2,807
Views
7
CrossRef citations to date
0
Altmetric
Review

Perspectives on the use and risk of adverse events associated with cytokine-storm targeting antibodies and challenges associated with development of novel monoclonal antibodies for the treatment of COVID-19 clinical cases

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2824-2840 | Received 11 Jan 2021, Accepted 19 Mar 2021, Published online: 11 May 2021

References

  • Burkle FM. Declining public health protections within autocratic regimes: impact on global public health security, infectious disease outbreaks, epidemics, and pandemics. Prehosp Disaster Med. 2020;35:237–46. doi:10.1017/S1049023X20000424.
  • Burkle FM. Political intrusions into the international health regulations treaty and its impact on management of rapidly emerging zoonotic pandemics: what history tells us. Prehosp Disaster Med. 2020;35:1–5.
  • Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33. doi:10.1056/NEJMoa2001017.
  • Johns Hopkins University and medicine. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU); 2020.
  • NIH-What’s New in the Guidelines. COVID-19 treatment guidelines- 2020.
  • CDC. Different COVID-19 vaccines. 2020.
  • Mullard A. How COVID vaccines are being divvied up around the world. Nature. 2020. doi:10.1038/d41586-020-03370-6
  • Morris G, Bortolasci CC, Puri BK, Olive L, Marx W, O’Neil A, Athan E, Carvalho A, Maes M, Walder K, et al. The pathophysiology of SARS-CoV-2: a suggested model and therapeutic approach. Life Sci. 2020;258:118166.
  • Saxena A. Drug targets for COVID-19 therapeutics: ongoing global efforts. J Biosci. 2020;45(1):87.
  • Van Riel D, De Wit E. Next-generation vaccine platforms for COVID-19. Nat Mater. 2020;19:810–12. doi:10.1038/s41563-020-0746-0.
  • Verkerke HP, Maier CL. Towards characterized convalescent plasma for COVID-19: the dose matters. EClinicalMedicine. 2020;26:100545. doi:10.1016/j.eclinm.2020.100545.
  • Zhou B, Zhong N, Guan Y. Treatment with convalescent plasma for influenza A (H5N1) infection. N Engl J Med. 2007;357:1450–51. doi:10.1056/NEJMc070359.
  • Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12:278–87. doi:10.1038/nrc3236.
  • Stolberg SG Trump and friends got coronavirus care many others couldn’t.
  • Ledford H. The race to make COVID antibody therapies cheaper and more potent. Nature. 2020;587:18. https://www.nature.com/articles/d41586-020-02965-3.
  • Cohen J. Update: here’s what is known about Trump’s COVID-19 treatment. Sciencemag. 2020. https://www.sciencemag.org/news/2020/10/heres-what-known-about-president-donald-trump-s-covid-19-treatment
  • Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157:220–33. doi:10.1111/j.1476-5381.2009.00190.x.
  • Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem. 2020;295(37):12910–12934.
  • Sohrabi C, Alsafi Z, O’Neill N, Khan M, Kerwan A, Al-Jabir A, Iosifidis C, Agha R. World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020;76:71–76. doi:10.1016/j.ijsu.2020.02.034.
  • Kang Y, Xu S. Comprehensive overview of COVID-19 based on current evidence. Dermatol Ther. 2020;33:e13525. doi:10.1111/dth.13525.
  • Cao W, Li T. COVID-19: towards understanding of pathogenesis. Cell Res. 2020;30:367–69. doi:10.1038/s41422-020-0327-4.
  • Drosten C, Günther S, Preiser W, Van Der Werf S, Brodt H-R, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RAM, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:1967–76. doi:10.1056/NEJMoa030747.
  • Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814–20. doi:10.1056/NEJMoa1211721.
  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5.
  • Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen K-Y, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181(4):894–904 e9. doi:10.1016/j.cell.2020.03.045.
  • Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562–69. doi:10.1038/s41564-020-0688-y.
  • Harapan H, Itoh N, Yufika A, Winardi W, Keam S, Te H, Megawati D, Hayati Z, Wagner AL, Mudatsir M, et al. Coronavirus disease 2019 (COVID-19): a literature review. J Infect Public Health. 2020;13(5):667–73. doi:10.1016/j.jiph.2020.03.019.
  • Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215–20. doi:10.1038/s41586-020-2180-5.
  • Vashi Y, Jagrit V, Kumar S. Understanding the B and T cell epitopes of spike protein of severe acute respiratory syndrome coronavirus-2: a computational way to predict the immunogens. Infect Genet Evol. 2020;84:104382. doi:10.1016/j.meegid.2020.104382.
  • Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–92 e6. doi:10.1016/j.cell.2020.02.058.
  • Lvov DK, Alkhovsky SV. Source of the COVID-19 pandemic: ecology and genetics of coronaviruses (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (subgenus Sarbecovirus), and MERS-CoV (subgenus Merbecovirus). Vopr Virusol. 2020;65(2):62–70. doi:10.36233/0507-4088-2020-65-2-62-70.
  • Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, Gary EN, Walker SN, Schultheis K, Purwar M, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun. 2020;11(1):2601. doi:10.1038/s41467-020-16505-0.
  • Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 2020;12(3):12. doi:10.3390/v12030254.
  • Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, Zhou Y, Du L. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 2020;17(6):613–20. doi:10.1038/s41423-020-0400-4.
  • Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221–24. doi:10.1038/s41586-020-2179-y.
  • Yi C, Sun X, Ye J, Ding L, Liu M, Yang Z, Lu X, Zhang Y, Ma L, Gu W, et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell Mol Immunol. 2020;17(6):621–30. doi:10.1038/s41423-020-0458-z.
  • Premkumar L, Segovia-Chumbez B, Jadi R, Martinez DR, Raut R, Markmann A, Cornaby C, Bartelt L, Weiss S, Park Y, et al. The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci Immunol. 2020;5(48):5. doi:10.1126/sciimmunol.abc8413.
  • Kumar V. Emerging human coronavirus infections (SARS, MERS, and COVID-19): where they are leading us. Int Rev Immunol. 2020;40(1–2):45–53.
  • Zhang XY, Huang HJ, Zhuang DL, Nasser MI, Yang MH, Zhu P, Zhao M-Y. Biological, clinical and epidemiological features of COVID-19, SARS and MERS and AutoDock simulation of ACE2. Infect Dis Poverty. 2020;9(1):99. doi:10.1186/s40249-020-00691-6.
  • Forouzesh M, Rahimi A, Valizadeh R, Dadashzadeh N, Mirzazadeh A. Clinical display, diagnostics and genetic implication of novel coronavirus (COVID-19) epidemic. Eur Rev Med Pharmacol Sci. 2020;24(8):4607–15. doi:10.26355/eurrev_202004_21047.
  • Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). Treasure Island (FL): StatPearls; 2020.
  • Gulen M, Satar S. Uncommon presentation of COVID-19: gastrointestinal bleeding. Clin Res Hepatol Gastroenterol. 2020;44(4):e72–e76. doi:10.1016/j.clinre.2020.05.001.
  • Cipriani G, Danti S, Nuti A, Carlesi C, Lucetti C, Di Fiorino M. A complication of coronavirus disease 2019: delirium. Acta Neurol Belg. 2020;120(4):927–32. doi:10.1007/s13760-020-01401-7.
  • Abobaker A, Raba AA, Alzwi A. Extrapulmonary and atypical clinical presentations of COVID-19. J Med Virol. 2020;92(11):2458–64. doi:10.1002/jmv.26157.
  • Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, Liu XQ, Chen RC, Tang CL, Wang T, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547.
  • Jutzeler CR, Bourguignon L, Weis CV, Tong B, Wong C, Rieck B, Pargger H, Tschudin-Sutter S, Egli A, Borgwardt K, et al. Comorbidities, clinical signs and symptoms, laboratory findings, imaging features, treatment strategies, and outcomes in adult and pediatric patients with COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis. 2020;37:101825. doi:10.1016/j.tmaid.2020.101825.
  • Sarac E, Amaral T, Keim U, Leiter U, Forschner A, Eigentler TK, Garbe C. Prognostic factors in 161 patients with mucosal melanoma: a study of German Central Malignant Melanoma Registry. J Eur Acad Dermatol Venereol. 2020;34(9):2021–25. doi:10.1111/jdv.16306.
  • Jackson BR, Gold JAW, Natarajan P, Rossow J, Neblett Fanfair R, Da Silva J, Wong KK, Browning SD, Bamrah Morris S, Rogers-Brown J, et al. Predictors at admission of mechanical ventilation and death in an observational cohort of adults hospitalized with COVID-19. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa1459.
  • Mahumud RA, Kamara JK, Renzaho AMN. The epidemiological burden of and overall distribution of chronic comorbidities in coronavirus disease-2019 among 202,005 infected patients: evidence from a systematic review and meta-analysis. Infection. 2020;48(6):813–33. doi:10.1007/s15010-020-01502-8.
  • Du RH, Liang LR, Yang CQ, Wang W, Cao TZ, Li M, Guo GY, Du J, Zheng CL, Zhu Q, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J. 2020;55(5):2000524.
  • Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, Cereda D, Coluccello A, Foti G, Fumagalli R, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574. doi:10.1001/jama.2020.5394.
  • Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, Barnaby DP, Becker LB, Chelico JD, Cohen SL, et al. Presenting characteristics, comorbidities, and outcomes Among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA. 2020;323(20):2052. doi:10.1001/jama.2020.6775.
  • Ghisolfi S, Almas I, Sandefur JC, Von Carnap T, Heitner J, Bold T. Predicted COVID-19 fatality rates based on age, sex, comorbidities and health system capacity. BMJ Global Health. 2020;5(9):5. doi:10.1136/bmjgh-2020-003094.
  • Hashim MJ, Alsuwaidi AR, Khan G. Population risk factors for COVID-19 mortality in 93 countries. J Epidemiol Glob Health. 2020;10(3):204–08. doi:10.2991/jegh.k.200721.001.
  • Badawi A, Ryoo SG. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. Int J Infect Dis. 2016;49:129–33. doi:10.1016/j.ijid.2016.06.015.
  • Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J Immunol. 2017;198(10):4046–53. doi:10.4049/jimmunol.1601896.
  • Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Ji R, Wang H, Wang Y, Zhou Y, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–95. doi:10.1016/j.ijid.2020.03.017.
  • Whittaker E, Bamford A, Kenny J, Kaforou M, Jones CE, Shah P, Ramnarayan P, Fraisse A, Miller O, Davies P, et al. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA. 2020;324(3):259–69. doi:10.1001/jama.2020.10369.
  • Blondiaux E, Parisot P, Redheuil A, Tzaroukian L, Levy Y, Sileo C, Schnuriger A, Lorrot M, Guedj R, Ducou Le Pointe H. Cardiac MRI of children with Multisystem Inflammatory Syndrome (MIS-C) associated with COVID-19: case series. Radiology. 2020;297:202288.
  • Chiotos K, Bassiri H, Behrens EM, Blatz AM, Chang J, Diorio C, Fitzgerald JC, Topjian A, John ARO. Multisystem inflammatory syndrome in children during the coronavirus 2019 pandemic: a case series. J Pediatric Infect Dis Soc. 2020;9(3):393–98. doi:10.1093/jpids/piaa069.
  • Greene AG, Saleh M, Roseman E, Sinert R. Toxic shock-like syndrome and COVID-19: a case report of multisystem inflammatory syndrome in children (MIS-C). Am J Emergency Med. 2020;38(11):2492.e5–2492.e6. doi:10.1016/j.ajem.2020.05.117.
  • Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A. Coronavirus disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients. AJR Am J Roentgenol. 2020;215(1):87–93. doi:10.2214/AJR.20.23034.
  • Hassanzadeh K, Perez Pena H, Dragotto J, Buccarello L, Iorio F, Pieraccini S, Sancini G, Feligioni M. Considerations around the SARS-CoV-2 spike protein with particular attention to COVID-19 brain infection and neurological symptoms. ACS Chem Neurosci. 2020;11(15):2361–69. doi:10.1021/acschemneuro.0c00373.
  • Riggioni C, Comberiati P, Giovannini M, Agache I, Akdis M, Alves-Correia M, Antó JM, Arcolaci A, Azkur AK, Azkur D, et al. A compendium answering 150 questions on COVID-19 and SARS-CoV-2. Allergy. 2020;75(10):2503–41. doi:10.1111/all.14449.
  • Mao L, Wang M, Chen S, He Q, Chang J, Hong C, Zhou Y, Wang D, Li Y, Jin H, et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. medRxiv. 2020;2020:02.22.20026500.
  • Kremer S, Lersy F, De Seze J, Ferre JC, Maamar A, Carsin-Nicol B, Collange O, Bonneville F, Adam G, Martin-Blondel G, et al. Brain MRI findings in severe COVID-19: a retrospective observational study. Radiology. 2020;297(2):E242–E251.
  • Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features. Radiology. 2020;296(2):E119–E20. doi:10.1148/radiol.2020201187.
  • Beyrouti R, Adams ME, Benjamin L, Cohen H, Farmer SF, Goh YY, Humphries F, Jäger HR, Losseff NA, Perry RJ, et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry. 2020;91(8):889–91. doi:10.1136/jnnp-2020-323586.
  • Helms J, Kremer S, Merdji H, Schenck M, Severac F, Clere-Jehl R, Studer A, Radosavljevic M, Kummerlen C, Monnier A, et al. Delirium and encephalopathy in severe COVID-19: a cohort analysis of ICU patients. Crit Care. 2020;24(1):491. doi:10.1186/s13054-020-03200-1.
  • Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, Ueno M, Sakata H, Kondo K, Myose N, et al. A first case of meningitis/encephalitis associated with SARS-coronavirus-2. Int J Infect Dis. 2020;94:55–58. doi:10.1016/j.ijid.2020.03.062.
  • Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, Franciotta D, Baldanti F, Daturi R, Postorino P, et al. Guillain-Barre syndrome associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574–76. doi:10.1056/NEJMc2009191.
  • Hung EC, Chim SS, Chan PK, Tong YK, Ng EK, Chiu RW, Leung C-B, Sung JJY, Tam JS, Lo YMD, et al. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem. 2003;49(12):2108–09. doi:10.1373/clinchem.2003.025437.
  • Virhammar J, Kumlien E, Fallmar D, Frithiof R, Jackmann S, Skold MK, Kadir M, Frick J, Lindeberg J, Olivero-Reinius H, et al. Acute necrotizing encephalopathy with SARS-CoV-2 RNA confirmed in cerebrospinal fluid. Neurology. 2020;95(10):445–49. doi:10.1212/WNL.0000000000010250.
  • Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, Kneen R, Defres S, Sejvar J, Solomon T, et al. Neurological associations of COVID-19. Lancet Neurol. 2020;19(9):767–83. doi:10.1016/S1474-4422(20)30221-0.
  • Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, Collaboration HL. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–34. doi:10.1016/S0140-6736(20)30628-0.
  • Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: the current evidence and treatment strategies. Front Immunol. 2020;11:1708. doi:10.3389/fimmu.2020.01708.
