2,795
Views
8
CrossRef citations to date
0
Altmetric
Review

Yellow fever virus vaccination: an emblematic model to elucidate robust human immune responses

ORCID Icon, & ORCID Icon
Pages 2471-2481 | Received 12 Nov 2020, Accepted 10 Feb 2021, Published online: 28 Apr 2021

References

  • Pulendran B. Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nat Rev Immunol. 2009;9(10):741–47. doi:10.1038/nri2629.
  • Pulendran B, Oh JZ, Nakaya HI, Ravindran R, Kazmin DA. Immunity to viruses: learning from successful human vaccines. Immunol Rev. 2013;255(1):243–55. doi:10.1111/imr.12099.
  • Dixon B. Microbe hunters—then and now. BMJ. 1996;313(7068):1340. doi:10.1136/bmj.313.7068.1340.
  • Cardoso Jda C, de Almeida MAB, Dos Santos E, da Fonseca DF, Sallum MAM, Noll CA, Monteiro HADO, Cruz ACR, Carvalho VL, Pinto EV, et al. Yellow fever virus in haemagogus leucocelaenus and aedes serratus mosquitoes, Southern Brazil, 2008. Emerg Infect Dis. 2010;16(12):1918–24. doi:10.3201/eid1612.100608.
  • Monath TP. Yellow fever vaccine. Expert Rev Vaccines. 2005;4(4):553–74. doi:10.1586/14760584.4.4.553.
  • CDC. [accessed 2020 Oct 24]. https://www.cdc.gov/yellowfever/symptoms/index.html.
  • WHO. [accessed 2020 Oct 24]. https://www.who.int/health-topics/yellow-fever#tab=tab_1.
  • Theiler M, Smith HH. The use of yellow fever virus modified by in vitro cultivation For human immunization. J Exp Med. 1937;65(6):787–800. doi:10.1084/jem.65.6.787.
  • Hahn CS, Dalrymple JM, Strauss JH, Rice CM. Comparison of the virulent Asibi strain of yellow fever virus with the 17D vaccine strain derived from it. Proc Natl Acad Sci USA. 1987;84(7):2019–23. doi:10.1073/pnas.84.7.2019.
  • Barrett ADT, Teuwen DE. Yellow fever vaccine—how does it work and why do rare cases of serious adverse events take place? Curr Opin Immunol. 2009;21(3):308–13. doi:10.1016/j.coi.2009.05.018.
  • Guirakhoo F, Zhang Z, Myers G, Johnson BW, Pugachev K, Nichols R, Brown N, Levenbook I, Draper K, Cyrek S, et al. A single amino acid substitution in the envelope protein of chimeric yellow fever-dengue 1 vaccine virus reduces neurovirulence for suckling mice and viremia/viscerotropism for monkeys. J Virol. 2004;78(18):9998–10008. doi:10.1128/JVI.78.18.9998-10008.2004.
  • Lee E, Lobigs M. E protein domain III determinants of yellow fever virus 17D Vaccine strain enhance binding to glycosaminoglycans, impede virus spread, and attenuate virulence. J Virol. 2008;82(12):6024. doi:10.1128/JVI.02509-07.
  • Ferreira CC, Campi-Azevedo AC, Peruhype-Magalhāes V, Costa-Pereira C, Albuquerque CPD, Muniz LF, Yokoy de Souza T, Oliveira ACV, Martins-Filho OA, da Mota LMH, et al. The 17D-204 and 17DD yellow fever vaccines: an overview of major similarities and subtle differences. Expert Rev Vaccines. 2018;17(1):79–90. doi:10.1080/14760584.2018.1406800.
  • Hanlon P, Hanlon L, Marsh V, Byass P, Sillah H, Hayes R, Whittle HC, Greenwood BM. Serological comparisons of approaches to polio vaccination in the Gambia. Lancet. 1987;329(8536):800–01. doi:10.1016/S0140-6736(87)92818-2.
  • Valsamakis A, Auwaerter PG, Rima BK, Kaneshima H, Griffin DE. Altered virulence of vaccine strains of measles virus after prolonged replication in human tissue. J Virol. 1999;73(10):8791–97. doi:10.1128/JVI.73.10.8791-8797.1999.
