3,968
Views
17
CrossRef citations to date
0
Altmetric
Review

A review of the BCG vaccine and other approaches toward tuberculosis eradication

, , , , & ORCID Icon
Pages 2454-2470 | Received 19 Nov 2020, Accepted 29 Jan 2021, Published online: 26 Mar 2021

References

  • World Health, O., 2018. BCG vaccine: WHO position paper, February 2018 – Recommendations. Vaccine, 36(24), pp.3408–3410
  • Tran, V., Liu, J. and Behr, M., 2014. BCG Vaccines. Microbiology Spectrum, 2(1), pp.mgm2-0028–2013
  • Bussi, C. and Gutierrez, M., 2019. Mycobacterium tuberculosis infection of host cells in space and time. FEMS Microbiology Reviews, 43(4), pp.341–361
  • Lyon, S. and Rossman, M., 2017. Pulmonary Tuberculosis. Microbiology Spectrum, 5(1), pp.1–13
  • Horwitz, M., Harth, G., Dillon, B. and Masleša-Galić, S., 2009. Commonly administered BCG strains including an evolutionarily early strain and evolutionarily late strains of disparate genealogy induce comparable protective immunity against tuberculosis. Vaccine, 27(3), pp.441–445
  • Zwerling, A., Behr, M., Verma, A., Brewer, T., Menzies, D. and Pai, M., 2011. The BCG World Atlas: A Database of Global BCG Vaccination Policies and Practices. PLoS Medicine, 8(3), p.e1001012
  • Eshete, A., Shewasinad, S. and Hailemeskel, S., 2020. Immunization coverage and its determinant factors among children aged 12–23 months in Ethiopia: a systematic review, and Meta- analysis of cross-sectional studies. BMC Pediatrics, 20(1), p.283
  • Ritz, N., Hanekom, W., Robins-Browne, R., Britton, W. and Curtis, N., 2008. Influence of BCG vaccine strain on the immune response and protection against tuberculosis. FEMS Microbiology Reviews, 32(5), pp.821–841
  • Roy, A., Eisenhut, M., Harris, R., Rodrigues, L., Sridhar, S., Habermann, S., Snell, L., Mangtani, P., Adetifa, I., Lalvani, A. and Abubakar, I., 2014. Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ, 349, p.g4643
  • Ekanem, A., Oloyede, I., Ekrikpo, U., Idung, A. and Edward, E.. Rate of BCG Immunization in HIV-Exposed Infants in a Selected Primary Health Centre in Southern Nigeria: Implications of No Vaccine Policy for HIV-Positive Infants. J of Tropical Pediatrics. 2020 Jun 27 [accessed 2020 Dec 1]:[7 p.] doi:10.1093/tropej/fmaa030
  • Kousha, A., Farajnia, S., Ansarin, K., Khalili, M., Shariat, M. and Sahebi, L., 2020. Does the BCG vaccine have different effects on strains of tuberculosis?. Clinical & Experimental Immunology, 203(2), pp.281–285
  • Wu, B., Huang, C., Garcia, L., de Leon, A., Osornio, J., Bobadilla-del-Valle, M., Ferreira, L., Canizales, S., Small, P., Kato-Maeda, M., Krensky, A. and Clayberger, C., 2007. Unique Gene Expression Profiles in Infants Vaccinated with Different Strains of Mycobacterium bovis Bacille Calmette-Guérin. Infection and Immunity, 75(7), pp.3658–3664
  • Kiravu, A., Osawe, S., Happel, A., Nundalall, T., Wendoh, J., Beer, S., Dontsa, N., Alinde, O., Mohammed, S., Datong, P., Cameron, D., Rosenthal, K., Abimiku, A., Jaspan, H. and Gray, C., 2019. Bacille Calmette-Guérin Vaccine Strain Modulates the Ontogeny of Both Mycobacterial-Specific and Heterologous T Cell Immunity to Vaccination in Infants. Frontiers in Immunology, 10, p.2307
  • Castillo-Rodal, A., Castañón-Arreola, M., Hernández-Pando, R., Calva, J., Sada-Díaz, E. and López-Vidal, Y., 2006. Mycobacterium bovis BCG Substrains Confer Different Levels of Protection against Mycobacterium tuberculosis Infection in a BALB/c Model of Progressive Pulmonary Tuberculosis. Infection and Immunity, 74(3), pp.1718–1724
  • Davids, V., Hanekom, W., Mansoor, N., Gamieldien, H., Gelderbloem, S., Hawkridge, A., Hussey, G., Hughes, E., Soler, J., Murray, R., Ress, S. and Kaplan, G., 2006. The Effect of Bacille Calmette‐Guérin Vaccine Strain and Route of Administration on Induced Immune Responses in Vaccinated Infants. The Journal of Infectious Diseases, 193(4), pp.531–536
  • Tanner, R., Villarreal-Ramos, B., Vordermeier, H. and McShane, H., 2019. The Humoral Immune Response to BCG Vaccination. Frontiers in Immunology, 10, p.1317
  • Netea, M., Quintin, J. and van der Meer, J., 2011. Trained Immunity: A Memory for Innate Host Defense. Cell Host & Microbe, 9(5), pp.355–361
  • Garly, M., Martins, C., Balé, C., Baldé, M., Hedegaard, K., Gustafson, P., Lisse, I., Whittle, H. and Aaby, P., 2003. BCG scar and positive tuberculin reaction associated with reduced child mortality in West Africa. Vaccine, 21(21–22), pp.2782–2790
  • Roth, A., Gustafson, P., Nhaga, A., Djana, Q., Poulsen, A., Garly, M., Jensen, H., Sodemann, M., Rodriques, A. and Aaby, P., 2005. BCG vaccination scar associated with better childhood survival in Guinea-Bissau. International Journal of Epidemiology, 34(3), pp.540–547
  • Setia, M., Steinmaus, C., Ho, C. and Rutherford, G., 2006. The role of BCG in prevention of leprosy: a meta-analysis. The Lancet Infectious Diseases, 6(3), pp.162–170
  • Stensballe, L., Nante, E., Jensen, I., Kofoed, P., Poulsen, A., Jensen, H., Newport, M., Marchant, A. and Aaby, P., 2005. Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for girls. Vaccine, 23(10), pp.1251–1257
  • Elliott, A., Nakiyingi, J., Quigley, M., French, N., Gilks, C. and Whitworth, J., 1999. Inverse association between BCG immunisation and intestinal nematode infestation among HIV-1-positive individuals in Uganda. The Lancet, 354(9183), pp.1000–1001
  • Kleinnijenhuis, J., Quintin, J., Preijers, F., Benn, C., Joosten, L., Jacobs, C., van Loenhout, J., Xavier, R., Aaby, P., van der Meer, J., van Crevel, R. and Netea, M., 2013. Long-Lasting Effects of BCG Vaccination on Both Heterologous Th1/Th17 Responses and Innate Trained Immunity. Journal of Innate Immunity, 6(2), pp.152–158
