9,636
Views
24
CrossRef citations to date
0
Altmetric
Review

COVID-19 vaccine platforms: Delivering on a promise?

, , , , &
Pages 2873-2893 | Received 15 Dec 2020, Accepted 24 Mar 2021, Published online: 25 May 2021

References

  • Folkers GK, Fauci AS. The role of US government agencies in vaccine research and development. Nat Med. 1998 May;4(5 Suppl):491–94. doi:10.1038/nm0598supp-491.
  • Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID. Smallpox and its eradication. Geneva (CH): World Health Organization; 1988.
  • Morales M, Tangermann RH, Wassilak SG. Progress toward polio eradication - worldwide, 2015-2016. MMWR Morb Mortal Wkly Rep. 2016 May 13;65(18):470–73. doi:10.15585/mmwr.mm6518a4.
  • Orenstein WA, Ahmed R. Simply put: vaccination saves lives. Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4031–33. doi:10.1073/pnas.1704507114.
  • Plotkin SL, Plotkin SA. A short history of vaccination. In: Plotkin SA, Orenstein WA, Offit PA, Edwards KM, editors. Plotkin’s Vaccines. 7thed. Philadelphia (PA): Elsevier; 2018. p. 1–15.
  • Andre FE, Booy R, Bock HL, Clemens J, Datta SK, John TJ, Lee BW, Lolekha S, Peltola H, Ruff TA, et al. Vaccination greatly reduces disease, disability, death and inequity worldwide. Vol. 86.Bulletin of the World Health Organization; Geneva (CH): World Health Organization; 2008 February. p. 81–160.
  • Plotkin SA, Orenstein WA, Plotkin SA, Orenstein WA, Offit PA, Edwards KM. Plotkin’s vaccines. 7th ed. Philadelphia (PA): Elsevier; 2018.
  • Salk JE, Krech U, Youngner JS, Bennett BL, Lewis LJ, Bazeley PL. Formaldehyde treatment and safety testing of experimental poliomyelitis vaccines. Am J Public Health Nations Health. 1954 May;44(5):563–70. doi:10.2105/ajph.44.5.563.
  • Miller MA, Pisani E. The cost of unsafe injections. Bull World Health Organ. 1999;77:808–11.
  • McMurtry CM, Noel M, Taddio A, Antony, M.M., Asmundson, G.J., Riddell, R.P., Chambers, C.T. and Shah, V. Interventions for individuals with high levels of needle fear: systematic review of randomized controlled trials and quasi-randomized controlled trials. Clin J Pain. 2015Oct;31(10 Suppl):S109–23. doi:10.1097/ajp.0000000000000273.
  • Betz K. Target survey shows adult Americans may avoid the flu shot due to fear of needles; 2012 [accessed 2012 Aug 14]. https://corporate.target.com/press/releases/2012/08/target-survey-shows-adult-americans-237507
  • Deacon B, Abramowitz J. Fear of needles and vasovagal reactions among phlebotomy patients. J Anxiety Disord. 2006;20(7):946–60. doi:10.1016/j.janxdis.2006.01.004.
  • Cox AC, Fallowfield LJ. After going through chemotherapy I can’t see another needle. Eur J Oncol Nurs. 2007 Feb;11(1):43–48. doi:10.1016/j.ejon.2006.04.035.
  • Taddio A, Ipp M, Thivakaran S, Jamal A, Parikh C, Smart S, Sovran J, Stephens D, Katz J. Survey of the prevalence of immunization non-compliance due to needle fears in children and adults. Vaccine. 2012 Jul 6;30(32):4807–12. doi:10.1016/j.vaccine.2012.05.011.
  • Report of the SAGE working group on vaccine hesitancy; 2014. p. 1–64. [accessed 2014 Nov 12]. https://www.who.int/immunization/sage/meetings/2014/october/SAGE_working_group_revised_report_vaccine_hesitancy.pdf
  • Ravi AD, Sadhna D, Nagpaal D, Chawla L. Needle free injection technology: a complete insight. Int J Pharm Investig. 2015 Oct-Dec;5(4):192–99. doi:10.4103/2230-973x.167662.
  • Adhikari BB, Goodson JL, Chu SY, Rota PA, Meltzer MI. Assessing the potential cost-effectiveness of microneedle patches in childhood measles vaccination programs: the case for further research and development. Drugs R D. 2016;16(4):327–38. doi:10.1007/s40268-016-0144-x.
  • Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI, Ravindran R, Stewart S, Alam M, Kwissa M, et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature. 2011 Feb 24;470(7335):543–47. doi:10.1038/nature09737.
  • Einstein MH, Takacs P, Chatterjee A, Sperling RS, Chakhtoura N, Blatter MM, Lalezari J, David M-P, Lin L, Struyf F, et al. Comparison of long-term immunogenicity and safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine and HPV-6/11/16/18 vaccine in healthy women aged 18-45 years: end-of-study analysis of a phase III randomized trial. Hum Vaccin Immunother. 2014;10(12):3435–45. doi:10.4161/hv.36121.
  • Plotkin S, Robinson JM, Cunningham G, Iqbal R, Larsen S. The complexity and cost of vaccine manufacturing - an overview. Vaccine. 2017 Jul 24;35(33):4064–71. doi:10.1016/j.vaccine.2017.06.003.
  • Siegrist C-A. Vaccine immunology. In: Plotkin SA, Orenstein WA, Offit PA, Edwards KM, editors. Plotkin’s vaccines. 7thed. Philadelphia (PA): Elsevier, Inc; 2018. p. 2.