  • Miller JD, van der Most RG, Akondy RS, Glidewell JT, Albott S, Masopust D, Murali-Krishna K, Mahar PL, Edupuganti S, Lalor S, et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity. 2008;28(5):710–22. doi:10.1016/j.immuni.2008.02.020.
  • Akondy RS, Johnson PLF, Nakaya HI, Edupuganti S, Mulligan MJ, Lawson B, Miller JD, Pulendran B, Antia R, Ahmed R, et al. Initial viral load determines the magnitude of the human CD8 T cell response to yellow fever vaccination. Proc Natl Acad Sci USA. 2015;112(10):3050–55. doi:10.1073/pnas.1500475112.
  • Muyanja E, Ssemaganda A, Ngauv P, Cubas R, Perrin H, Srinivasan D, Canderan G, Lawson B, Kopycinski J, Graham AS, et al. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine. J Clin Invest. 2014;124(7):3147–58. doi:10.1172/JCI75429.
  • Akondy RS, Fitch M, Edupuganti S, Yang S, Kissick HT, Li KW, Youngblood BA, Abdelsamed HA, McGuire DJ, Cohen KW, et al. Origin and differentiation of human memory CD8 T cells after vaccination. Nature. 2017;552(7685):362–67. doi:10.1038/nature24633.
  • Bovay A, Nassiri S, Maby–El Hajjami H, Marcos Mondéjar P, Akondy RS, Ahmed R, Lawson B, Speiser DE, Fuertes Marraco SA. Minimal immune response to booster vaccination against Yellow fever associated with pre-existing antibodies. Vaccine. 2020;38(9):2172–82. doi:10.1016/j.vaccine.2020.01.045.
  • Staples JE, Gershman M, Fischer M. Yellow fever vaccine: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recommendations Rep. 2010;59(RR–7):1–27.
  • Martin M, Tsai TF, Cropp B, Chang GJJ, Holmes DA, Tseng J, Shieh W-J, Zaki SR, Al-Sanouri I, Cutrona AF, et al. Fever and multisystem organ failure associated with 17D-204 yellow fever vaccination: a report of four cases. Lancet. 2001;358(9276):98–104. doi:10.1016/S0140-6736(01)05327-2.
  • McMahon AW, Eidex RB, Marfin AA, Russell M, Sejvar JJ, Markoff L, Hayes EB, Chen RT, Ball R, Braun MM, et al. Neurologic disease associated with 17D-204 yellow fever vaccination: a report of 15 cases. Vaccine. 2007;25(10):1727–34. doi:10.1016/j.vaccine.2006.11.027.
  • Lindsey NP, Rabe IB, Miller ER, Fischer M, Staples JE. Adverse event reports following yellow fever vaccination, 2007-13. J Travel Med. 2016;23(5):taw045. doi:10.1093/jtm/taw045.
  • de Menezes Martins R, Fernandes Leal MDL, Homma A. Serious adverse events associated with yellow fever vaccine. Hum Vaccin Immunother. 2015;11(9):2183–87. doi:10.1080/21645515.2015.1022700.
  • Thomas RE, L. Lorenzetti D, Spragins W, Jackson D, Williamson T. Reporting rates of yellow fever vaccine 17D or 17DD-associated serious adverse events in pharmacovigilance data bases: systematic review. Curr Drug Saf. 2011;6(3):145–54. doi:10.2174/157488611797579258.
  • Galler R, Pugachev KV, Santos CLS, Ocran SW, Jabor AV, Rodrigues SG, Marchevsky RS, Freire MS, Almeida LFC, Cruz ACR, et al. Phenotypic and molecular analyses of yellow fever 17DD vaccine viruses associated with serious adverse events in Brazil. Virology. 2001;290(2):309–19. doi:10.1006/viro.2001.1168.
  • Belsher JL, Gay P, Brinton M, DellaValla J, Ridenour R, Lanciotti R, Perelygin A, Zaki S, Paddock C, Querec T, et al. Fatal multiorgan failure due to yellow fever vaccine-associated viscerotropic disease. Vaccine. 2007;25(50):8480–85. doi:10.1016/j.vaccine.2007.08.061.
  • Pulendran B, Miller J, Querec T, Akondy R, Moseley N, Laur O, Glidewell J, Monson N, Zhu T, Zhu H, et al. Case of yellow fever vaccine–associated viscerotropic disease with prolonged viremia, robust adaptive immune responses, and polymorphisms in CCR5 and RANTES genes. J Infect Dis. 2008;198(4):500–07. doi:10.1086/590187.