  • Giamarellos-Bourboulis, E., Tsilika, M., Moorlag, S., Antonakos, N., Kotsaki, A., Domínguez-Andrés, J., Kyriazopoulou, E., Gkavogianni, T., Adami, M., Damoraki, G., Koufargyris, P., Karageorgos, A., Bolanou, A., Koenen, H., van Crevel, R., Droggiti, D., Renieris, G., Papadopoulos, A. and Netea, M., 2020. Activate: Randomized Clinical Trial of BCG Vaccination against Infection in the Elderly. Cell, 183(2), pp.315-323.e9
  • Arts, R., Moorlag, S., Novakovic, B., Li, Y., Wang, S., Oosting, M., Kumar, V., Xavier, R., Wijmenga, C., Joosten, L., Reusken, C., Benn, C., Aaby, P., Koopmans, M., Stunnenberg, H., van Crevel, R. and Netea, M., 2018. BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity. Cell Host & Microbe, 23(1), pp.89-100.e5
  • Edupuganti, S., Eidex, R., Keyserling, H., Akondy, R., Lanciotti, R., Orenstein, W., Teuwen, D., Akondy, R., Orenstein, W., del Rio, C., Pan, Y., Querec, T., Lipman, H., Barrett, A., Ahmed, R., Teuwen, D., Cetron, M. and Mulligan, M., 2013. A Randomized, Double-Blind, Controlled Trial of the 17D Yellow Fever Virus Vaccine Given in Combination with Immune Globulin or Placebo: Comparative Viremia and Immunogenicity. The American Journal of Tropical Medicine and Hygiene, 88(1), pp.172–177
  • Portevin, D. and Young, D., 2013. Natural Killer Cell Cytokine Response to M. bovis BCG Is Associated with Inhibited Proliferation, Increased Apoptosis and Ultimate Depletion of NKp44+CD56bright Cells. PLoS ONE, 8(7), p.e68864
  • Wang, D., Gu, X., Liu, X., Wei, S., Wang, B. and Fang, M., 2018. NK cells inhibit anti-Mycobacterium bovis BCG T cell responses and aggravate pulmonary inflammation in a direct lung infection mouse model. Cellular Microbiology, 20(7), p.e12833
  • Kleinnijenhuis, J., Quintin, J., Preijers, F., Joosten, L., Jacobs, C., Xavier, R., van der Meer, J., van Crevel, R. and Netea, M., 2014. BCG-induced trained immunity in NK cells: Role for non-specific protection to infection. Clinical Immunology, 155(2), pp.213–219
  • Dhiman, R., Indramohan, M., Barnes, P., Nayak, R., Paidipally, P., Rao, L. and Vankayalapati, R., 2009. IL-22 Produced by Human NK Cells Inhibits Growth of Mycobacterium tuberculosis by Enhancing Phagolysosomal Fusion. The Journal of Immunology, 183(10), pp.6639–6645
  • Zheng, Y., Valdez, P., Danilenko, D., Hu, Y., Sa, S., Gong, Q., Abbas, A., Modrusan, Z., Ghilardi, N., de Sauvage, F. and Ouyang, W., 2008. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Medicine, 14(3), pp.282–289
  • Kleinnijenhuis, J., Quintin, J., Preijers, F., Joosten, L., Ifrim, D., Saeed, S., Jacobs, C., van Loenhout, J., de Jong, D., Stunnenberg, H., Xavier, R., van der Meer, J., van Crevel, R. and Netea, M., 2012. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proceedings of the National Academy of Sciences, 109(43), pp.17537–17542
  • Umemura, M., Nishimura, H., Hirose, K., Matsuguchi, T. and Yoshikai, Y., 2001. Overexpression of IL-15 In Vivo Enhances Protection AgainstMycobacterium bovisBacillus Calmette-Guérin Infection Via Augmentation of NK and T Cytotoxic 1 Responses. The Journal of Immunology, 167(2), pp.946–956
  • Kaufmann, E., Sanz, J., Dunn, J., Khan, N., Mendonça, L., Pacis, A., Tzelepis, F., Pernet, E., Dumaine, A., Grenier, J., Mailhot-Léonard, F., Ahmed, E., Belle, J., Besla, R., Mazer, B., King, I., Nijnik, A., Robbins, C., Barreiro, L. and Divangahi, M., 2018. BCG Educates Hematopoietic Stem Cells to Generate Protective Innate Immunity against Tuberculosis. Cell, 172(1–2), pp.176-190.e19
  • Cirovic, B., de Bree, L., Groh, L., Blok, B., Chan, J., van der Velden, W., Bremmers, M., van Crevel, R., Händler, K., Picelli, S., Schulte-Schrepping, J., Klee, K., Oosting, M., Koeken, V., van Ingen, J., Li, Y., Benn, C., Schultze, J., Joosten, L., Curtis, N., Netea, M. and Schlitzer, A., 2020. BCG Vaccination in Humans Elicits Trained Immunity via the Hematopoietic Progenitor Compartment. Cell Host & Microbe, 28(2), pp.322-334.e5
  • Luca, S., Mihaescu, T., 2013. History of BCG Vaccine. Maedica, 8, pp.53–58
  • Derrick, S., Kolibab, K., Yang, A. and Morris, S., 2014. Intranasal Administration of Mycobacterium bovis BCG Induces Superior Protection against Aerosol Infection with Mycobacterium tuberculosis in Mice. Clinical and Vaccine Immunology, 21(10), pp.1443–1451
  • Saleem, I., Coombes, A. and Chambers, M., 2019. In Vitro Evaluation of Eudragit Matrices for Oral Delivery of BCG Vaccine to Animals. Pharmaceutics, 11(6), p.270
  • Balseiro, A., Prieto, J., Álvarez, V., Lesellier, S., Davé, D., Salguero, F., Sevilla, I., Infantes-Lorenzo, J., Garrido, J., Adriaensen, H., Juste, R. and Barral, M., 2020. Protective Effect of Oral BCG and Inactivated Mycobacterium bovis Vaccines in European Badgers (Meles meles) Experimentally Infected With M. bovis. Frontiers in Veterinary Science, 7, p.41
  • Palphramand, K., Delahay, R., Robertson, A., Gowtage, S., Williams, G., McDonald, R., Chambers, M. and Carter, S., 2017. Field evaluation of candidate baits for oral delivery of BCG vaccine to European badgers, Meles meles. Vaccine, 35(34), pp.4402–4407
  • Lesellier, S., Birch, C., Davé, D., Dalley, D., Gowtage, S., Palmer, S., McKenna, C., Williams, G., Ashford, R., Weyer, U., Beatham, S., Coats, J., Nunez, A., Sanchez-Cordon, P., Spiropoulos, J., Powell, S., Sawyer, J., Pascoe, J., Hendon-Dunn, C., Bacon, J. and Chambers, M., 2020. Bioreactor-Grown Bacillus of Calmette and Guérin (BCG) Vaccine Protects Badgers against Virulent Mycobacterium bovis When Administered Orally: Identifying Limitations in Baited Vaccine Delivery. Pharmaceutics, 12(8), p.782
  • Kaveh, D., Garcia-Pelayo, M., Bull, N., Sanchez-Cordon, P., Spiropoulos, J. and Hogarth, P., 2020. Airway delivery of both a BCG prime and adenoviral boost drives CD4 and CD8 T cells into the lung tissue parenchyma. Scientific Reports, 10(1), p.18703