  • Fine PE. Non-specific “non-effects” of vaccination. Bmj. 2004 Dec 4;329(7478):1297–98. doi:10.1136/bmj.329.7478.1297.
  • Stowe J, Andrews N, Taylor B, Miller E. No evidence of an increase of bacterial and viral infections following measles, mumps and rubella vaccine. Vaccine. 2009 Feb 25;27(9):1422–25. doi:10.1016/j.vaccine.2008.12.038.
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010 Oct 29;33(4):492–503. doi:10.1016/j.immuni.2010.10.002.
  • Lee S, Nguyen MT. Recent advances of vaccine adjuvants for infectious diseases. Immune Netw. 2015 Apr;15(2):51–57. doi:10.4110/in.2015.15.2.51.
  • O’Hagan DT, Fox CB. New generation adjuvants–from empiricism to rational design. Vaccine. 2015 Jun 8;33(Suppl 2):B14–20. doi:10.1016/j.vaccine.2015.01.088.
  • Cooper NR, Nemerow GR. The role of antibody and complement in the control of viral infections. J Invest Dermatol. 1984 Jul;83(1 Suppl):121s–127s. doi:10.1111/1523-1747.ep12281847.
  • Pierce SK, Liu W. The tipping points in the initiation of B cell signalling: how small changes make big differences. Nat Rev Immunol. 2010 Nov;10(11):767–77. doi:10.1038/nri2853.
  • Tarlinton D, Good-Jacobson K. Diversity among memory B cells: origin, consequences, and utility. Science. 2013 Sep 13;341(6151):1205–11. doi:10.1126/science.1241146.
  • Goodnow CC, Vinuesa CG, Randall KL, Mackay F, Brink R. Control systems and decision making for antibody production. Nat Immunol. 2010 Aug;11(8):681–88. doi:10.1038/ni.1900.
  • Crotty S. A brief history of T cell help to B cells. Nat Rev Immunol. 2015 Mar;15(3):185–89. doi:10.1038/nri3803.
  • Bentebibel S-E, Lopez S, Obermoser G, Schmitt N, Mueller C, Harrod C, Flano E, Mejias A, Albrecht RA, Blankenship D, et al. Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination. Sci Transl Med. 2013 Mar 13;5(176):176ra32. doi:10.1126/scitranslmed.3005191.
  • Spensieri F, Borgogni E, Zedda L, Bardelli M, Buricchi F, Volpini G, Fragapane E, Tavarini S, Finco O, Rappuoli R, et al. Human circulating influenza-CD4+ ICOS1+IL-21+ T cells expand after vaccination, exert helper function, and predict antibody responses. Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14330–35. doi:10.1073/pnas.1311998110.
  • Mastelic Gavillet B, Eberhardt CS, Auderset F, Seubert A, Tregoning JS, Lambert, PH, de Gregorio E, Del Giudice G, Siegrist, CA. MF59 mediates its B cell adjuvanticity by promoting T follicular helper cells and thus germinal center responses in adult and early life. J Immunol. 2015 May 15;194(10):4836–45. doi:10.4049/jimmunol.1402071.
  • Linterman MA, Vinuesa CG. T follicular helper cells during immunity and tolerance. Prog Mol Biol Transl Sci. 2010;92:207–48. doi:10.1016/s1877-1173(10)92009-7.
  • Crotty S. Follicular helper CD4 T cells (T FH). Annu Rev Immunol. 2011;29(1):621–63. doi:10.1146/annurev-immunol-031210-101400.
  • Geginat J, Paroni M, Maglie S, Alfen JS, Kastirr I, Gruarin P, De Simone M, Pagani M, Abrignani S. Plasticity of human CD4 T cell subsets. Front Immunol. 2014;5:630. doi:10.3389/fimmu.2014.00630.
  • Igietseme JU, Eko FO, He Q, Black CM. Antibody regulation of Tcell immunity: implications for vaccine strategies against intracellular pathogens. Expert Rev Vaccines. 2004 Feb;3(1):23–34. doi:10.1586/14760584.3.1.23.
  • Fink FK. Can we improve vaccine efficacy by targeting T and B cell repertoire convergence? Front Immunol. 2019;10:110. doi:10.3389/fimmu.2019.00110.
  • Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020 Apr;5(4):536–44. doi:10.1038/s41564-020-0695-z.
  • Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogens. 2020 Mar 20;9(3):231. doi:10.3390/pathogens9030231.
  • Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H, Risco C. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol Cell. 2005 Feb;97(2):147–72. doi:10.1042/bc20040058.
  • Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. In: Maier HJ, Bickerton E, Britton P, editors. Coronaviruses: methods and protocols. New York (NY): Springer; 2015. p. 1–23.
  • Mullard A. COVID-19 vaccine development pipeline gears up. The Lancet. 2020;395(10239):1751–52. doi:10.1016/s0140-6736(20)31252-6.
  • Rauch S, Jasny E, Schmidt KE, Petsch B. New vaccine technologies to combat outbreak situations. Front Immunol. 2018;9:1963. doi:10.3389/fimmu.2018.01963.
  • Garde D. STAT: COVID-19 drugs & vaccines tracker. STAT. [accessed 2020 Sept 29]. https://www.statnews.com/feature/coronavirus/drugs-vaccines-tracker/?utm_campaign=cv_landing#vaccines
  • Vaccines. Milken institute; 2020. [accessed 2020 Sept 29]. https://covid-19tracker.milkeninstitute.org/#vaccines_intro
  • Barrett PN, Terpening SJ, Snow D, Cobb RR, Kistner O. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases. Expert Rev Vaccines. 2017 Sep;16(9):883–94. doi:10.1080/14760584.2017.1357471.