  • Bae H-G, Domingo C, Tenorio A, Ory F, Muñoz J, Weber P, Teuwen D, Niedrig M. Immune response during adverse events after 17D-derived yellow fever vaccination in Europe. J Infect Dis. 2008;197(11):1577–84. doi:10.1086/587844.
  • Julander JG. Animal models of yellow fever and their application in clinical research. Curr Opin Virol. 2016;18:64–69. doi:10.1016/j.coviro.2016.03.010.
  • Watson AM, Klimstra WB. T cell-mediated immunity towards yellow fever virus and useful animal models. Viruses. 2017;9(4):77. doi:10.3390/v9040077.
  • Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu Y-J, Pulendran B, Palucka K. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18(1):767–811. doi:10.1146/annurev.immunol.18.1.767.
  • Querec T, Bennouna S, Alkan S, Laouar Y, Gorden K, Flavell R, Akira S, Ahmed R, Pulendran B. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med. 2006;203(2):413–24. doi:10.1084/jem.20051720.
  • Barba-Spaeth G, Longman RS, Albert ML, Rice CM. Live attenuated yellow fever 17D infects human DCs and allows for presentation of endogenous and recombinant T cell epitopes. J Exp Med. 2005;202(9):1179–84. doi:10.1084/jem.20051352.
  • Cong Y, McArthur MA, Cohen M, Jahrling PB, Janosko KB, Josleyn N, Kang K, Zhang T, Holbrook MR, et al. Characterization of yellow fever virus infection of human and non-human primate antigen presenting cells and their interaction with CD4+ T Cells. PLoS Negl Trop Dis. 2016;10(5):e0004709–e0004709. doi:10.1371/journal.pntd.0004709.
  • Sinigaglia L, Gracias S, Décembre E, Fritz M, Bruni D, Smith N, Herbeuval J-P, Martin A, Dreux M, Tangy F, et al. Immature particles and capsid-free viral RNA produced by Yellow fever virus-infected cells stimulate plasmacytoid dendritic cells to secrete interferons. Sci Rep. 2018;8(1):10889. doi:10.1038/s41598-018-29235-7.
  • Hou J, Wang S, Jia M, Li D, Liu Y, Li Z, Zhu H, Xu H, Sun M, Lu L, et al. A systems vaccinology approach reveals temporal transcriptomic changes of immune responses to the yellow fever 17D vaccine. J Immunol (Baltimore, Md : 1950). 2017;199(4):1476–89. doi:10.4049/jimmunol.1700083.
  • Kohler S, Bethke N, Böthe M, Sommerick S, Frentsch M, Romagnani C, Niedrig M, Thiel A. The early cellular signatures of protective immunity induced by live viral vaccination. Eur J Immunol. 2012;42(9):2363–73. doi:10.1002/eji.201142306.
  • Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6):392–404. doi:10.1038/nri3671.
  • Martins MÂ, Silva ML, Elói-Santos SM, Ribeiro JGL, Peruhype-Magalhães V, Marciano APV, Homma A, Kroon EG, Teixeira-Carvalho A, Martins-Filho OA, et al. Innate immunity phenotypic features point toward simultaneous raise of activation and modulation events following 17DD live attenuated yellow fever first-time vaccination. Vaccine. 2008;26(9):1173–84. doi:10.1016/j.vaccine.2007.12.035.
  • Silva ML, Martins MA, Espírito-Santo LR, Campi-Azevedo AC, Silveira-Lemos D, Ribeiro JGL, Homma A, Kroon EG, Teixeira-Carvalho A, Elói-Santos SM, et al. Characterization of main cytokine sources from the innate and adaptive immune responses following primary 17DD yellow fever vaccination in adults. Vaccine. 2011;29(3):583–92. doi:10.1016/j.vaccine.2010.08.046.
  • Schlesinger JJ, Brandriss MW. Antibody-mediated infection of macrophages and macrophage-like cell lines with 17D-yellow fever virus. J Med Virol. 1981;8(2):103–17. doi:10.1002/jmv.1890080204.
  • Wheelock EF, Edelman R. Specific role of each human leukocyte type in viral infections. J Immunol. 1969;103:429.
  • Guia S, Narni-Mancinelli E. Helper-like innate lymphoid cells in humans and mice. Trends Immunol. 2020;41(5):436–52. doi:10.1016/j.it.2020.03.002.