  • Darrah, P., Zeppa, J., Maiello, P., Hackney, J., Wadsworth, M., Hughes, T., Pokkali, S., Swanson, P., Grant, N., Rodgers, M., Kamath, M., Causgrove, C., Laddy, D., Bonavia, A., Casimiro, D., Lin, P., Klein, E., White, A., Scanga, C., Shalek, A., Roederer, M., Flynn, J. and Seder, R., 2020. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature, 577(7788), pp.95–102
  • Chen, F., Yan, Q., Yu, Y. and Wu, M., 2017. BCG vaccine powder-laden and dissolvable microneedle arrays for lesion-free vaccination. Journal of Controlled Release, 255, pp.36–44
  • Gupta, A., Ahmad, F., Ahmad, F., Gupta, U., Natarajan, M., Katoch, V. and Bhaskar, S., 2012. Protective efficacy of Mycobacterium indicus pranii against tuberculosis and underlying local lung immune responses in guinea pig model. Vaccine, 30(43), pp.6198–6209
  • Sharma, S., Katoch, K., Sarin, R., Balambal, R., Kumar Jain, N., Patel, N., Murthy, K., Singla, N., Saha, P., Khanna, A., Singh, U., Kumar, S., Sengupta, A., Banavaliker, J., Chauhan, D., Sachan, S., Wasim, M., Tripathi, S., Dutt, N., Jain, N., Joshi, N., Penmesta, S., Gaddam, S., Gupta, S., Khamar, B., Dey, B., Mitra, D., Arora, S., Bhaskar, S. and Rani, R., 2017. Efficacy and Safety of Mycobacterium indicus pranii as an adjunct therapy in Category II pulmonary tuberculosis in a randomized trial. Scientific Reports, 7(1), p.3354
  • Hernandez-Pando, R., Pavön, L., Arriaga, K., Orozco, H., Madrid-Marina, V. and Rook, G., 1997. Pathogenesis of tuberculosis in mice exposed to low and high doses of an environmental mycobacterial saprophyte before infection. Infection and immunity, 65(8), pp.3317–3327
  • Abou-Zeid, C., Gares, M., Inwald, J., Janssen, R., Zhang, Y., Young, D., Hetzel, C., Lamb, J., Baldwin, S., Orme, I., Yeremeev, V., Nikonenko, B. and Apt, A., 1997. Induction of a type 1 immune response to a recombinant antigen from Mycobacterium tuberculosis expressed in Mycobacterium vaccae. Infection and immunity, 65(5), pp.1856–1862
  • Immunotherapy with Mycobacterium vaccae in patients with newly diagnosed pulmonary tuberculosis: a randomised controlled trial. Durban Immunotherapy Trial Group. Lancet. 1999;354(9173):116–19.
  • Mayo, R. and Stanford, J., 2000. Double-blind placebo-controlled trial of Mycobacterium vaccae immunotherapy for tuberculosis in KwaZulu, South Africa, 1991–1997. Transactions of the Royal Society of Tropical Medicine and Hygiene, 94(5), pp.563–568
  • von Reyn, C., Arbeit, R., Yeaman, G., Waddell, R., Marsh, B., Morin, P., Modlin, J. and Remold, H., 1997. Immunization of Healthy Adult Subjects in the United States with Inactivated Mycobacterium vaccae Administered in a Three-Dose Series. Clinical Infectious Diseases, 24(5), pp.843–848
  • Marsh, B., Von Reyn, C., Arbeit, R. and Morin, P., 1997. Immunization of HIV-Infected Adults With a Three-Dose Series of Inactivated Mycobacterium vaccae. The American Journal of the Medical Sciences, 313(6), pp.377–383
  • von Reyn, C., Marsh, B., Waddell, R., Lein, A., Tvaroha, S., Morin, P. and Modlin, J., 1998. Cellular Immune Responses to Mycobacteria in Healthy and Human Immunodeficiency Virus–Positive Subjects in the United States After a Five‐Dose Schedule ofMycobacterium vaccaeVaccine. Clinical Infectious Diseases, 27(6), pp.1517–1520
  • Hansen, S., Zak, D., Xu, G., Ford, J., Marshall, E., Malouli, D., Gilbride, R., Hughes, C., Ventura, A., Ainslie, E., Randall, K., Selseth, A., Rundstrom, P., Herlache, L., Lewis, M., Park, H., Planer, S., Turner, J., Fischer, M., Armstrong, C., Zweig, R., Valvo, J., Braun, J., Shankar, S., Lu, L., Sylwester, A., Legasse, A., Messerle, M., Jarvis, M., Amon, L., Aderem, A., Alter, G., Laddy, D., Stone, M., Bonavia, A., Evans, T., Axthelm, M., Früh, K., Edlefsen, P. and Picker, L., 2018. Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nature Medicine, 24(2), pp.130–143
  • Stylianou, E., Harrington-Kandt, R., Beglov, J., Bull, N., Pinpathomrat, N., Swarbrick, G., Lewinsohn, D., Lewinsohn, D. and McShane, H., 2018. Identification and Evaluation of Novel Protective Antigens for the Development of a Candidate Tuberculosis Subunit Vaccine. Infection and Immunity, 86(7), pp.e00014–18
  • Chen, L., Xu, M., Wang, Z., Chen, B., Du, W., Su, C., Shen, X., Zhao, A., Dong, N., Wang, Y. and Wang, G., 2010. The development and preliminary evaluation of a newMycobacterium tuberculosis vaccine comprising Ag85b, HspX and CFP-10:ESAT-6 fusion protein with CpG DNA and aluminum hydroxide adjuvants. FEMS Immunology & Medical Microbiology, 59(1), pp.42–52
  • Lu, J., Chen, B., Wang, G., Fu, L., Shen, X., Su, C., Du, W., Yang, L. and Xu, M., 2015. Recombinant tuberculosis vaccine AEC/BC02 induces antigen-specific cellular responses in mice and protects guinea pigs in a model of latent infection. Journal of Microbiology, Immunology and Infection, 48(6), pp.597–603
  • Agger, E., Rosenkrands, I., Olsen, A., Hatch, G., Williams, A., Kritsch, C., Lingnau, K., von Gabain, A., Andersen, C., Korsholm, K. and Andersen, P., 2006. Protective immunity to tuberculosis with Ag85B-ESAT-6 in a synthetic cationic adjuvant system IC31. Vaccine, 24(26), pp.5452–5460
  • van Dissel, J., Arend, S., Prins, C., Bang, P., Tingskov, P., Lingnau, K., Nouta, J., Klein, M., Rosenkrands, I., Ottenhoff, T., Kromann, I., Doherty, T. and Andersen, P., 2010. Ag85B–ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naïve human volunteers. Vaccine, 28(20), pp.3571–3581
  • van Dissel, J., Soonawala, D., Joosten, S., Prins, C., Arend, S., Bang, P., Tingskov, P., Lingnau, K., Nouta, J., Hoff, S., Rosenkrands, I., Kromann, I., Ottenhoff, T., Doherty, T. and Andersen, P., 2011. Ag85B–ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in volunteers with previous BCG vaccination or tuberculosis infection. Vaccine, 29(11), pp.2100–2109