  • Madhusudana SN, Shamsundar R, Seetharaman S. In vitro inactivation of the rabies virus by ascorbic acid. Int J Infect Dis. 2004 Jan;8(1):21–25. doi:10.1016/j.ijid.2003.09.002.
  • Amanna IJ, Raué HP, Slifka MK. Development of a new hydrogen peroxide–based vaccine platform. Nat Med 2012 Jun;18(6):974–79. doi:10.1038/nm.2763.
  • Martin SS, Bakken RR, Lind CM, Garcia P, Jenkins E, Glass PJ, Parker MD, Hart MK, Fine DL. Comparison of the immunological responses and efficacy of gamma-irradiated V3526 vaccine formulations against subcutaneous and aerosol challenge with Venezuelan equine encephalitis virus subtype IAB. Vaccine. 2010 Jan 22;28(4):1031–40. doi:10.1016/j.vaccine.2009.10.126.
  • Budowsky EI, Bresler SE, Friedman EA, Zheleznova NV. Principles of selective inactivation of viral genome. I. UV-induced inactivation of influenza virus. Arch Virol. 1981;68(3–4):239–47. doi:10.1007/bf01314577.
  • Nims RW, Plavsic M. Polyomavirus inactivation - a review. Biologicals. 2013 Mar;41(2):63–70. doi:10.1016/j.biologicals.2012.09.011.
  • Stauffer F, El-Bacha T, Da Poian AT. Advances in the development of inactivated virus vaccines. Recent Pat Antiinfect Drug Discov. 2006 Nov;1(3):291–96. doi:10.2174/157489106778777673.
  • Sabbaghi A, Miri SM, Keshavarz M, Zargar M, Ghaemi A. Inactivation methods for whole influenza vaccine production. Rev Med Virol. 2019 Nov;29(6):e2074. doi:10.1002/rmv.2074.
  • Budimir N, Huckriede A, Meijerhof T, Boon L, Gostick E, Price DA, Wilschut J, De Haan A. Induction of heterosubtypic cross-protection against influenza by a whole inactivated virus vaccine: the role of viral membrane fusion activity. PLoS ONE. 2012;7(1):e30898. doi:10.1371/journal.pone.0030898.
  • Geeraedts F, Goutagny N, Hornung V, Severa M, De Haan A, Pool J, Wilschut J, Fitzgerald KA, Huckriede A. Superior immunogenicity of inactivated whole virus H5N1 influenza vaccine is primarily controlled by toll-like receptor signalling. PLoS Pathog. 2008 Aug 29;4(8):e1000138. doi:10.1371/journal.ppat.1000138.
  • Sanders B, Koldijk M, Schuitemaker H. Inactivated Viral Vaccines. In: Nunnally BK, Turula VE, Sitrin RD, editors. Vaccine analysis: strategies, principles, and control. Berlin Heidelberg: Springer; 2015. p. 45–80.
  • Sanders B, Koldijk M, Schuitemaker H. Inactivated viral vaccines. Berlin Heidelberg: Springer; 2015. p. 45–80.
  • Barrett PN, Mundt W, Kistner O, Howard MK. Vero cell platform in vaccine production: moving towards cell culture-based viral vaccines. Expert Rev Vacc. 2009 May;8(5):607–18. doi:10.1586/erv.09.19.
  • FDA. FDA updated communication on use of jet injectors with inactivated influenza vaccines. U.S. food and drug administration. [accessed 2020 Sept 4]. https://www.fda.gov/vaccines-blood-biologics/vaccines/fda-updated-communication-use-jet-injectors-inactivated-influenza-vaccines
  • Bragazzi NL, Orsi A, Ansaldi F, Gasparini R, Icardi G. Fluzone® intra-dermal (Intanza®/Istivac® Intra-dermal): an updated overview. Hum Vaccin Immunother. 2016;12(10):2616–27. doi:10.1080/21645515.2016.1187343.
  • CDC. Understanding how vaccines work; 2018.
  • Bull JJ, Nuismer SL, Antia R, Müller V. Recombinant vector vaccine evolution. PLoS Comput Biol. 2019 Jul;15(7):e1006857. doi:10.1371/journal.pcbi.1006857.
  • Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010 Jan 15;327(5963):291–95. doi:10.1126/science.1183021.
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010 May;11(5):373–84. doi:10.1038/ni.1863.
  • Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011 Jun;12(6):509–17. doi:10.1038/ni.2039.
  • Tsuji S, Matsumoto M, Takeuchi O, Akira S, Azuma I, Hayashi A, Toyoshima K, Seya T. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect Immun. 2000 Dec;68(12):6883–90. doi:10.1128/iai.68.12.6883-6890.2000.
  • Querec T, Bennouna S, Alkan S, Laouar Y, Gorden K, Flavell R, Akira S, Ahmed R, Pulendran B. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med. 2006 Feb 20;203(2):413–24. doi:10.1084/jem.20051720.
  • Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol. 2005 Aug;6(8):769–76. doi:10.1038/ni1223.
  • Minor TE, Dick EC, Dick CR, Inhorn SL. Attenuated influenza A vaccine (Alice) in an adult population: vaccine-related illness, serum and nasal antibody production, and intrafamily transmission. J Clin Microbiol. 1975 Nov;2(5):403–09.
  • Hall CB, Douglas G Jr., Fralonardo SA. Live attenuated influenza virus vaccine trial in children. Pediatrics. 1975 Dec;56(6):991–98.