  • da Costa Neves PC, de Souza Matos DC, Marcovistz R, Galler R. TLR expression and NK cell activation after human yellow fever vaccination. Vaccine. 2009;27(41):5543–49. doi:10.1016/j.vaccine.2009.07.028.
  • Marquardt N, Ivarsson MA, Blom K, Gonzalez VD, Braun M, Falconer K, Gustafsson R, Fogdell-Hahn A, Sandberg JK, Michaëlsson J, et al. The human NK cell response to yellow fever virus 17D is primarily governed by NK cell differentiation independently of NK cell education. J Immunol. 2015;195(7):3262. doi:10.4049/jimmunol.1401811.
  • Geering B, Stoeckle C, Conus S, Simon H-U. Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends Immunol. 2013;34(8):398–409. doi:10.1016/j.it.2013.04.002.
  • Zhang N, Bevan MJ. CD8(+) T cells: foot soldiers of the immune system. Immunity. 2011;35(2):161–68. doi:10.1016/j.immuni.2011.07.010.
  • Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, Pirani A, Gernert K, Deng J, Marzolf B, et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol. 2009;10(1):116–25. doi:10.1038/ni.1688.
  • Akondy RS, Monson ND, Miller JD, Edupuganti S, Teuwen D, Wu H, Quyyumi F, Garg S, Altman JD, Del Rio C, et al. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8 + T cell response. J Immunol (Baltimore, Md : 1950). 2009;183(12):7919–30. doi:10.4049/jimmunol.0803903.
  • Martins MA, Silva ML, Marciano APV, Peruhype-Magalhães V, Eloi-Santos SM, Ribeiro JGL, Correa-Oliveira R, Homma A, Kroon EG, Teixeira-Carvalho A, et al. Activation/modulation of adaptive immunity emerges simultaneously after 17DD yellow fever first-time vaccination: is this the key to prevent severe adverse reactions following immunization? Clin Exp Immunol. 2007;148(1):90–100. doi:10.1111/j.1365-2249.2006.03317.x.
  • Blom K, Braun M, Ivarsson MA, Gonzalez VD, Falconer K, Moll M, Ljunggren H-G, Michaëlsson J, Sandberg JK. Temporal dynamics of the primary human T cell response to yellow fever virus 17D as it matures from an effector- to a memory-type response. J Immunol. 2013;190(5):2150. doi:10.4049/jimmunol.1202234.
  • Kongsgaard M, Bassi MR, Rasmussen M, Skjødt K, Thybo S, Gabriel M, Hansen MB, Christensen JP, Thomsen AR, Buus S, et al. Adaptive immune responses to booster vaccination against yellow fever virus are much reduced compared to those after primary vaccination. Sci Rep. 2017;7(1):662–662. doi:10.1038/s41598-017-00798-1.
  • Santos APD, Bertho ÁL, Dias DC, Santos JR, Marcovistz R. Lymphocyte subset analyses in healthy adults vaccinated with yellow fever 17DD virus. Mem Inst Oswaldo Cruz. 2005;100:331–37. doi:10.1590/S0074-02762005000300021.
  • Weninger W, Manjunath N, Von Andrian UH. Migration and differentiation of CD8+ T cells. Immunol Rev. 2002;186(1):221–33. doi:10.1034/j.1600-065X.2002.18618.x.
  • Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol. 2002;2(4):251–62. doi:10.1038/nri778.
  • James EA, LaFond RE, Gates TJ, Mai DT, Malhotra U, Kwok WW. Yellow fever vaccination elicits Broad Functional CD4+T cell responses that recognize structural and nonstructural proteins. J Virol. 2013;87(23):12794–804. doi:10.1128/JVI.01160-13.
  • Fuertes Marraco SA, Soneson C, Cagnon L, Gannon PO, Allard M, Maillard SA, Montandon N, Rufer N, Waldvogel S, Delorenzi M, et al. Long-lasting stem cell–like memory CD8 + T cells with a naïve-like profile upon yellow fever vaccination. Sci Transl Med. 2015;7(282):282ra48. doi:10.1126/scitranslmed.aaa3700.