  • Reither, K., Katsoulis, L., Beattie, T., Gardiner, N., Lenz, N., Said, K., Mfinanga, E., Pohl, C., Fielding, K., Jeffery, H., Kagina, B., Hughes, E., Scriba, T., Hanekom, W., Hoff, S., Bang, P., Kromann, I., Daubenberger, C., Andersen, P. and Churchyard, G., 2014. Safety and Immunogenicity of H1/IC31®, an Adjuvanted TB Subunit Vaccine, in HIV-Infected Adults with CD4+ Lymphocyte Counts Greater than 350 cells/mm3: A Phase II, Multi-Centre, Double-Blind, Randomized, Placebo-Controlled Trial. PLoS ONE, 9(12), p.e114602
  • Mearns, H., Geldenhuys, H., Kagina, B., Musvosvi, M., Little, F., Ratangee, F., Mahomed, H., Hanekom, W., Hoff, S., Ruhwald, M., Kromann, I., Bang, P., Hatherill, M., Andersen, P., Scriba, T., Rozot, V., Abrahams, D., Mauff, K., Smit, E., Brown, Y., Hughes, E., Makgotlho, E., Keyser, A., Erasmus, M., Makhethe, L., Africa, H., Hopley, C. and Steyn, M., 2017. H1:IC31 vaccination is safe and induces long-lived TNF-α+IL-2+CD4 T cell responses in M. tuberculosis infected and uninfected adolescents: A randomized trial. Vaccine, 35(1), pp.132–141
  • Idoko, O., Owolabi, O., Owiafe, P., Moris, P., Odutola, A., Bollaerts, A., Ogundare, E., Jongert, E., Demoitié, M., Ofori-Anyinam, O. and Ota, M., 2014. Safety and immunogenicity of the M72/AS01 candidate tuberculosis vaccine when given as a booster to BCG in Gambian infants: An open-label randomized controlled trial. Tuberculosis, 94(6), pp.564–578
  • Kumarasamy, N., Poongulali, S., Bollaerts, A., Moris, P., Beulah, F., Ayuk, L., Demoitié, M., Jongert, E. and Ofori-Anyinam, O., 2016. A Randomized, Controlled Safety, and Immunogenicity Trial of the M72/AS01 Candidate Tuberculosis Vaccine in HIV-Positive Indian Adults. Medicine, 95(3), p.e2459
  • Gillard, P., Yang, P., Danilovits, M., Su, W., Cheng, S., Pehme, L., Bollaerts, A., Jongert, E., Moris, P., Ofori-Anyinam, O., Demoitié, M. and Castro, M., 2016. Safety and immunogenicity of the M72/AS01 E candidate tuberculosis vaccine in adults with tuberculosis: A phase II randomised study. Tuberculosis, 100, pp.118–127
  • Van Der Meeren, O., Hatherill, M., Nduba, V., Wilkinson, R., Muyoyeta, M., Van Brakel, E., Ayles, H., Henostroza, G., Thienemann, F., Scriba, T., Diacon, A., Blatner, G., Demoitié, M., Tameris, M., Malahleha, M., Innes, J., Hellström, E., Martinson, N., Singh, T., Akite, E., Khatoon Azam, A., Bollaerts, A., Ginsberg, A., Evans, T., Gillard, P. and Tait, D., 2018. Phase 2b Controlled Trial of M72/AS01EVaccine to Prevent Tuberculosis. New England Journal of Medicine, 379(17), pp.1621–1634
  • Guirado, E., Gil, O., Cáceres, N., Singh, M., Vilaplana, C. and Cardona, P., 2008. Induction of a Specific Strong Polyantigenic Cellular Immune Response after Short-Term Chemotherapy Controls Bacillary Reactivation in Murine and Guinea Pig Experimental Models of Tuberculosis. Clinical and Vaccine Immunology, 15(8), pp.1229–1237
  • Vilaplana, C., Gil, O., Cáceres, N., Pinto, S., Díaz, J. and Cardona, P., 2011. Prophylactic Effect of a Therapeutic Vaccine against TB Based on Fragments of Mycobacterium tuberculosis. PLoS ONE, 6(5), p.e20404
  • Prabowo, S., Painter, H., Zelmer, A., Smith, S., Seifert, K., Amat, M., Cardona, P. and Fletcher, H., 2019. RUTI Vaccination Enhances Inhibition of Mycobacterial Growth ex vivo and Induces a Shift of Monocyte Phenotype in Mice. Frontiers in Immunology, 10, p.894
  • Cardona, P., Amat, I., Gordillo, S., Arcos, V., Guirado, E., Díaz, J., Vilaplana, C., Tapia, G. and Ausina, V., 2005. Immunotherapy with fragmented Mycobacterium tuberculosis cells increases the effectiveness of chemotherapy against a chronical infection in a murine model of tuberculosis. Vaccine, 23(11), pp.1393–1398
  • Vilaplana, C., Montané, E., Pinto, S., Barriocanal, A., Domenech, G., Torres, F., Cardona, P. and Costa, J., 2010. Double-blind, randomized, placebo-controlled Phase I Clinical Trial of the therapeutical antituberculous vaccine RUTI®. Vaccine, 28(4), pp.1106–1116
  • Nell, A., D’lom, E., Bouic, P., Sabaté, M., Bosser, R., Picas, J., Amat, M., Churchyard, G. and Cardona, P., 2014. Safety, Tolerability, and Immunogenicity of the Novel Antituberculous Vaccine RUTI: Randomized, Placebo-Controlled Phase II Clinical Trial in Patients with Latent Tuberculosis Infection. PLoS ONE, 9(2), p.e89612
  • Johansen, P., Fettelschoss, A., Amstutz, B., Selchow, P., Waeckerle-Men, Y., Keller, P., Deretic, V., Held, L., Kündig, T., Böttger, E. and Sander, P., 2011. Relief from Zmp1-Mediated Arrest of Phagosome Maturation Is Associated with Facilitated Presentation and Enhanced Immunogenicity of Mycobacterial Antigens. Clinical and Vaccine Immunology, 18(6), pp.907–913
  • Sander, P., Clark, S., Petrera, A., Vilaplana, C., Meuli, M., Selchow, P., Zelmer, A., Mohanan, D., Andreu, N., Rayner, E., Dal Molin, M., Bancroft, G., Johansen, P., Cardona, P., Williams, A. and Böttger, E., 2015. Deletion of zmp1 improves Mycobacterium bovis BCG-mediated protection in a guinea pig model of tuberculosis. Vaccine, 33(11), pp.1353–1359
  • Vergne, I., Chua, J., Lee, H., Lucas, M., Belisle, J. and Deretic, V., 2005. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences, 102(11), pp.4033–4038
  • Counoupas, C., Pinto, R., Nagalingam, G., Hill-Cawthorne, G., Feng, C., Britton, W. and Triccas, J., 2016. Mycobacterium tuberculosis components expressed during chronic infection of the lung contribute to long-term control of pulmonary tuberculosis in mice. npj Vaccines, 1(1), p.16012
  • Counoupas, C., Pinto, R., Nagalingam, G., Britton, W. and Triccas, J., 2018. Protective efficacy of recombinant BCG over-expressing protective, stage-specific antigens of Mycobacterium tuberculosis. Vaccine, 36(19), pp.2619–2629