  • Shimizu M. Clinical features of cytokine storm syndrome. In: Cron R, Behrens E, editors. Cytokine storm syndrome. Cham: Springer; 2019. p. 31–41. doi:10.1007/978-3-030-22094-5_3
  • Wong C, Lam C, Wu A, Ip W, Lee N, Chan I, Lit LCW, Hui DSC, Chan MHM, Chung SSC, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136(1):95–103. doi:10.1111/j.1365-2249.2004.02415.x.
  • Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine. 2018;104:8–13. doi:10.1016/j.cyto.2018.01.025.
  • Gao Y, Li T, Han M, Li X, Wu D, Xu Y, Zhu Y, Liu Y, Wang X, Wang L, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020;92(7):791–96. doi:10.1002/jmv.25770.
  • Chen L, Liu H, Liu W, Liu J, Liu K, Shang J, Deng Y, Wei S. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za zhi= Zhonghua Jiehe He Huxi zazhi=. Chinese Journal of Tuberculosis and Respiratory Diseases. 2020;43:E005–E. doi:10.3760/cma.j.1001-0939.2020.0005.
  • Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620–29. doi:10.1172/JCI137244.
  • Sun D, Li H, Lu -X-X, Xiao H, Ren J, Zhang F-R, Liu ZS. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. World J Pediatr. 2020;16(3):251–259. doi:10.1007/s12519-020-00340-w.
  • Buonsenso D, Di Sante G, Sali M, Group CC-S. Cytokine profile in an adolescent with pediatric multisystem inflammatory syndrome temporally related to COVID-19. Pediatr Infect Dis J. 2020;39(8):e213–e5. doi:10.1097/INF.0000000000002802.
  • Gerges Harb J, Noureldine HA, Chedid G, Eldine MN, Abdallah DA, Chedid NF, Nour-Eldine W. SARS, MERS and COVID-19: clinical manifestations and organ-system complications: a mini review. Pathog Dis. 2020;78(4):78. doi:10.1093/femspd/ftaa033.
  • Kalaiyarasu S, Kumar M, Senthil Kumar D, Bhatia S, Dash SK, Bhat S, Khetan RK, Nagarajan S. Highly pathogenic avian influenza H5N1 virus induces cytokine dysregulation with suppressed maturation of chicken monocyte-derived dendritic cells. Microbiol Immunol. 2016;60(10):687–93. doi:10.1111/1348-0421.12443.
  • Woo PC, Tung ET, Chan K-H, Lau CC, Lau SK, Yuen K-Y. Cytokine profiles induced by the novel swine-origin influenza A/H1N1 virus: implications for treatment strategies. J Infect Dis. 2010;201(3):346–53. doi:10.1086/649785.
  • Al Mutair A, Ambani Z. Narrative review of Middle East respiratory syndrome coronavirus (MERS-CoV) infection: updates and implications for practice. J Int Med Res. 2020;48(1):0300060519858030. doi:10.1177/0300060519858030.
  • Mery G, Epaulard O, Borel AL, Toussaint B, Le Gouellec A. COVID-19: underlying adipokine storm and angiotensin 1–7 umbrella. Front Immunol. 2020;11:1714. doi:10.3389/fimmu.2020.01714.
  • Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol. 2010;314(1):1–16. doi:10.1016/j.mce.2009.07.031.
  • Unamuno X, Gomez-Ambrosi J, Rodriguez A, Becerril S, Fruhbeck G, Catalan V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Invest. 2018;48(9):e12997. doi:10.1111/eci.12997.
  • Sindhu S, Thomas R, Shihab P, Sriraman D, Behbehani K, Ahmad R, Stover CM. Obesity is a positive modulator of IL-6R and IL-6 expression in the subcutaneous adipose tissue: significance for metabolic inflammation. PloS One. 2015;10(7):e0133494. doi:10.1371/journal.pone.0133494.
  • Zhu J, Pang J, Ji P, Zhong Z, Li H, Li B, Zhang J, Lu J. Coagulation dysfunction is associated with severity of COVID-19: a meta-analysis. J Med Virol. 2021;93(2):962–72. doi:10.1002/jmv.26336.
  • Lin J, Yan H, Chen H, He C, Lin C, He H, Zhang S, Shi S, Lin K. COVID-19 and coagulation dysfunction in adults: a systematic review and meta-analysis. J Med Virol. 2021;93(2):934–44. doi:10.1002/jmv.26346.
  • Asakura H, Ogawa H. COVID-19-associated coagulopathy and disseminated intravascular coagulation. Int J Hematol. 2021;113(1):45–57. doi:10.1007/s12185-020-03029-y.
  • Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood J Am Soc Hematol. 2020;135:2033–40.
  • Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C, Qin R, Wang H, Shen Y, Du K, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020;36(7):e3319. doi:10.1002/dmrr.3319.
  • Pinti M, Appay V, Campisi J, Frasca D, Fülöp T, Sauce D, Larbi A, Weinberger B, Cossarizza A. Aging of the immune system: focus on inflammation and vaccination. Eur J Immunol. 2016;46(10):2286–301. doi:10.1002/eji.201546178.
  • Hamann L, Kupcinskas J, Berrocal Almanza LC, Skieceviciene J, Franke A, Nothlings U, Schumann RR. Less functional variants of TLR-1/-6/-10 genes are associated with age. Immun Ageing. 2015;12(1):7. doi:10.1186/s12979-015-0034-z.