  • Bovay A, Zoete V, Dolton G, Bulek AM, Cole DK, Rizkallah PJ, Fuller A, Beck K, Michielin O, Speiser DE, et al. T cell receptor alpha variable 12-2 bias in the immunodominant response to Yellow fever virus. Eur J Immunol. 2018;48(2):258–72. doi:10.1002/eji.201747082.
  • Wieten RW, Jonker EFF, van Leeuwen EMM, Remmerswaal EBM, Ten Berge IJM, de Visser AW, van Genderen PJJ, Goorhuis A, Visser LG, Grobusch MP, et al. A single 17D yellow fever vaccination provides lifelong immunity; characterization of yellow-fever-specific neutralizing antibody and T-cell responses after vaccination. PloS One. 2016;11(3):e0149871–e0149871. doi:10.1371/journal.pone.0149871.
  • Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. Blood. 2008;112(5):1557–69. doi:10.1182/blood-2008-05-078154.
  • Gaucher D, Therrien R, Kettaf N, Angermann BR, Boucher G, Filali-Mouhim A, Moser JM, Mehta RS, Drake DR 3rd, Castro E, et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J Exp Med. 2008;205(13):3119–31. doi:10.1084/jem.20082292.
  • Huber JE, Ahlfeld J, Scheck MK, Zaucha M, Witter K, Lehmann L, Karimzadeh H, Pritsch M, Hoelscher M, Sonnenburg F, et al. Dynamic changes in circulating T follicular helper cell composition predict neutralising antibody responses after yellow fever vaccination. Clin Trans Immunol. 2020;9(5):e1129. doi:10.1002/cti2.1129.
  • de Wolf ACMT, van Aalst S, Ludwig IS, Bodinham CL, Lewis DJ, van der Zee R, van Eden W, Broere F. Regulatory T cell frequencies and phenotypes following anti-viral vaccination. PloS One. 2017;12(6):e0179942–e0179942. doi:10.1371/journal.pone.0179942.
  • de Melo AB, Nascimento EJ, Braga-Neto U, Dhalia R, Silva AM, Oelke M, Schneck P, Sidney J, Sette A, Montenegro SM, et al. T-cell memory responses elicited by yellow fever vaccine are targeted to overlapping epitopes containing multiple HLA-I and -II binding motifs. PLoS Negl Trop Dis. 2013;7(1):e1938–e1938. doi:10.1371/journal.pntd.0001938.
  • Koblischke M, Mackroth MS, Schwaiger J, Fae I, Fischer G, Stiasny K, Heinz FX, Aberle JH. Protein structure shapes immunodominance in the CD4 T cell response to yellow fever vaccination. Sci Rep. 2017;7(1):8907–8907. doi:10.1038/s41598-017-09331-w.
  • Stryhn A, Kongsgaard M, Rasmussen M, Harndahl MN, Osterbye T, Bassi MR, Thybo S, Gabriel M, Hansen MB, Nielsen M, et al. A systematic, unbiased mapping of CD8(+) and CD4(+) T cell epitopes in yellow fever vaccinees. Front Immunol. 2020;11:1836–1836.
  • LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008;112(5):1570–80. doi:10.1182/blood-2008-02-078071.
  • Wec AZ, Haslwanter D, Abdiche YN, Shehata L, Pedreño-Lopez N, Moyer CL, Bornholdt ZA, Lilov A, Nett JH, Jangra RK, et al. Longitudinal dynamics of the human B cell response to the yellow fever 17D vaccine. Proc Nat Acad Sci. 2020;117(12):6675. doi:10.1073/pnas.1921388117.
  • Julander JG, Trent DW, Monath TP. Immune correlates of protection against yellow fever determined by passive immunization and challenge in the hamster model. Vaccine. 2011;29(35):6008–16. doi:10.1016/j.vaccine.2011.06.034.
  • Lang J, Zuckerman J, Clarke P, Barrett P, Kirkpatrick C, Blondeau C. Comparison of the immunogenicity and safety of two 17D yellow fever vaccines. Am J Trop Med Hyg. 1999;60(6):1045–50. doi:10.4269/ajtmh.1999.60.1045.
  • WHO Expert Committee on Biological Standardization. Forty-sixth report. World Health Organ Tech Rep Ser. 1998;872:i–vii, 1–90.
  • Simões M, Camacho LAB, Yamamura AMY, Miranda EH, Cajaraville ACRA, da Silva Freire M. Evaluation of accuracy and reliability of the plaque reduction neutralization test (micro-PRNT) in detection of yellow fever virus antibodies. Biologicals. 2012;40(6):399–404. doi:10.1016/j.biologicals.2012.09.005.
