, Tsatsakis A. COVID-19 vaccines: ethical framework concerning human challenge studies. Daru. 2020 Aug 27:1–6. doi:10.1007/s40199-020-00371-8.
  • CanSino’s COVID-19 vaccine candidate approved for military use in China. [accessed 2020 Jun 30].https://www.reuters.com/article/us-health-coronavirus-china-vaccine-idUSKBN2400DZ.
  • Callaway E. Russia’s fast-track coronavirus vaccine draws outrage over safety. Nature. 2020;584(7821):334–35. doi:10.1038/d41586-020-02386-2.
  • WHO. WHO target product profiles for COVID-19 vaccines. [accessed 2020 Sept 18]. https://www.who.int/who-documents-detail/who-target-product-profiles-for-covid-19-vaccines.
  • Krause P, Fleming TR, Longini I, Henao-Restrepo AM, Peto R. World Health Organization Solidarity Vaccines Trial Expert Group. COVID-19 vaccine trials should seek worthwhile efficacy. Lancet. 2020 Sep 12; 396(10253):741–43.
  • FDA. [accessed 2020 Oct 01]. https://www.fda.gov/media/139638/download.
  • Torreele E. The rush to create a covid-19 vaccine may do more harm than good. BMJ. 2020;370:m3209.
  • Rourke M, Eccleston-Turner M, Phelan A, Gostin L. Policy opportunities to enhance sharing for pandemic research. Science. 2020;368(6492):716–18. doi:10.1126/science.abb9342.
  • COVAX: working for global equitable access to COVID-19 vaccines. [accessed 2020 Oct 04]. https://www.who.int/initiatives/act-accelerator/covax.
  • Serum Institute of India: outsourced manufacturing of COVID-19 vaccines. [accessed 2020 Oct 04]. https://www.europeanpharmaceuticalreview.com/news/129067/serum-institute-of-india-outsourced-manufacturing-of-covid-19-vaccines/accessed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.