  • Counoupas, C., Pinto, R., Nagalingam, G., Britton, W., Petrovsky, N. and Triccas, J., 2017. Delta inulin-based adjuvants promote the generation of polyfunctional CD4+ T cell responses and protection against Mycobacterium tuberculosis infection. Scientific Reports, 7(1), p.8582
  • Kaufmann, S., Cotton, M., Eisele, B., Gengenbacher, M., Grode, L., Hesseling, A. and Walzl, G., 2014. The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Review of Vaccines, 13(5), pp.619–630
  • Grode, L., Seiler, P., Baumann, S., Hess, J., Brinkmann, V., Eddine, A., Mann, P., Goosmann, C., Bandermann, S., Smith, D., Bancroft, G., Reyrat, J., Soolingen, D., Raupach, B. and Kaufmann, S., 2005. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. Journal of Clinical Investigation, 115(9), pp.2472–2479
  • Vogelzang, A., Perdomo, C., Zedler, U., Kuhlmann, S., Hurwitz, R., Gengenbacher, M. and Kaufmann, S., 2014. Central Memory CD4+ T Cells Are Responsible for the Recombinant Bacillus Calmette-Guérin ΔureC::hly Vaccine's Superior Protection Against Tuberculosis. The Journal of Infectious Diseases, 210(12), pp.1928–1937
  • Desel, C., Dorhoi, A., Bandermann, S., Grode, L., Eisele, B. and Kaufmann, S., 2011. Recombinant BCG ΔureC hly+ Induces Superior Protection Over Parental BCG by Stimulating a Balanced Combination of Type 1 and Type 17 Cytokine Responses. The Journal of Infectious Diseases, 204(10), pp.1573–1584
  • Gengenbacher, M., Kaiser, P., Schuerer, S., Lazar, D. and Kaufmann, S., 2016. Post-exposure vaccination with the vaccine candidate Bacillus Calmette–Guérin ΔureC::hly induces superior protection in a mouse model of subclinical tuberculosis. Microbes and Infection, 18(5), pp.364–368
  • Loxton, A., Knaul, J., Grode, L., Gutschmidt, A., Meller, C., Eisele, B., Johnstone, H., van der Spuy, G., Maertzdorf, J., Kaufmann, S., Hesseling, A., Walzl, G. and Cotton, M., 2016. Safety and Immunogenicity of the Recombinant Mycobacterium bovis BCG Vaccine VPM1002 in HIV-Unexposed Newborn Infants in South Africa. Clinical and Vaccine Immunology, 24(2), pp.e00439–16
  • Bekker, L., Dintwe, O., Fiore-Gartland, A., Middelkoop, K., Hutter, J., Williams, A., Randhawa, A., Ruhwald, M., Kromann, I., Andersen, P., DiazGranados, C., Rutkowski, K., Tait, D., Miner, M., Andersen-Nissen, E., De Rosa, S., Seaton, K., Tomaras, G., McElrath, M., Ginsberg, A. and Kublin, J., 2020. A phase 1b randomized study of the safety and immunological responses to vaccination with H4:IC31, H56:IC31, and BCG revaccination in Mycobacterium tuberculosis-uninfected adolescents in Cape Town, South Africa. EClinicalMedicine, 21, p.100313
  • Nemes, E., Geldenhuys, H., Rozot, V., Rutkowski, K., Ratangee, F., Bilek, N., Mabwe, S., Makhethe, L., Erasmus, M., Toefy, A., Mulenga, H., Hanekom, W., Self, S., Bekker, L., Ryall, R., Gurunathan, S., DiazGranados, C., Andersen, P., Kromann, I., Evans, T., Ellis, R., Landry, B., Hokey, D., Hopkins, R., Ginsberg, A., Scriba, T. and Hatherill, M., 2018. Prevention of M. tuberculosis Infection with H4:IC31 Vaccine or BCG Revaccination. New England Journal of Medicine, 379(2), pp.138–149
  • Barreto, M., Pereira, S., Pilger, D., Cruz, A., Cunha, S., Sant’Anna, C., Ichihara, M., Genser, B. and Rodrigues, L., 2011. Evidence of an effect of BCG revaccination on incidence of tuberculosis in school-aged children in Brazil: Second report of the BCG-REVAC cluster-randomised trial. Vaccine, 29(31), pp.4875–4877
  • Rodrigues, L., Pereira, S., Cunha, S., Genser, B., Ichihara, M., de Brito, S., Hijjar, M., Cruz, A., Sant'Anna, C., Bierrenbach, A., Barreto, M. and Dourado, I., 2005. Effect of BCG revaccination on incidence of tuberculosis in school-aged children in Brazil: the BCG-REVAC cluster-randomised trial. The Lancet, 366(9493), pp.1290–1295
  • Vordermeier, H., Villarreal-Ramos, B., Cockle, P., McAulay, M., Rhodes, S., Thacker, T., Gilbert, S., McShane, H., Hill, A., Xing, Z. and Hewinson, R., 2009. Viral Booster Vaccines Improve Mycobacterium bovis BCG-Induced Protection against Bovine Tuberculosis. Infection and Immunity, 77(8), pp.3364–3373
  • Pérez de Val, B., Villarreal-Ramos, B., Nofrarías, M., López-Soria, S., Romera, N., Singh, M., Abad, F., Xing, Z., Vordermeier, H. and Domingo, M., 2012. Goats Primed with Mycobacterium bovis BCG and Boosted with a Recombinant Adenovirus Expressing Ag85A Show Enhanced Protection against Tuberculosis. Clinical and Vaccine Immunology, 19(9), pp.1339–1347
  • Metcalfe, H., Steinbach, S., Jones, G., Connelley, T., Morrison, W., Vordermeier, M. and Villarreal-Ramos, B., 2016. Protection associated with a TB vaccine is linked to increased frequency of Ag85A-specific CD4 + T cells but no increase in avidity for Ag85A. Vaccine, 34(38), pp.4520–4525
  • Wang, J., Thorson, L., Stokes, R., Santosuosso, M., Huygen, K., Zganiacz, A., Hitt, M. and Xing, Z., 2004. Single Mucosal, but Not Parenteral, Immunization with Recombinant Adenoviral-Based Vaccine Provides Potent Protection from Pulmonary Tuberculosis. The Journal of Immunology, 173(10), pp.6357–6365
  • Li, W., Li, M., Deng, G., Zhao, L., Liu, X. and Wang, Y., 2015. Prime-boost vaccination with Bacillus Calmette Guerin and a recombinant adenovirus co-expressing CFP10, ESAT6, Ag85A and Ag85B of Mycobacterium tuberculosis induces robust antigen-specific immune responses in mice. Molecular Medicine Reports, 12(2), pp.3073–3080
  • Radošević, K., Wieland, C., Rodriguez, A., Weverling, G., Mintardjo, R., Gillissen, G., Vogels, R., Skeiky, Y., Hone, D., Sadoff, J., van der Poll, T., Havenga, M. and Goudsmit, J., 2007. Protective Immune Responses to a Recombinant Adenovirus Type 35 Tuberculosis Vaccine in Two Mouse Strains: CD4 and CD8 T-Cell Epitope Mapping and Role of Gamma Interferon. Infection and Immunity, 75(8), pp.4105–4115