  • Van Duin D, Mohanty S, Thomas V, Ginter S, Montgomery RR, Fikrig E, Allore HG, Medzhitov R, Shaw AC. Age-associated defect in human TLR-1/2 function. J Immunol. 2007;178(2):970–75. doi:10.4049/jimmunol.178.2.970.
  • Consiglio CR, Cotugno N, Sardh F, Pou C, Amodio D, Rodriguez L, Tan Z, Zicari S, Ruggiero A, Pascucci GR, et al. The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell. 2020;183(4):968–981.e7. doi:10.1016/j.cell.2020.09.016.
  • De Paulis M, Oliveira DBL, Vieira RP, Pinto IC, Machado RRG, Cavalcanti MP, Soares CP, De Araujo AMP, Araujo DB, Bachi ALL, et al. Multisystem inflammatory syndrome associated with COVID-19 with neurologic manifestations in a child: a brief report. Pediatr Infect Dis J. 2020;39(10):e321–e4. doi:10.1097/INF.0000000000002834.
  • Statista. Number of registered COVID-19 clinical trials worldwide October 19, 2020, by region Published by Statista Research Department. 2019 Oct 19.
  • AminJafari A, Ghasemi S. The possible of immunotherapy for COVID-19: a systematic review. Int Immunopharmacol. 2020;83:106455. doi:10.1016/j.intimp.2020.106455.
  • Badani H, Garry RF, Wimley WC. Peptide entry inhibitors of enveloped viruses: the importance of interfacial hydrophobicity. Biochim Biophys Acta. 2014;1838(9):2180–97. doi:10.1016/j.bbamem.2014.04.015.
  • Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci Trends. 2020;14(1):64–68. doi:10.5582/bst.2020.01030.
  • Ejaz K, Kauser T, Siddiqa A. Comprehensive overview of COVID-19 clinical trials. J Pak Med Assoc. 2020;70(Suppl 3):S158–S61. doi:10.5455/JPMA.37.
  • Santos SGVRC. Clinical trials on drug repositioning for COVID-19 treatment. Pan Am J Public Health. 2020;44:7.
  • Boopathi S, Poma AB, Kolandaivel P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn. 2020;1–10. doi: 10.1080/07391102.2020.1758788
  • Joshi MG, Kshersagar J, Desai SR, Sharma S. Antiviral properties of placental growth factors: a novel therapeutic approach for COVID-19 treatment. Placenta. 2020;99:117–30. doi:10.1016/j.placenta.2020.07.033.
  • Chen S-J, WaY CC, Chen Y-C. Novel antiviral strategies in the treatment of COVID-19: a review. Microorganisms. 2020;8(9). doi:10.3390/microorganisms8091259.
  • Xu X, Han M, Li T, Sun W, Wang D, Fu B, Zhou Y, Zheng X, Yang Y, Li X, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117(20):10970–75. doi:10.1073/pnas.2005615117.
  • Shanmugaraj B, Siriwattananon K, Wangkanont K, Phoolcharoen W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). Asian Pac J Allergy Immunol. 2020;38(1):10–18. doi:10.12932/AP-200220-0773.
  • Jahanshahlu L, Rezaei N. Monoclonal antibody as a potential anti-COVID-19. Biomed Pharmacother. 2020;129:110337. doi:10.1016/j.biopha.2020.110337.
  • Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012;76(1):16–32. doi:10.1128/MMBR.05015-11.
  • Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355(10):1018–28. doi:10.1056/NEJMoa063842.
  • Band G, Le QS, Clarke GM, Kivinen K, Hubbart C, Jeffreys AE, Rowlands K, Leffler EM, Jallow M, Conway DJ, et al. Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa, Asia and Oceania. Nat Commun. 2019;10:5732.
  • Khor CC, Vannberg FO, Chapman SJ, Guo H, Wong SH, Walley AJ, Vukcevic D, Rautanen A, Mills TC, Chang K-C, et al. CISH and susceptibility to infectious diseases. N Engl J Med. 2010;362(22):2092–101. doi:10.1056/NEJMoa0905606.
  • Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, Heinzen EL, Qiu P, Bertelsen AH, Muir AJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009;461(7262):399–401. doi:10.1038/nature08309.
  • De Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, Hoang DM, Van Vinh Chau N, Khanh TH, Dong VC, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med. 2006;12(10):1203–07. doi:10.1038/nm1477.
  • Bhaskar S, Sinha A, Banach M, Mittoo S, Weissert R, Kass JS, Rajagopal S, Pai AR, Kutty S. Cytokine storm in COVID-19-immunopathological mechanisms, clinical considerations, and therapeutic approaches: the REPROGRAM consortium position paper. Front Immunol. 2020;11:1648. doi:10.3389/fimmu.2020.01648.
  • Pugin J, Ricou B, Steinberg KP, Suter PM, Martin TR. Proinflammatory activity in bronchoalveolar lavage fluids from patients with ARDS, a prominent role for interleukin-1. Am J Respir Crit Care Med. 1996;153(6):1850–56. doi:10.1164/ajrccm.153.6.8665045.
  • Wang H, Ma S. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am J Emergency Med. 2008;26(6):711–15. doi:10.1016/j.ajem.2007.10.031.