  • Koyama S, Aoshi T, Tanimoto T, Kumagai Y, Kobiyama K, Tougan T, Sakurai K, Coban C, Horii T, Akira S, Ishii, KJ. Plasmacytoid dendritic cells delineate immunogenicity of influenza vaccine subtypes. Sci Transl Med. 2010 Mar 31;2(25):25ra24. doi:10.1126/scitranslmed.3000759.
  • Gouglas D, Christodoulou M, Plotkin SA, Hatchett R. CEPI: driving progress toward epidemic preparedness and response. Epidemiol Rev. 2019 Jan 31;41(1):28–33. doi:10.1093/epirev/mxz012.
  • Plotkin S. History of vaccination. Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12283–87. doi:10.1073/pnas.1400472111.
  • Fuge O, Vasdev N, Allchorne P, Green JS. Immunotherapy for bladder cancer. Res Rep Urol. 2015;7:65–79. doi:10.2147/RRU.S63447.
  • Mak TW, Saunders ME, Jett BD. Primer to the immune response (Second Edition). Academic Cell; 2014. p. vii–viii.
  • Mak TW, Saunders ME. 23 - vaccines and clinical immunization. In: Mak TW, Saunders ME, editors. The immune response. Burlington (MA): Academic Press; 2006. p. 695–749.
  • Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat Rev Genet. 2008 Oct;9(10):776–88. doi:10.1038/nrg2432.
  • Garcea RL, Imperiale MJ. Simian virus 40 infection of humans. J Virol. 2003 May;77(9):5039–45. doi:10.1128/jvi.77.9.5039-5045.2003.
  • Thomas RE, Lorenzetti DL, Spragins W. Mortality and morbidity among military personnel and civilians during the 1930s and World War II from transmission of hepatitis during yellow fever vaccination: systematic review. Am J Public Health. 2013 Mar;103(3):e16–29. doi:10.2105/ajph.2012.301158.
  • Marr JS, Cathey JT. The yellow fever vaccine misadventure of 1942. J Public Health Manage Pract. 2017;23(6):6. doi:10.1097/PHH.0000000000000565.
  • Kallel H, Kamen AA. Large-scale adenovirus and poxvirus-vectored vaccine manufacturing to enable clinical trials. Biotechnol J. 2015 May;10(5):741–47. doi:10.1002/biot.201400390.
  • Liu MA. Immunologic basis of vaccine vectors. Immunity. 2010 Oct 29;33(4):504–15. doi:10.1016/j.immuni.2010.10.004.
  • Condit RC, Williamson A-L, Sheets R, Seligman SJ, Monath TP, Excler J-L, Gurwith M, Bok K, Robertson JS, Kim D, et al. Unique safety issues associated with virus-vectored vaccines: potential for and theoretical consequences of recombination with wild type virus strains. Vaccine. 2016 Dec 12;34(51):6610–16. doi:10.1016/j.vaccine.2016.04.060.
  • Kochhar S, Excler J-L, Bok K, Gurwith M, McNeil MM, Seligman SJ, Khuri-Bulos N, Klug B, Laderoute M, Robertson JS, et al. Defining the interval for monitoring potential adverse events following immunization (AEFIs) after receipt of live viral vectored vaccines. Vaccine. 2019 Sep 10;37(38):5796–802. doi:10.1016/j.vaccine.2018.08.085.
  • Xiang ZQ, Greenberg L, Ertl HC, Rupprecht CE. Protection of non-human primates against rabies with an adenovirus recombinant vaccine. Virology. 2014 Feb;450-451:243–49. doi:10.1016/j.virol.2013.12.029.
  • Shen CF, Lanthier S, Jacob D, Montes J, Beath A, Beresford A, Kamen A. Process optimization and scale-up for production of rabies vaccine live adenovirus vector (AdRG1.3). Vaccine. 2012 Jan 5;30(2):300–06. doi:10.1016/j.vaccine.2011.10.095.
  • Ondondo BO. The influence of delivery vectors on HIV vaccine efficacy. Front Microbiol. 2014;5:439. doi:10.3389/fmicb.2014.00439.
  • Schuldt NJ, Amalfitano A. Malaria vaccines: focus on adenovirus based vectors. Vaccine. 2012 Jul 27;30(35):5191–98. doi:10.1016/j.vaccine.2012.05.048.
  • Swadling L, Capone S, Antrobus RD, Brown A, Richardson R, Newell EW, Halliday J, Kelly C, Bowen D, Fergusson J, et al. A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory. Sci Transl Med. 2014 Nov 5;6(261):261ra153. doi:10.1126/scitranslmed.3009185.
  • Tripp RA, Tompkins SM. Virus-vectored influenza virus vaccines. Viruses. 2014 Aug 7;6(8):3055–79. doi:10.3390/v6083055.
  • Zhang W, Fu J, Ehrhardt A. Novel vector construction based on alternative adenovirus types via homologous recombination. Hum Gene Ther Methods. 2018 Jun;29(3):124–34. doi:10.1089/hgtb.2018.044.
  • Ng P, Graham FL. Construction of first-generation adenoviral vectors. Meth Mol Med. 2002;69:389–414. doi:10.1385/1-59259-141-8:389.
  • Kovesdi I, Hedley SJ. Adenoviral producer cells. Viruses. 2010 Aug;2(8):1681–703. doi:10.3390/v2081681.