  • Hoft, D., Blazevic, A., Stanley, J., Landry, B., Sizemore, D., Kpamegan, E., Gearhart, J., Scott, A., Kik, S., Pau, M., Goudsmit, J., McClain, J. and Sadoff, J., 2012. A recombinant adenovirus expressing immunodominant TB antigens can significantly enhance BCG-induced human immunity. Vaccine, 30(12), pp.2098–2108
  • Tkachuk, A., Gushchin, V., Potapov, V., Demidenko, A., Lunin, V. and Gintsburg, A., 2017. Multi-subunit BCG booster vaccine GamTBvac: Assessment of immunogenicity and protective efficacy in murine and guinea pig TB models. PLOS ONE, 12(4), p.e0176784
  • Vasina, D., Kleymenov, D., Manuylov, V., Mazunina, E., Koptev, E., Tukhovskaya, E., Murashev, A., Gintsburg, A., Gushchin, V. and Tkachuk, A., 2019. First-In-Human Trials of GamTBvac, a Recombinant Subunit Tuberculosis Vaccine Candidate: Safety and Immunogenicity Assessment. Vaccines, 7(4), p.166
  • Aagaard, C., Hoang, T., Izzo, A., Billeskov, R., Troudt, J., Arnett, K., Keyser, A., Elvang, T., Andersen, P. and Dietrich, J., 2009. Protection and Polyfunctional T Cells Induced by Ag85B-TB10.4/IC31® against Mycobacterium tuberculosis Is Highly Dependent on the Antigen Dose. PLoS ONE, 4(6), p.e5930
  • Geldenhuys, H., Mearns, H., Miles, D., Tameris, M., Hokey, D., Shi, Z., Bennett, S., Andersen, P., Kromann, I., Hoff, S., Hanekom, W., Mahomed, H., Hatherill, M., Scriba, T., van Rooyen, M., Bruce McClain, J., Ryall, R. and de Bruyn, G., 2015. The tuberculosis vaccine H4:IC31 is safe and induces a persistent polyfunctional CD4 T cell response in South African adults: A randomized controlled trial. Vaccine, 33(30), pp.3592–3599
  • Norrby, M., Vesikari, T., Lindqvist, L., Maeurer, M., Ahmed, R., Mahdavifar, S., Bennett, S., McClain, J., Shepherd, B., Li, D., Hokey, D., Kromann, I., Hoff, S., Andersen, P., de Visser, A., Joosten, S., Ottenhoff, T., Andersson, J. and Brighenti, S., 2017. Safety and immunogenicity of the novel H4:IC31 tuberculosis vaccine candidate in BCG-vaccinated adults: Two phase I dose escalation trials. Vaccine, 35(12), pp.1652–1661
  • Aagaard, C., Hoang, T., Dietrich, J., Cardona, P., Izzo, A., Dolganov, G., Schoolnik, G., Cassidy, J., Billeskov, R. and Andersen, P., 2011. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nature Medicine, 17(2), pp.189–194
  • Lin, P., Dietrich, J., Tan, E., Abalos, R., Burgos, J., Bigbee, C., Bigbee, M., Milk, L., Gideon, H., Rodgers, M., Cochran, C., Guinn, K., Sherman, D., Klein, E., Janssen, C., Flynn, J. and Andersen, P., 2012. The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. Journal of Clinical Investigation, 122(1), pp.303–314
  • Billeskov, R., Tan, E., Cang, M., Abalos, R., Burgos, J., Pedersen, B., Christensen, D., Agger, E. and Andersen, P., 2016. Testing the H56 Vaccine Delivered in 4 Different Adjuvants as a BCG-Booster in a Non-Human Primate Model of Tuberculosis. PLOS ONE, 11(8), p.e0161217
  • Luabeya, A., Kagina, B., Tameris, M., Geldenhuys, H., Hoff, S., Shi, Z., Kromann, I., Hatherill, M., Mahomed, H., Hanekom, W., Andersen, P., Scriba, T., Schoeman, E., Krohn, C., Day, C., Africa, H., Makhethe, L., Smit, E., Brown, Y., Suliman, S., Hughes, E., Bang, P., Snowden, M., McClain, B. and Hussey, G., 2015. First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine, 33(33), pp.4130–4140
  • Suliman, S., Luabeya, A., Geldenhuys, H., Tameris, M., Hoff, S., Shi, Z., Tait, D., Kromann, I., Ruhwald, M., Rutkowski, K., Shepherd, B., Hokey, D., Ginsberg, A., Hanekom, W., Andersen, P., Scriba, T., Hatherill, M., Oelofse, R., Stone, L., Swarts, A., Onrust, R., Jacobs, G., Coetzee, L., Khomba, G., Diamond, B., Companie, A., Veldsman, A., Mulenga, H., Cloete, Y., Steyn, M., Africa, H., Nkantsu, L., Smit, E., Botes, J., Bilek, N. and Mabwe, S., 2019. Dose Optimization of H56:IC31 Vaccine for Tuberculosis-Endemic Populations. A Double-Blind, Placebo-controlled, Dose-Selection Trial. American Journal of Respiratory and Critical Care Medicine, 199(2), pp.220–231
  • Bertholet, S., Ireton, G., Ordway, D., Windish, H., Pine, S., Kahn, M., Phan, T., Orme, I., Vedvick, T., Baldwin, S., Coler, R. and Reed, S., 2010. A Defined Tuberculosis Vaccine Candidate Boosts BCG and Protects Against Multidrug-Resistant Mycobacterium tuberculosis. Science Translational Medicine, 2(53), pp.53ra74
  • Baldwin, S., Bertholet, S., Reese, V., Ching, L., Reed, S. and Coler, R., 2012. The Importance of Adjuvant Formulation in the Development of a Tuberculosis Vaccine. The Journal of Immunology, 188(5), pp.2189–2197
  • Kwon, K., Lee, A., Larsen, S., Baldwin, S., Coler, R., Reed, S., Cho, S., Ha, S. and Shin, S., 2019. Long-term protective efficacy with a BCG-prime ID93/GLA-SE boost regimen against the hyper-virulent Mycobacterium tuberculosis strain K in a mouse model. Scientific Reports, 9(1), p.15560
  • Baldwin, S., Reese, V., Huang, P., Beebe, E., Podell, B., Reed, S. and Coler, R., 2015. Protection and Long-Lived Immunity Induced by the ID93/GLA-SE Vaccine Candidate against a Clinical Mycobacterium tuberculosis Isolate. Clinical and Vaccine Immunology, 23(2), pp.137–147
  • Coler, R., Day, T., Ellis, R., Piazza, F., Beckmann, A., Vergara, J., Rolf, T., Lu, L., Alter, G., Hokey, D., Jayashankar, L., Walker, R., Snowden, M., Evans, T., Ginsberg, A. and Reed, S., 2018. The TLR-4 agonist adjuvant, GLA-SE, improves magnitude and quality of immune responses elicited by the ID93 tuberculosis vaccine: first-in-human trial. npj Vaccines, 3(1), p.34
  • Baldwin, S., Reese, V., Granger, B., Orr, M., Ireton, G., Coler, R. and Reed, S., 2014. The ID93 Tuberculosis Vaccine Candidate Does Not Induce Sensitivity to Purified Protein Derivative. Clinical and Vaccine Immunology, 21(9), pp.1309–1313