  • St Clair EW. The calm after the cytokine storm: lessons from the TGN1412 trial. J Clin Invest. 2008;118(4):1344–47. doi:10.1172/JCI35382.
  • IMPORTANT SAFETY INFORMATION ABOUT HUMIRA® (adalimumab). Humira, Adalimumab; 2002.
  • Iranian Registry of Clinical Trials (IRCT)- RCT20171105037262N4. Evaluation of adalimumab effect on clinical symptoms including respiratory distress, oxygen saturation and lung involvement of patients with COVID-19. Iranian Registry of Clinical Trials (IRCT); 2020.
  • Biosimilars of adalimumab. Biosimilars of adalimumab. 2014.
  • AVID-CC trial-ISRCTN33260034. Adalimumab for coronavirus in community care. 2020.
  • Massard C, Cassier P, Bendell J, Marie D, Bléry M, Morehouse C, Ascierto M, Zerbib R, Mitry E, Tolcher A. Preliminary results of STELLAR-001, a dose escalation phase I study of the anti-C5aR, IPH5401, in combination with durvalumab in advanced solid tumors. Ann Oncol. 2019;30:v492.
  • ClinicalTrials.gov-NCT0437136. Avdoralimab an Anti-C5aR antibody, in patients with COVID-19 severe pneumonia (FORCE). 2020.
  • ClinicalTrials.gov-NCT04305106. Bevacizumab in severe or critically severe patients with COVID-19 pneumonia-RCT (BEST-RCT). 2020.
  • ClinicalTrials.gov-NCT04275414. Bevacizumab in severe or critical patients with COVID-19 pneumonia (BEST-CP). 2020.
  • Biosimilars of bevacizumab. Biosimilars of bevacizumab. 2014.
  • Important Safety Information & indication. avastin (bevacizumab) 100mg/4ml injection for IV use. 2004.
  • ClinicalTrials.gov-NCT04344782. Trial evaluating efficacy and safety of Bevacizumab (Avastin®/Zeribev®) in patients with COVID-19 infection, nested in the Corimmuno-19 Cohort. 2020.
  • Interleukin-6: A Key Player in Antibody-Mediated Rejection (ABMR). Antibody-mediated rejection: the most common cause of kidney allograft failure.
  • ClinicalTrials.gov-NCT04494724. Clazakizumab vs. Placebo - COVID-19 infection. 2020.
  • ClinicalTrials.gov-NCT04381052. Study for the use of the IL-6 inhibitor clazakizumab in patients with life-threatening COVID-19 infection. 2020.
  • ClinicalTrials.gov-NCT04363502. Use of the interleukin-6 inhibitor clazakizumab in patients with life-threatening COVID-19 infection. 2020.
  • ClinicalTrials.gov- NCT04348500. Clazakizumab (Anti-IL- 6 Monoclonal) compared to placebo for COVID19 disease. 2020.
  • ClinicalTrials.gov-NCT04343989. A randomized placebo-controlled safety and dose-finding study for the use of the IL-6 inhibitor clazakizumab in patients with life-threatening COVID-19 infection. 2020.
  • ClinicalTrials.gov- NCT04659772.A randomized placebo-controlled safety and dose-finding study for the use of the Il-6 inhibitor clazakizumab in patients with life-threatening COVID-19 infection. 2020.
  • IMPORTANT SAFETY INFORMATION. Remicade (Infliximab). 1998.
  • ClinicalTrials.gov- NCT04425538. A phase 2 trial of infliximab in coronavirus disease 2019 (COVID-19). 2020.
  • ClinicalTrials.gov- NCT04344249. Cohort of patients with inflammatory bowel disease during COVID-19 pandemic. 2020.
  • Biosimilars of infliximab. Biosimilars of infliximab. 2015.
  • Amgen’s Fourth FDA Approval From Biosimilars Portfolio. FDA approves Amgen’s AVSOLA™ (infliximab-axxq), for the same indications as Remicade® (infliximab). 2019.
  • A FIRST-OF-ITS-KIND PREVENTIVE TREATMENT FOR HAE. Takhzyro (Lanadelumab subcutaneous injection).
  • ClinicalTrials.gov- NCT04422509. Lanadelumab for treatment of COVID-19 disease. 2020.
  • ClinicalTrials.gov- NCT04460105. Lanadelumab in participants hospitalized with COVID-19 pneumonia. 2020.
  • Levilimab - Biocad. Levilimab – Biocad.
  • ClinicalTrials.gov- NCT04397562. A clinical trial of the efficacy and safety of levilimab (BCD-089) in patients with severe COVID-19. 2020.
  • Genovese MC, Fleischmann R, Furst D, Janssen N, Carter J, Dasgupta B, Bryson J, Duncan B, Zhu W, Pitzalis C, et al. Efficacy and safety of olokizumab in patients with rheumatoid arthritis with an inadequate response to TNF inhibitor therapy: outcomes of a randomised phase IIb study. Ann Rheum Dis. 2014;73(9):1607–15. doi:10.1136/annrheumdis-2013-204760.
  • ClinicalTrials.gov- NCT04452474. Study of the efficacy and safety of a single administration of olokizumab vs. placebo in addition to standard treatment in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (COVID-19). 2020.