  • Murakami P, Pungor E, Files J, Do L, Van Rijnsoever R, Vogels R, Bout A, McCaman M. A single short stretch of homology between adenoviral vector and packaging cell line can give rise to cytopathic effect-inducing, helper-dependent E1-positive particles. Hum Gene Ther. 2002 May 20;13(8):909–20. doi:10.1089/10430340252939023.
  • Afkhami S, Yao Y, Xing Z. Methods and clinical development of adenovirus-vectored vaccines against mucosal pathogens. Mol Ther Methods Clin Dev. 2016;3:16030. doi:10.1038/mtm.2016.30.
  • Vemula SV, Mittal SK. Production of adenovirus vectors and their use as a delivery system for influenza vaccines. Expert Opin Biol Ther. 2010 Oct;10(10):1469–87. doi:10.1517/14712598.2010.519332.
  • Morenweiser R. Downstream processing of viral vectors and vaccines. Gene Ther. 2005 Oct;12(Suppl 1):S103–10. doi:10.1038/sj.gt.3302624.
  • Nabel GJ. Designing tomorrow’s vaccines. N Engl J Med. 2013 Feb 7;368(6):551–60. doi:10.1056/NEJMra1204186.
  • Rollier CS, Reyes-Sandoval A, Cottingham MG, Ewer K, Hill AV. Viral vectors as vaccine platforms: deployment in sight. Curr Opin Immunol. 2011 Jun;23(3):377–82. doi:10.1016/j.coi.2011.03.006.
  • Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what’s important? Hum Vaccin Immunother. 2014;10(10):2875–84. doi:10.4161/hv.29594.
  • Mennechet FJD, Paris O, Ouoba AR, Salazar Arenas S, Sirima SB, Takoudjou Dzomo GR, Diarra A, Traore IT, Kania D, Eichholz K, et al. A review of 65 years of human adenovirus seroprevalence. Expert Rev Vacc. 2019Jun;18(6):597–613. doi:10.1080/14760584.2019.1588113.
  • Seregin SS, Amalfitano A. Overcoming pre-existing adenovirus immunity by genetic engineering of adenovirus-based vectors. Expert Opin Biol Ther. 2009 Dec;9(12):1521–31. doi:10.1517/14712590903307388.
  • Chan YK, Wang SK, Chu CJ, Copland DA, Letizia AJ, Costa Verdera H, Chiang JJ, Sethi M, Wang MK, Neidermyer WJ, et al. Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses. Sci. Transl. Med. 2021;13(580):eabd3438. doi:10.1126/scitranslmed.abd3438.
  • Roldao A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM. Virus-like particles in vaccine development. Expert Rev Vacc. 2010 Oct;9(10):1149–76. doi:10.1586/erv.10.115.
  • Qian C, Liu X, Xu Q, Wang Z, Chen J, Li T, Zheng Q, Yu H, Gu Y, Li S, et al. Recent progress on the versatility of virus-like particles. Vaccines (Basel). 2020 Mar 20;8(1): doi:10.3390/vaccines8010139.
  • Dong H, Guo HC, Sun SQ. Virus-like particles in picornavirus vaccine development. Appl Microbiol Biotechnol. 2014 May;98(10):4321–29. doi:10.1007/s00253-014-5639-1.
  • Deschuyteneer M, Elouahabi A, Plainchamp D, Plisnier M, Soete D, Corazza Y, Lockman L, Giannini S, Deschamps M. Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in Cervarix, the AS04-adjuvanted HPV-16 and −18 cervical cancer vaccine. Hum Vaccin. 2010 May;6(5):407–19. doi:10.4161/hv.6.5.11023.
  • Metz SW, Thomas A, White L, Stoops M, Corten M, Hannemann H, de Silva AM. Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virol J. 2018 Apr 2;15(1):60. doi:10.1186/s12985-018-0970-2.
  • Mohsen MO, Gomes AC, Vogel M, Bachmann MF. Interaction of viral capsid-derived Virus-Like Particles (VLPs) with the innate immune system. Vaccines (Basel). 2018 Jul 2;6(3). doi:10.3390/vaccines6030037.
  • Cinamon G, Zachariah MA, Lam OM, Foss FW Jr., Cyster JG. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol. 2008 Jan;9(1):54–62. doi:10.1038/ni1542.
  • Zabel F, Kundig TM, Bachmann MF. Virus-induced humoral immunity: on how B cell responses are initiated. Curr Opin Virol. 2013 Jun;3(3):357–62. doi:10.1016/j.coviro.2013.05.004.
  • Zabel F, Mohanan D, Bessa J, Link A, Fettelschoss A, Saudan P, Kündig TM, Bachmann MF. Viral particles drive rapid differentiation of memory B cells into secondary plasma cells producing increased levels of antibodies. J Immunol. 2014 Jun 15;192(12):5499–508. doi:10.4049/jimmunol.1400065.
  • Cimica V, Galarza JM. Adjuvant formulations for virus-like particle (VLP) based vaccines. Clin Immunol. 2017 Oct;183:99–108. doi:10.1016/j.clim.2017.08.004.
  • Hong S, Zhang Z, Liu H, Tian M, Zhu X, Zhang Z, Wang W, Zhou X, Zhang F, Ge Q, et al. B cells are the dominant antigen-presenting cells that activate naive CD4+ T cells upon immunization with a virus-derived nanoparticle antigen. Immunity. 2018 Oct 16;49(4):695–708.e4. doi:10.1016/j.immuni.2018.08.012.
  • Steinmetz NF. Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomedicine. 2010 Oct;6(5):634–41. doi:10.1016/j.nano.2010.04.005.