  • Lahey, T., Laddy, D., Hill, K., Schaeffer, J., Hogg, A., Keeble, J., Dagg, B., Ho, M., Arbeit, R. and von Reyn, C., 2016. Immunogenicity and Protective Efficacy of the DAR-901 Booster Vaccine in a Murine Model of Tuberculosis. PLOS ONE, 11(12), p.e0168521
  • von Reyn, C., Lahey, T., Arbeit, R., Landry, B., Kailani, L., Adams, L., Haynes, B., Mackenzie, T., Wieland-Alter, W., Connor, R., Tvaroha, S., Hokey, D., Ginsberg, A. and Waddell, R., 2017. Safety and immunogenicity of an inactivated whole cell tuberculosis vaccine booster in adults primed with BCG: A randomized, controlled trial of DAR-901. PLOS ONE, 12(5), p.e0175215
  • Masonou, T., Hokey, D., Lahey, T., Halliday, A., Berrocal-Almanza, L., Wieland-Alter, W., Arbeit, R., Lalvani, A. and von Reyn, C., 2019. CD4+ T cell cytokine responses to the DAR-901 booster vaccine in BCG-primed adults: A randomized, placebo-controlled trial. PLOS ONE, 14(5), p.e0217091
  • Martin, C., Williams, A., Hernandez-Pando, R., Cardona, P., Gormley, E., Bordat, Y., Soto, C., Clark, S., Hatch, G., Aguilar, D., Ausina, V. and Gicquel, B., 2006. The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine, 24(17), pp.3408–3419
  • Aguilo, N., Uranga, S., Marinova, D., Monzon, M., Badiola, J. and Martin, C., 2016. MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice. Tuberculosis, 96, pp.71–74
  • Tameris, M., Mearns, H., Penn-Nicholson, A., Gregg, Y., Bilek, N., Mabwe, S., Geldenhuys, H., Shenje, J., Luabeya, A., Murillo, I., Doce, J., Aguilo, N., Marinova, D., Puentes, E., Rodríguez, E., Gonzalo-Asensio, J., Fritzell, B., Thole, J., Martin, C., Scriba, T., Hatherill, M., Africa, H., Arendsen, D., Botes, N., Cloete, Y., De Kock, M., Erasmus, M., Jack, L., Kafaar, F., Kalepu, X., Khomba, N., Kruger, S., Leopeng, T., Makhethe, L., Mouton, A., Mulenga, H., Musvosvi, M., Noble, J., Opperman, F., Reid, T., Rossouw, S., Schreuder, C., Smit, E., Steyn, M., Tyambethu, P., Van Rooyen, E. and Veldsman, A., 2019. Live-attenuated Mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults and neonates: a randomised controlled, double-blind dose-escalation trial. The Lancet Respiratory Medicine, 7(9), pp.757–770
  • Tarancón, R., Domínguez-Andrés, J., Uranga, S., Ferreira, A., Groh, L., Domenech, M., González-Camacho, F., Riksen, N., Aguilo, N., Yuste, J., Martín, C. and Netea, M., 2020. New live attenuated tuberculosis vaccine MTBVAC induces trained immunity and confers protection against experimental lethal pneumonia. PLOS Pathogens, 16(4), p.e1008404
  • Roy, A., Tomé, I., Romero, B., Lorente-Leal, V., Infantes-Lorenzo, J., Domínguez, M., Martín, C., Aguiló, N., Puentes, E., Rodríguez, E., de Juan, L., Risalde, M., Gortázar, C., Domínguez, L. and Bezos, J., 2019. Evaluation of the immunogenicity and efficacy of BCG and MTBVAC vaccines using a natural transmission model of tuberculosis. Veterinary Research, 50(1), p.82
  • Verreck, F., Vervenne, R., Kondova, I., van Kralingen, K., Remarque, E., Braskamp, G., van der Werff, N., Kersbergen, A., Ottenhoff, T., Heidt, P., Gilbert, S., Gicquel, B., Hill, A., Martin, C., McShane, H. and Thomas, A., 2009. MVA.85A Boosting of BCG and an Attenuated, phoP Deficient M. tuberculosis Vaccine Both Show Protective Efficacy Against Tuberculosis in Rhesus Macaques. PLoS ONE, 4(4), p.e5264
  • Spertini, F., Audran, R., Chakour, R., Karoui, O., Steiner-Monard, V., Thierry, A., Mayor, C., Rettby, N., Jaton, K., Vallotton, L., Lazor-Blanchet, C., Doce, J., Puentes, E., Marinova, D., Aguilo, N. and Martin, C., 2015. Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial. The Lancet Respiratory Medicine, 3(12), pp.953–962
  • Clark, S., Lanni, F., Marinova, D., Rayner, E., Martin, C. and Williams, A., 2017. Revaccination of Guinea Pigs With the Live Attenuated Mycobacterium tuberculosis Vaccine MTBVAC Improves BCG's Protection Against Tuberculosis. The Journal of Infectious Diseases, 216(5), pp.525–533
  • Aguilo, N., Uranga, S., Mata, E., Tarancon, R., Gómez, A., Marinova, D., Otal, I., Monzón, M., Badiola, J., Montenegro, D., Puentes, E., Rodríguez, E., Vervenne, R., Sombroek, C., Verreck, F. and Martín, C., 2020. Respiratory Immunization With a Whole Cell Inactivated Vaccine Induces Functional Mucosal Immunoglobulins Against Tuberculosis in Mice and Non-human Primates. Frontiers in Microbiology, 11, p.1339
  • Saini, V., Raghuvanshi, S., Talwar, G., Ahmed, N., Khurana, J., Hasnain, S., Tyagi, A. and Tyagi, A., 2009. Polyphasic Taxonomic Analysis Establishes Mycobacterium indicus pranii as a Distinct Species. PLoS ONE, 4(7), p.e6263
  • Yadava, A., Suresh, N., Zaheer, S., Talwar, G. and Mukherjee, R., 1991. T-Cell Responses to Fractionated Antigens of Mycobacterium w, a Candidate Anti-Leprosy Vaccine, in Leprosy Patients. Scandinavian Journal of Immunology, 34(1), pp.23–31
  • Singh, Y., Kohli, S., Sowpati, D., Rahman, S., Tyagi, A. and Hasnain, S., 2014. Gene cooption in Mycobacteria and search for virulence attributes: Comparative proteomic analyses of Mycobacterium tuberculosis, Mycobacterium indicus pranii and other mycobacteria. International Journal of Medical Microbiology, 304(5–6), pp.742–748
  • Gupta, A., Geetha, N., Mani, J., Upadhyay, P., Katoch, V., Natrajan, M., Gupta, U. and Bhaskar, S., 2008. Immunogenicity and Protective Efficacy of “Mycobacterium w” against Mycobacterium tuberculosis in Mice Immunized with Live versus Heat-Killed M. w by the Aerosol or Parenteral Route. Infection and Immunity, 77(1), pp.223–231
  • Singh, B., Saqib, M., Gupta, A., Kumar, P. and Bhaskar, S., 2017. Autophagy induction by Mycobacterium indicus pranii promotes Mycobacterium tuberculosis clearance from RAW 264.7 macrophages. PLOS ONE, 12(12), p.e0189606
  • Gupta, A., Saqib, M., Singh, B., Pal, L., Nishikanta, A. and Bhaskar, S., 2019. Mycobacterium indicus pranii Induced Memory T-Cells in Lung Airways Are Sentinels for Improved Protection Against M.tb Infection. Frontiers in Immunology, 10, p.2359