  • ClinicalTrials.gov- NCT04380519. An international, multicenter, randomized, double-blind, adaptive placebo-controlled study of the efficacy and safety of a single administration of olokizumab and RPH-104 with standard therapy in patients with severe SARS-CoV-2 infection (COVID-19). 2020.
  • Otilimab (MOR103/GSK3196165). Otilimab (MOR103/GSK3196165) is a fully human HuCAL antibody directed against GM-CSF out-licensed to GSK in clinical development for inflammatory diseases.
  • ClinicalTrials.gov- NCT04376684. Investigating otilimab in patients with severe pulmonary COVID-19 related disease. 2020.
  • IMPORTANT SAFETY INFORMATION. SYLVANT (Siltuximab). 2014.
  • ClinicalTrials.gov- NCT04329650. Efficacy and safety of siltuximab vs. corticosteroids in hospitalized patients with COVID-19 pneumonia. 2020.
  • ClinicalTrials.gov- NCT04322188. An observational study of the use of siltuximab (SYLVANT) in patients diagnosed with COVID-19 infection who have developed serious respiratory complications. 2020.
  • ClinicalTrials.gov- NCT04510493. Canakinumab in patients with COVID-19 and type 2 diabetes. 2020.
  • ClinicalTrials.gov- NCT04476706. Canakinumab MAP in COVID-19 pneumonia with CRS. 2020.
  • ClinicalTrials.gov- NCT04365153. Canakinumab in Covid-19 cardiac injury (The three C study). 2020.
  • ClinicalTrials.gov- NCT04362813. Study of efficacy and safety of canakinumab treatment for CRS in participants with COVID-19-induced pneumonia. 2020.
  • IMPORTANT SAFETY INFORMATION. ILARIS. 2009.
  • ClinicalTrials.gov- NCT04348448. Observational study on the use of canakinumab administered subcutaneously in the treatment of patients with COVID-19 pneumonia. 2020.
  • Marovich M, Mascola JR, Cohen MS. Monoclonal antibodies for prevention and treatment of COVID-19. JAMA. 2020;324(2):131–32. doi:10.1001/jama.2020.10245.
  • Collins DF Enlisting monoclonal antibodies in the fight against COVID-19. 2020.
  • Van Lint JA, Jessurun NT, Hebing RCF, Hoentjen F, Tas SW, Vonkeman HE, Van Doorn MBA, Sobels A, Spuls PI, Van Puijenbroek EP, et al. Patient-reported burden of adverse drug reactions attributed to biologics used for immune-mediated inflammatory diseases. Drug Saf. 2020;43(9):917–25. doi:10.1007/s40264-020-00946-z.
  • Ovacik M, Lin K. Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development. Clin Transl Sci. 2018;11(6):540–52. doi:10.1111/cts.12567.
  • Farid S. A decision-support tool for strategic decisionmaking in biopharmaceutical manufacture. UCL, ed; 2002.
  • Liu Z, Li J, Chen D, Gao R, Zeng W, Chen S, Huang Y, Huang J, Long W, Li M, et al. Dynamic interleukin-6 level changes as a prognostic indicator in patients with COVID-19. Front Pharmacol. 2020;11:1093. doi:10.3389/fphar.2020.01093.
  • Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev. 2020;53:13–24. doi:10.1016/j.cytogfr.2020.05.009.
  • Bonaventura A, Vecchie A, Wang TS, Lee E, Cremer PC, Carey B, Rajendram P, Hudock KM, Korbee L, Van Tassell BW, et al. Targeting GM-CSF in COVID-19 pneumonia: rationale and strategies. Front Immunol. 2020;11:1625. doi:10.3389/fimmu.2020.01625.
  • Ye W, Lu S, Xue A. The potential role of TNFalpha in 2019 novel coronavirus pneumonia. Respir Med Case Rep. 2020;30:101087. doi:10.1016/j.rmcr.2020.101087.
  • Teuwen LA, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020;20(7):389–91. doi:10.1038/s41577-020-0343-0.
  • Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev. 2020;53:66–70. doi:10.1016/j.cytogfr.2020.05.002.
  • Temesgen Z, Assi M, Vergidis P, Rizza SA, Bauer PR, Pickering BW, Razonable RR, Libertin CR, Burger CD, Orenstein R, et al. First clinical use of lenzilumab to neutralize GM-CSF in patients with severe COVID-19 pneumonia. medRxiv. 2020. doi:10.1101/2020.06.08.20125369.
  • FDA-Approved Biosimilar Products. Biosimilar product information. 2020.
  • Humira. Humira, Adalimumab.
  • Van de Veerdonk FL, Netea MG, Van Deuren M, Van der Meer JW, De Mast Q, Bruggemann RJ, Van Der Hoeven H. Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome. Elife. 2020;9:9. doi:10.7554/eLife.57555.
  • Vaidya G, Czer LSC, Kobashigawa J, Kittleson M, Patel J, Chang D, Kransdorf E, Shikhare A, Tran H, Vo A, et al. Successful treatment of severe COVID-19 pneumonia with clazakizumab in a heart transplant recipient: a case report. Transplant Proc. 2020;52(9):2711–14. doi:10.1016/j.transproceed.2020.06.003.