  • Seow Y, Wood MJ. Biological gene delivery vehicles: beyond viral vectors. Mol Ther. 2009 May;17(5):767–77. doi:10.1038/mt.2009.41.
  • Chackerian B, Lenz P, Lowy DR, Schiller JT. Determinants of autoantibody induction by conjugated papillomavirus virus-like particles. J Immunol. 2002 Dec 1;169(11):6120–26. doi:10.4049/jimmunol.169.11.6120.
  • Vicente T, Roldao A, Peixoto C, Carrondo MJ, Alves PM. Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol. 2011 Jul;107(Suppl):S42–8. doi:10.1016/j.jip.2011.05.004.
  • Dai S, Wang H, Deng F. Advances and challenges in enveloped virus-like particle (VLP)-based vaccines. J Immunol Sci. 2018;2(2):36–41. doi:10.29245/2578-3009/2018/2.1118.
  • Chang GJ, Hunt AR, Holmes DA, Springfield T, Chiueh T-S, Roehrig JT, Gubler DJ. Enhancing biosynthesis and secretion of premembrane and envelope proteins by the chimeric plasmid of dengue virus type 2 and Japanese encephalitis virus. Virology. 2003 Feb 1;306(1):170–80. doi:10.1016/s0042-6822(02)00028-4.
  • Zhang S, Liang M, Gu W, Li C, Miao F, Wang X, Jin C, Zhang L, Zhang F, Zhang Q, et al. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice. Virol J. 2011 Jun 30;8(1):333. doi:10.1186/1743-422x-8-333.
  • Peixoto C, Sousa MF, Silva AC, Carrondo MJ, Alves PM. Downstream processing of triple layered rotavirus like particles. J Biotechnol. 2007 Jan 10;127(3):452–61. doi:10.1016/j.jbiotec.2006.08.002.
  • van Oers MM. Opportunities and challenges for the baculovirus expression system. J Invertebr Pathol. 2011 Jul;107(Suppl):S3–15. doi:10.1016/j.jip.2011.05.001.
  • Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv. 2009 May-Jun;27(3):297–306. doi:10.1016/j.biotechadv.2009.01.008.
  • Tripathi NK, Shrivastava A. Recent developments in recombinant protein-based dengue vaccines. Front Immunol. 2018;9:1919. doi:10.3389/fimmu.2018.01919.
  • Tripathi NK, Karothia D, Shrivastava A, Banger S, Kumar JS. Enhanced production and immunological characterization of recombinant West Nile virus envelope domain III protein. N Biotechnol. 2018 Nov 25;46:7–13. doi:10.1016/j.nbt.2018.05.002.
  • Wang M, Jiang S, Wang Y. Recent advances in the production of recombinant subunit vaccines in Pichia pastoris. Bioengineered. 2016 Apr;7(3):155–65. doi:10.1080/21655979.2016.1191707.
  • Wang M, Jiang S, Han Z, Zhao B, Wang L, Zhou Z, Wang Y. Expression and immunogenic characterization of recombinant gp350 for developing a subunit vaccine against Epstein-Barr virus. Appl Microbiol Biotechnol. 2016 Feb;100(3):1221–30. doi:10.1007/s00253-015-7027-x.
  • Wang M, Jiang S, Wang Y. Recombinant VP1 protein expressed in Pichia pastoris induces protective immune responses against EV71 in mice. Biochem Biophys Res Commun. 2013 Jan 4;430(1):387–93. doi:10.1016/j.bbrc.2012.11.035.
  • Baeshen MN, Al-Hejin AM, Bora RS, Ahmed MMM, Ramadan HAI, Saini KS, Baeshen NA, Redwan EM. Production of biopharmaceuticals in E. coli: current scenario and future perspectives. J Microbiol Biotechnol. 2015 Jul;25(7):953–62. doi:10.4014/jmb.1412.12079.
  • Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014 Jun;98(12):5301–17. doi:10.1007/s00253-014-5732-5.
  • Porro D, Gasser B, Fossati T, Maurer M, Branduardi P, Sauer M, Mattanovich D. Production of recombinant proteins and metabolites in yeasts: when are these systems better than bacterial production systems? Appl Microbiol Biotechnol. 2011 Feb;89(4):939–48. doi:10.1007/s00253-010-3019-z.
  • Tan LC, Chua AJ, Goh LS, Pua SM, Cheong YK, Ng ML. Rapid purification of recombinant dengue and West Nile virus envelope Domain III proteins by metal affinity membrane chromatography. Protein Expr Purif. 2010 Nov;74(1):129–37. doi:10.1016/j.pep.2010.06.015.
  • Yap YK, Smith DR. Strategies for the plant-based expression of dengue subunit vaccines. Biotechnol Appl Biochem. 2010 Oct;57(2):47–53. doi:10.1042/ba20100248.
  • FDA. Common ingredients in U.S. licensed vaccines. Food and Drug Administration; 2020 [accessed 2020 July 27]. https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/common-ingredients-us-licensed-vaccines
  • Grupping K, Campora L, Douha M, Heineman TC, Klein NP, Lal H, Peterson J, Vastiau I, Oostvogels L. Immunogenicity and safety of the HZ/su adjuvanted Herpes Zoster subunit vaccine in adults previously vaccinated with a live attenuated Herpes Zoster vaccine. J Infect Dis. 2017 Dec 12;216(11):1343–51. doi:10.1093/infdis/jix482.
  • Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines. 2011;10(4):499–511. doi:10.1586/erv.10.174.
  • Cooper C, Mackie D. Hepatitis B surface antigen-1018 ISS adjuvant-containing vaccine: a review of HEPLISAV™ safety and efficacy. Expert Rev Vaccines. 2011 Apr;10(4):417–27. doi:10.1586/erv.10.162.