  • Gotuzzo E, Yactayo S, Córdova E. Efficacy and duration of immunity after yellow fever vaccination: systematic review on the need for a booster every 10 years. Am J Trop Med Hyg. 2013;89(3):434–44. doi:10.4269/ajtmh.13-0264.
  • Poland JD, Calisher CH, Monath TP, Downs WG, Murphy K. Persistence of neutralizing antibody 30-35 years after immunization with 17D yellow fever vaccine. Bull World Health Organ. 1981;59:895–900.
  • Niedrig M, Lademann M, Emmerich P, Lafrenz M. Assessment of IgG antibodies against yellow fever virus after vaccination with 17D by different assays: neutralization test, haemagglutination inhibition test, immunofluorescence assay and ELISA. Trop Med Int Health. 1999;4(12):867–71. doi:10.1046/j.1365-3156.1999.00496.x.
  • Vaccines and vaccination against yellow fever. WHO position paper – june 2013. Wkly Epidemiol Rec. 2013;88(27):269–83.
  • Campi-Azevedo AC, Costa-Pereira C, Antonelli LR, Fonseca CT, Teixeira-Carvalho A, Villela-Rezende G, Santos RA, Batista MA, Campos FM, Pacheco-Porto L, et al. Booster dose after 10 years is recommended following 17DD-YF primary vaccination. Hum Vaccin Immunother. 2016;12(2):491–502. doi:10.1080/21645515.2015.1082693.
  • Campi-Azevedo AC, Peruhype-Magalhaes V, Coelho-Dos-Reis JG, Antonelli LR, Costa-Pereira C, Speziali E, Reis LR, Lemos JA, Ribeiro J, Bastos Camacho LA, de Sousa Maia ML, et al. 17DD yellow fever revaccination and heightened long-term immunity in populations of disease-endemic areas, Brazil. Emerg Infect Dis. 2019;25(8):1511–21. doi:10.3201/eid2508.181432.
  • Staples JE, Barrett ADT, Wilder-Smith A, Hombach J. Review of data and knowledge gaps regarding yellow fever vaccine-induced immunity and duration of protection. Npj Vaccines. 2020;5(1):54. doi:10.1038/s41541-020-0205-6.
  • Gómez SY, Ocazionez RE. Yellow fever virus 17D neutralising antibodies in vaccinated Colombian people and unvaccinated ones having immunity against dengue. Rev Salud Publica (Bogota). 2008;10(5):796–807. doi:10.1590/s0124-00642008000500012.
  • Hepburn MJ, Kortepeter MG, Pittman PR, Boudreau EF, Mangiafico JA, Buck PA, Norris SL, Anderson EL. Neutralizing antibody response to booster vaccination with the 17d yellow fever vaccine. Vaccine. 2006;24(15):2843–49. doi:10.1016/j.vaccine.2005.12.055.
  • Minervina AA, Pogorelyy MV, Komech EA, Karnaukhov VK, Bacher P, Rosati E, Franke A, Chudakov DM, Mamedov IZ, Lebedev YB, et al. Primary and secondary anti-viral response captured by the dynamics and phenotype of individual T cell clones. eLife. 2020;9:e53704. doi:10.7554/eLife.53704.
  • Collaborative Group for Studies of Yellow Fever Vaccine. A randomised double-blind clinical trial of two yellow fever vaccines prepared with substrains 17DD and 17D-213/77 in children nine-23 months old. Mem Inst Oswaldo Cruz. 2015;110(6):771–80. doi:10.1590/0074-02760150176.
  • Luiza-Silva M, Campi-Azevedo AC, Batista MA, Martins MA, Avelar RS, da Silveira Lemos D, Bastos Camacho LA, de Menezes Martins R, de Lourdes de Sousa Maia M, Guedes Farias RH, et al. Cytokine signatures of innate and adaptive immunity in 17DD yellow fever vaccinated children and its association with the level of neutralizing antibody. J Infect Dis. 2011;204(6):873–83. doi:10.1093/infdis/jir439.