  • Nagpal, P., Kesarwani, A., Sahu, P. and Upadhyay, P., 2019. Aerosol immunization by alginate coated mycobacterium (BCG/MIP) particles provide enhanced immune response and protective efficacy than aerosol of plain mycobacterium against M.tb. H37Rv infection in mice. BMC Infectious Diseases, 19(1), p.568
  • Gupta, A., Ahmad, F., Ahmad, F., Gupta, U., Natarajan, M., Katoch, V. and Bhaskar, S., 2012. Efficacy of Mycobacterium indicus pranii Immunotherapy as an Adjunct to Chemotherapy for Tuberculosis and Underlying Immune Responses in the Lung. PLoS ONE, 7(7), p.e39215
  • Stanford, J., Stanford, C. and Grange, J., 2004. Immunotherapy with mycobacterium vaccae in the treatment of tuberculosis. Frontiers in Bioscience, 9(1), pp.1701–1719
  • Hernandez-Pando, R., Pavon, L., Orozco, E., Rangel, J. and Rook, G., 2000. Interactions between hormone-mediated and vaccine-mediated immunotherapy for pulmonary tuberculosis in BALB/c mice. Immunology, 100(3), pp.391–398
  • Bourinbaiar, A., Batbold, U., Efremenko, Y., Sanjagdorj, M., Butov, D., Damdinpurev, N., Grinishina, E., Mijiddorj, O., Kovolev, M., Baasanjav, K., Butova, T., Prihoda, N., Batbold, O., Yurchenko, L., Tseveendorj, A., Arzhanova, O., Chunt, E., Stepanenko, H., Sokolenko, N., Makeeva, N., Tarakanovskaya, M., Borisova, V., Reid, A., Kalashnikov, V., Nyasulu, P., Prabowo, S., Jirathitikal, V., Bain, A., Stanford, C. and Stanford, J., 2020. Phase III, placebo-controlled, randomized, double-blind trial of tableted, therapeutic TB vaccine (V7) containing heat-killed M. vaccae administered daily for one month. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 18, p.100141
  • Dicks, M., Spencer, A., Edwards, N., Wadell, G., Bojang, K., Gilbert, S., Hill, A. and Cottingham, M., 2012. A Novel Chimpanzee Adenovirus Vector with Low Human Seroprevalence: Improved Systems for Vector Derivation and Comparative Immunogenicity. PLoS ONE, 7(7), p.e40385
  • Stylianou, E., Griffiths, K., Poyntz, H., Harrington-Kandt, R., Dicks, M., Stockdale, L., Betts, G. and McShane, H., 2015. Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A. Vaccine, 33(48), pp.6800–6808
  • Montoya, J., Solon, J., Cunanan, S., Acosta, L., Bollaerts, A., Moris, P., Janssens, M., Jongert, E., Demoitié, M., Mettens, P., Gatchalian, S., Vinals, C., Cohen, J. and Ofori-Anyinam, O., 2013. A Randomized, Controlled Dose-Finding Phase II Study of the M72/AS01 Candidate Tuberculosis Vaccine in Healthy PPD-Positive Adults. Journal of Clinical Immunology, 33(8), pp.1360–1375
  • Kumarasamy, N., Poongulali, S., Beulah, F., Akite, E., Ayuk, L., Bollaerts, A., Demoitié, M., Jongert, E., Ofori-Anyinam, O. and Van Der Meeren, O., 2018. Long-term safety and immunogenicity of the M72/AS01E candidate tuberculosis vaccine in HIV-positive and -negative Indian adults. Medicine, 97(45), p.e13120
  • Cardona, P., 2006. RUTI: A new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis, 86(3–4), pp.273–289
  • Festjens, N., Bogaert, P., Batni, A., Houthuys, E., Plets, E., Vanderschaeghe, D., Laukens, B., Asselbergh, B., Parthoens, E., De Rycke, R., Willart, M., Jacques, P., Elewaut, D., Brouckaert, P., Lambrecht, B., Huygen, K. and Callewaert, N., 2011. Disruption of the SapM locus in Mycobacterium bovis BCG improves its protective efficacy as a vaccine against M. tuberculosis. EMBO Molecular Medicine, 3(4), pp.222–234
  • Grode, L., Ganoza, C., Brohm, C., Weiner, J., Eisele, B. and Kaufmann, S., 2013. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine, 31(9), pp.1340–1348
  • Nieuwenhuizen, N., Kulkarni, P., Shaligram, U., Cotton, M., Rentsch, C., Eisele, B., Grode, L. and Kaufmann, S., 2017. The Recombinant Bacille Calmette–Guérin Vaccine VPM1002: Ready for Clinical Efficacy Testing. Frontiers in Immunology, 8, p.1147
  • Santosuosso, M., McCormick, S., Zhang, X., Zganiacz, A. and Xing, Z., 2006. Intranasal Boosting with an Adenovirus-Vectored Vaccine Markedly Enhances Protection by Parenteral Mycobacterium bovis BCG Immunization against Pulmonary Tuberculosis. Infection and Immunity, 74(8), pp.4634–4643
  • Abel, B., Tameris, M., Mansoor, N., Gelderbloem, S., Hughes, J., Abrahams, D., Makhethe, L., Erasmus, M., Kock, M., van der Merwe, L., Hawkridge, A., Veldsman, A., Hatherill, M., Schirru, G., Pau, M., Hendriks, J., Weverling, G., Goudsmit, J., Sizemore, D., McClain, J., Goetz, M., Gearhart, J., Mahomed, H., Hussey, G., Sadoff, J. and Hanekom, W., 2010. The Novel Tuberculosis Vaccine, AERAS-402, Induces Robust and Polyfunctional CD4+and CD8+T Cells in Adults. American Journal of Respiratory and Critical Care Medicine, 181(12), pp.1407–1417
  • Skeiky, Y., Dietrich, J., Lasco, T., Stagliano, K., Dheenadhayalan, V., Goetz, M., Cantarero, L., Basaraba, R., Bang, P., Kromann, I., McMclain, J., Sadoff, J. and Andersen, P., 2010. Non-clinical efficacy and safety of HyVac4:IC31 vaccine administered in a BCG prime–boost regimen. Vaccine, 28(4), pp.1084–1093
  • Arbues, A., Aguilo, J., Gonzalo-Asensio, J., Marinova, D., Uranga, S., Puentes, E., Fernandez, C., Parra, A., Cardona, P., Vilaplana, C., Ausina, V., Williams, A., Clark, S., Malaga, W., Guilhot, C., Gicquel, B. and Martin, C., 2013. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine, 31(42), pp.4867–4873
  • Aguilo, N., Gonzalo-Asensio, J., Alvarez-Arguedas, S., Marinova, D., Gomez, A., Uranga, S., Spallek, R., Singh, M., Audran, R., Spertini, F. and Martin, C., 2017. Reactogenicity to major tuberculosis antigens absent in BCG is linked to improved protection against Mycobacterium tuberculosis. Nature Communications, 8(1), p.16085

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.