  • Wang M, Jiang S, Wang Y. Recent advances in the production of recombinant subunit vaccines in Pichia pastoris. Bioengineered. 2016;7(3):155–65. doi:10.1080/21655979.2016.1191707.
  • Zhang N, Jiang S, Du L. Current advancements and potential strategies in the development of MERS-CoV vaccines. Expert Rev Vaccines. 2014 Jun;13(6):761–74. doi:10.1586/14760584.2014.912134.
  • Oyston P, Robinson K. The current challenges for vaccine development. J Med Microbiol. 2012 Jul;61(Pt 7):889–94. doi:10.1099/jmm.0.039180-0.
  • Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem. 2013 Mar;8(3):360–76. doi:10.1002/cmdc.201200487.
  • Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM. Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity. J Intern Med. 2012 Feb;271(2):183–92. doi:10.1111/j.1365-2796.2011.02496.x.
  • Cox MM. Recombinant protein vaccines produced in insect cells. Vaccine. 2012 Feb 27;30(10):1759–66. doi:10.1016/j.vaccine.2012.01.016.
  • Jiang S, Bottazzi ME, Du L, Lustigman S, Tseng CTK, Curti E, Jones K, Zhan B, Hotez PJ. Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome. Expert Rev Vaccines. 2012 Dec;11(12):1405–13. doi:10.1586/erv.12.126.
  • Gary EN, Weiner DB. DNA vaccines: prime time is now. Curr Opin Immunol. 2020 Apr 4;65:21–27. doi:10.1016/j.coi.2020.01.006.
  • Pathak A. Global markets for vaccine technologies; 2018 April.
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3. Nature. 2001 Oct 18;413(6857):732–38. doi:10.1038/35099560.
  • Janeway CA Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20(1):197–216. doi:10.1146/annurev.immunol.20.083001.084359.
  • Black M, Trent A, Tirrell M, Olive C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev Vaccines. 2010 Feb;9(2):157–73. doi:10.1586/erv.09.160.
  • Depelsenaire ACI, Kendall MAF, Young PR, Muller DA. Chapter three - introduction to vaccines and vaccination. In: Skwarczynski M, Toth I, editors. Micro and nanotechnology in vaccine development. Cambridge (MA): William Andrew Publishing; 2017. p. 47–62.
  • Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines. 2016;15(3):313–29. doi:10.1586/14760584.2016.1124762.
  • Akbari O, Panjwani N, Garcia S, Tascon R, Lowrie D, Stockinger B. DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J Exp Med. 1999 Jan 4;189(1):169–78. doi:10.1084/jem.189.1.169.
  • Chattergoon MA, Robinson TM, Boyer JD, Weiner DB. Specific immune induction following DNA-based immunization through in vivo transfection and activation of macrophages/antigen-presenting cells. J Immunol. 1998 Jun 15;160(12):5707–18.
  • Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012 Nov;64(14):1547–68. doi:10.1016/j.addr.2012.04.005.
  • Suh H, Shin J, Kim YC. Microneedle patches for vaccine delivery. Clin Exp Vaccine Res. 2014 Jan;3(1):42–49. doi:10.7774/cevr.2014.3.1.42.
  • DNA Medicines Pipeline. Inovio pharmaceuticals. [accessed 2020 Aug 10]. https://www.inovio.com/dna-medicines-pipeline
  • Sheets EE, Urban RG, Crum CP, Hedley ML, Politch JA, Gold MA, Muderspach LI, Cole GA, Crowley-Nowick PA. Immunotherapy of human cervical high-grade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. Am J Obstet Gynecol. 2003 Apr;188(4):916–26. doi:10.1067/mob.2003.256.
  • Klencke B, Matijevic M, Urban RG, Lathey JL, Hedley ML, Berry M, Thatcher J, Weinberg V, Wilson J, Darragh T, et al. Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a Phase I study of ZYC101. Clin Cancer Res. 2002 May;8(5): 1028–37.
  • Jechlinger W, Azimpour Tabrizi C, Lubitz W, Mayrhofer P. Minicircle DNA immobilized in bacterial ghosts: in vivo production of safe non-viral DNA delivery vehicles. J Mol Microbiol Biotechnol. 2004;8(4):222–31. doi:10.1159/000086703.
  • Vartak A, Sucheck SJ. Recent advances in subunit vaccine carriers. Vaccines. 2016;4(2):12. doi:10.3390/vaccines4020012.
  • Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev. 2011 Jan;239(1):62–84. doi:10.1111/j.1600-065X.2010.00980.x.
  • Rodgers AM, Cordeiro AS, Donnelly RF. Technology update: dissolvable microneedle patches for vaccine delivery. Med Devices (Auckl). 2019;12:379–98. doi:10.2147/MDER.S198220.
  • Graham BS, Enama ME, Nason MC, Gordon IJ, Peel SA, Ledgerwood JE, Plummer SA, Mascola JR, Bailer RT, Roederer M, et al. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial. PLoS ONE. 2013;8(4):e59340–e59340. doi:10.1371/journal.pone.0059340.
  • Ledwith BJ, Manam S, Troilo PJ, Barnum AB, Pauley CJ, Griffiths II TG, Harper LB, Beare CM, Bagdon WJ, Nichols WW, et al. Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology. 2000;43(4–6):258–72. doi:10.1159/000053993.