  • Campi-Azevedo AC, Araújo-Porto LPD, Luiza-Silva M, Batista MA, Martins MA, Sathler-Avelar R, da Silveira-lemos D, Camacho LAB, de Menezes Martins R, de Lourdes de Sousa Maia M, et al. 17DD and 17D-213/77 yellow fever substrains trigger a balanced cytokine profile in primary vaccinated children. PLoS One. 2012;7(12):e49828. doi:10.1371/journal.pone.0049828.
  • Domingo C, Fraissinet J, Ansah PO, Kelly C, Bhat N, Sow SO, Mejía JE. Long-term immunity against yellow fever in children vaccinated during infancy: a longitudinal cohort study. Lancet Infect Dis. 2019;19(12):1363–70. doi:10.1016/S1473-3099(19)30323-8.
  • Roukens AH, Soonawala D, Joosten SA, de Visser AW, Jiang X, Dirksen K, de Gruijter M, van Dissel JT, Bredenbeek PJ, Visser LG. Elderly subjects have a delayed antibody response and prolonged viraemia following yellow fever vaccination: a prospective controlled cohort study. PLoS One. 2011;6(12):e27753. doi:10.1371/journal.pone.0027753.
  • Nasidi A, Monath TP, Vandenberg J, Tomori O, Calisher CH, Hurtgen X, Munube GR, Sorungbe AO, Okafor GC, Wali S. Yellow fever vaccination and pregnancy: a four-year prospective study. Trans R Soc Trop Med Hyg. 1993;87(3):337–39. doi:10.1016/0035-9203(93)90156-K.
  • Cavalcanti DP, Salomão MA, Lopez-Camelo J, Pessoto MA. Early exposure to yellow fever vaccine during pregnancy. Trop Med Int Health. 2007;12(7):833–37. doi:10.1111/j.1365-3156.2007.01851.x.
  • Suzano CE, Amaral E, Sato HK, Papaiordanou PM; Campinas Group on Yellow Fever Immunization during Pregnancy. The effects of yellow fever immunization (17DD) inadvertently used in early pregnancy during a mass campaign in Brazil. Vaccine. 2006;24(9):1421–26. doi:10.1016/j.vaccine.2005.09.033.
  • Nishioka Sde A, Nunes‐Ara£jo FRF, Pires WP, Silva FA, Costa HL. Yellow fever vaccination during pregnancy and spontaneous abortion: a case-control study. Trop Med Int Health. 1998;3(1):29–33. doi:10.1046/j.1365-3156.1998.00164.x.
  • de Jong W, de Man RA, Dalm VASH, Reusken CBEM, Goeijenbier M, van Gorp ECM. Yellow fever vaccination for immunocompromised travellers: unjustified vaccination hesitancy? J Travel Med. 2019;26(6). doi:10.1093/jtm/taz015.
  • Wieten RW, Jonker EFF, Pieren DKJ, Hodiamont CJ, van Thiel PPAM, van Gorp ECM, de Visser AW, Grobusch MP, Visser LG, Goorhuis A, et al. Comparison of the PRNT and an immune fluorescence assay in yellow fever vaccinees receiving immunosuppressive medication. Vaccine. 2016;34(10):1247–51. doi:10.1016/j.vaccine.2016.01.037.
  • Wieten RW, Goorhuis A, Jonker EFF, de Bree GJ, de Visser AW, van Genderen PJJ, Remmerswaal EBM, Ten Berge IJM, Visser LG, Brobusch MP, et al. 17D yellow fever vaccine elicits comparable long-term immune responses in healthy individuals and immune-compromised patients. J Infect. 2016;72(6):713–22. doi:10.1016/j.jinf.2016.02.017.
  • Valim V, Machado KLLL, Miyamoto ST, Pinto AD, Rocha PCM, Serrano EV, Dinis VG, Gouvêa SA, Dias JGF, Campi-Azevedo AC, et al. Planned yellow fever primary vaccination is safe and immunogenic in patients with autoimmune diseases: a prospective non-interventional study. Front Immunol. 2020;11(1382). doi:10.3389/fimmu.2020.01382.
  • Collins ND, Barrett ADT. Live attenuated yellow fever 17D vaccine: a legacy vaccine still controlling outbreaks in modern day. Curr Infect Dis Rep. 2017;19(3):14–14. doi:10.1007/s11908-017-0566-9.
  • Roukens AHE, van Halem K, de Visser AW, Visser LG. Long-term protection after fractional-dose yellow fever vaccination. Ann Intern Med. 2018;169(11):761–65. doi:10.7326/M18-1529.