  • ClinicalTrials.gov- NCT03455842. The BCD-089 (aIL6R) in patients with active rheumatoid arthritis (AURORA). 2018.
  • ClinicalTrials.gov- NCT04380519. Study of the efficacy and safety of a single administration of olokizumab and RPH-104 with standard therapy in patients with severe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (COVID-19). 2020.
  • ClinicalTrials.gov-NCT04362813. Study of efficacy and safety of canakinumab treatment for CRS in participants with COVID-19-induced pneumonia (CAN-COVID). 2020.
  • Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emergency Microbes Infect. 2020;9(1):382–85. doi:10.1080/22221751.2020.1729069.
  • Parray HA, Chiranjivi AK, Asthana S, Yadav N, Shrivastava T, Mani S, Sharma C, Vishwakarma P, Das S, Pindari K, et al. Identification of an anti-SARS-CoV-2 receptor-binding domain-directed human monoclonal antibody from a naive semisynthetic library. J Biol Chem. 2020;295(36):12814–21. doi:10.1074/jbc.AC120.014918.
  • Kreye J, Reincke SM, Kornau HC, Sanchez-Sendin E, Corman VM, Liu H, Yuan M, Wu NC, Zhu X, Lee CCD, et al. A SARS-CoV-2 neutralizing antibody protects from lung pathology in a COVID-19 hamster model. bioRxiv. 2020. doi:10.1101/2020.08.15.252320.
  • Huo J, Le Bas A, Ruza RR, Duyvesteyn HME, Mikolajek H, Malinauskas T, Tan TK, Rijal P, Dumoux M, Ward PN, et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat Struct Mol Biol. 2020;27(9):846–54. doi:10.1038/s41594-020-0469-6.
  • ClinicalTrials.gov-NCT03665129. IPH5401 (Anti-C5aR) in combination with durvalumab in patients with advanced solid tumors (STELLAR-001). 2020.
  • Brouwer PJM, Caniels TG, Van der Straten K, Snitselaar JL, Aldon Y, Bangaru S, Torres JL, Okba NMA, Claireaux M, Kerster G, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020;369(6504):643–50. doi:10.1126/science.abc5902.
  • Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27:1.
  • Sifniotis V, Cruz E, Eroglu B, Kayser V. Current advancements in addressing key challenges of therapeutic antibody design, manufacture, and formulation. Antibodies (Basel). 2019;8(2):8. doi:10.3390/antib8020036.
  • Parray HA, Shukla S, Samal S, Shrivastava T, Ahmed S, Sharma C, Kumar R. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol. 2020;85:106639. doi:10.1016/j.intimp.2020.106639.
  • Salazar E, Perez KK, Ashraf M, Chen J, Castillo B, Christensen PA, Eubank T, Bernard DW, Eagar TN, Long SW, et al. Treatment of coronavirus disease 2019 (COVID-19) patients with convalescent plasma. Am J Pathol. 2020;190(8):1680–90. doi:10.1016/j.ajpath.2020.05.014.
  • Zhang C. Hybridoma technology for the generation of monoclonal antibodies. Methods Mol Biol. 2012;901:117–35.
  • Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2017;6(9):576–88. doi:10.1002/psp4.12224.
  • Glassman PM, Balthasar JP. Physiologically-based modeling of monoclonal antibody pharmacokinetics in drug discovery and development. Drug Metab Pharmacokinet. 2019;34(1):3–13. doi:10.1016/j.dmpk.2018.11.002.
  • Keizer RJ, Huitema AD, Schellens JH, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(8):493–507. doi:10.2165/11531280-000000000-00000.
  • Wang-Lin SX, Balthasar JP. Pharmacokinetic and pharmacodynamic considerations for the use of monoclonal antibodies in the treatment of bacterial infections. Antibodies (Basel). 2018;7(1):7. doi:10.3390/antib7010005.
  • Farid S A decision-support tool for simulating the process and business perspectives of biopharmaceutical manufacture [PhD Thesis]. University of London. 2002.
  • Farid SS. Process economics of industrial monoclonal antibody manufacture. J Chromatogr B. 2007;848(1):8–18. doi:10.1016/j.jchromb.2006.07.037.
  • Natanson L. New report shows monoclonal antibody development times are lengthening.
  • Prescott WA, Doloresco F, Brown J, Paladino JA. Cost effectiveness of respiratory syncytial virus prophylaxis. PharmacoEconomics. 2010;28(4):279–93. doi:10.2165/11531860-000000000-00000.
  • Andabaka T, Nickerson JW, Rojas-Reyes MX, Rueda JD, Vrca VB, Barsic B. Monoclonal antibody for reducing the risk of respiratory syncytial virus infection in children. Evidence-Based Child Health. 2013;8(6):2243–376. doi:10.1002/ebch.1950.
  • Lange A, Prenzler A, Frank M, Kirstein M, Vogel A, Von der Schulenburg JM, Von Der Schulenburg JM. A systematic review of cost-effectiveness of monoclonal antibodies for metastatic colorectal cancer. Eur J Cancer. 2014;50(1):40–49. doi:10.1016/j.ejca.2013.08.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.