  • World Health, O. Fractional dose yellow fever vaccine as a dose-sparing option for outbreak response: WHO Secretariat information paper. Geneva, Switzerland: World Health Organization; 2016.
  • Nnaji CA, Shey MS, Adetokunboh OO, Wiysonge CS. Immunogenicity and safety of fractional dose yellow fever vaccination: a systematic review and meta-analysis. Vaccine. 2020;38(6):1291–301. doi:10.1016/j.vaccine.2019.12.018.
  • Roukens AH, Vossen AC, Bredenbeek PJ, van Dissel JT, Visser LG. Intradermally administered yellow fever vaccine at reduced dose induces a protective immune response: a randomized controlled non-inferiority trial. Plos One. 2008;3(4):e1993. doi:10.1371/journal.pone.0001993.
  • Martins RM, Maia MDLS, Farias RHG, Camacho LAB, Freire MS, Galler R, Yamamura AMY, Almeida LFC, Lima SMB, Nogueira RMR, et al. 17DD yellow fever vaccine. Hum Vaccin Immunother. 2013;9(4):879–88. doi:10.4161/hv.22982.
  • de Menezes Martins R, Maia MDLS, de Lima SMB, de Noronha TG, Xavier JR, Camacho LAB, de Albuquerque EM, Farias RHG, da Matta de Castro T, Homma A, et al. Duration of post-vaccination immunity to yellow fever in volunteers eight years after a dose-response study. Vaccine. 2018;36(28):4112–17. doi:10.1016/j.vaccine.2018.05.041.
  • Campi-Azevedo AC, de Almeida Estevam P, Coelho-dos-Reis JG, Peruhype-Magalhães V, Villela-Rezende G, Quaresma PF, Maia MDLS, Farias RHG, Camacho LAB, Freire MDS, et al. Subdoses of 17DD yellow fever vaccine elicit equivalent virological/immunological kinetics timeline. BMC Infect Dis. 2014;14(1):391. doi:10.1186/1471-2334-14-391.
  • Juan-Giner A, Kimathi D, Grantz KH, Hamaluba M, Kazooba P, Njuguna P, Fall G, Dia M, Bob NS, Monath TP, et al. Immunogenicity and safety of fractional doses of yellow fever vaccines: a randomised, double-blind, non-inferiority trial. Lancet. 2021;397(10269):119–27. doi:10.1016/S0140-6736(20)32520-4.
  • Bovay A, Speiser DE, Fuertes Marraco SA. Early drop of circulating T cells negatively correlates with the protective immune response to yellow fever vaccination. Hum Vaccin Immunother. 202 Dec 1; 16(12):3103–3110. doi:10.1080/21645515.2020.1750249..
  • Restifo NP, Gattinoni L. Lineage relationship of effector and memory T cells. Curr Opin Immunol. 2013;25(5):556–63. doi:10.1016/j.coi.2013.09.003.
  • Abdelsamed HA, Moustaki A, Fan Y, Dogra P, Ghoneim HE, Zebley CC, Triplett BM, Sekaly R-P, Youngblood B. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis. J Exp Med. 2017;214(6):1593–606. doi:10.1084/jem.20161760.
  • Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 2012;12(11):749–61. doi:10.1038/nri3307.
  • Pais Ferreira D, Silva JG, Wyss T, Fuertes Marraco SA, Scarpellino L, Charmoy M, Maas R, Siddiqui I, Tang L, Joyce JA, et al. Central memory CD8+ T cells derive from stem-like Tcf7hi effector cells in the absence of cytotoxic differentiation. Immunity. 2020;53:985–1000.e11. doi:10.1016/j.immuni.2020.09.005.
  • Marraco SAF, Bovay A, Nassiri S, Maby-El Hajjami H, Ouertatani-Sakouhi H, Held W, Speiser DE. The human CD8 T stem cell-like memory phenotype appears in the acute phase in yellow fever virus vaccination. bioRxiv. 2019;808774.
  • Costa Del Amo P, Lahoz-Beneytez J, Boelen L, Ahmed R, Miners KL, Zhang Y, Roger L, Jones RE, Fuertes Marraco SA, Speiser DE, et al. Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness. PLoS Biol. 2018;16(6):e2005523. doi:10.1371/journal.pbio.2005523.