  • Vahedi F, Nazari N, Arbabi S, Peymanfar Y. Investigation of DNA integration into reproductive organs following intramuscular injection of DNA in mice. Rep Biochem Mol Biol. 2012 Oct;1(1):21–24.
  • Chen WH, Strych U, Hotez PJ, Bottazzi ME. The SARS-CoV-2 vaccine pipeline: an overview. Curr Trop Med Rep. 2020 Mar 3;1–4. doi:10.1007/s40475-020-00201-6.
  • Liu F, Wang X, Zheng M, Xiong F, Liu X, Zhou L, Tan W, Chen Z. Immunization with DNA prime-subunit protein boost strategy based on influenza H9N2 virus conserved matrix protein M1 and its epitope screening. Sci Rep. 2020 Mar 5;10(1):4144. doi:10.1038/s41598-020-60783-z.
  • FDA. Points to consider in the characterization of cell lines used to produce biologicals; 1993.[accessed 2020 Dec 3]. https://www.fda.gov/media/76255/download
  • FDA. Considerations for Plasmid DNA Vaccines for Infectious Disease Indications. Guidance for Industry; 2007.
  • Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018 Apr;17(4):261–79. doi:10.1038/nrd.2017.243.
  • Fleeton MN, Chen M, Berglund P, Rhodes G, Parker SE, Murphy M, Atkins GJ, Liljestrom P. Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J Infect Dis. 2001 May 1;183(9):1395–98. doi:10.1086/319857.
  • Bevan MJ. Cross-priming. Nat Immunol. 2006 Apr;7(4):363–65. doi:10.1038/ni0406-363.
  • Jackson NAC, Kester KE, Casimiro D, Gurunathan S, DeRosa F. The promise of mRNA vaccines: a biotech and industrial perspective. NPJ Vaccines. 2020;5(1):11. doi:10.1038/s41541-020-0159-8.
  • Hoerr I, Obst R, Rammensee HG, Jung G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol. 2000 Jan;30(1):1–7. doi:10.1002/1521-4141(200001)30:1<1::Aid-immu1>3.0.Co;2-#.
  • Bourquin C, Schmidt L, Hornung V, Wurzenberger C, Anz D, Sandholzer N, Schreiber S, Voelkl A, Hartmann G, Endres S, et al. Immunostimulatory RNA oligonucleotides trigger an antigen-specific cytotoxic T-cell and IgG2a response. Blood. 2007 Apr 1;109(7):2953–60. doi:10.1182/blood-2006-07-033258.
  • Sander LE, Davis MJ, Boekschoten MV, Amsen D, Dascher CC, Ryffel B, Swanson JA, Müller M, Blander JM. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature. 2011 May 22;474(7351):385–89. doi:10.1038/nature10072.
  • Weissman D, Ni H, Scales D, Dude A, Capodici J, McGibney K, Abdool A, Isaacs SN, Cannon G, Karikó K, et al. HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response. J Immunol. 2000 Oct 15;165(8):4710–17. doi:10.4049/jimmunol.165.8.4710.
  • Kariko K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005 Aug;23(2):165–75. doi:10.1016/j.immuni.2005.06.008.
  • Sahin U, Kariko K, Tureci O. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov. 2014 Oct;13(10):759–80. doi:10.1038/nrd4278.
  • Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, Sah DWY, Stebbing D, Crosley EJ, Yaworski E, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010Feb;28(2):172–76. doi:10.1038/nbt.1602.
  • Pardi N, Tuyishime S, Muramatsu H, Kariko K, Mui BL, Tam YK, Madden TD, Hope MJ, Weissman D. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release. 2015 Nov 10;217:345–51. doi:10.1016/j.jconrel.2015.08.007.
  • Kariko K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011 Nov;39(21):e142. doi:10.1093/nar/gkr695.
  • Moderna and Lonza announce worldwide strategic collaboration to manufacture Moderna’s vaccine (mRNA-1273) against novel Coronavirus. Moderna, Inc. May 2020;1:2020.
  • Theofilopoulos AN, Baccala R, Beutler B, Kono DH. Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol. 2005;23:307–36. doi:10.1146/annurev.immunol.23.021704.115843.
  • Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, Burg G, Liu Y-J, Gilliet M. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J Exp Med. 2005;202(1):135–43. doi:10.1084/jem.20050500.
  • Fischer S, Gerriets T, Wessels C, Walberer M, Kostin S, Stolz E, Zheleva K, Hocke A, Hippenstiel S, Preer KT, et al. Extracellular RNA mediates endothelial-cell permeability via vascular endothelial growth factor. Blood. 2007 Oct 1;110(7):2457–65. doi:10.1182/blood-2006-08-040691.
  • Kannemeier C, Shibamiya A, Nakazawa F, Trusheim H, Ruppert C, Markart P, Song Y, Tzima E, Kennerknecht E, Niepmann M, et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A. 2007;104(15):6388–93. doi:10.1073/pnas.0608647104.
  • Maugeri M, Nawaz M, Papadimitriou A, Angerfors A, Camponeschi A, Na M, Hölttä M, Skantze P, Johansson S, Sundqvist M, et al. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nat Commun. 2019 Sep 24;10(1):4333. doi:10.1038/s41467-019-12275-6.
  • Willman D. Federal vaccine development sites ill-suited to counter covid-19 epidemic. The Washington Post. [accessed 2020 Mar 15].
  • Bloom BR. The United States needs a national vaccine authority. Science. 1994 Sep 2;265(5177):1378–80. doi:10.1126/science.8073275.
  • Douglas RG. Fostering partnerships for vaccine development: a delicate fabric. Bull N Y Acad Med Summer. 1996;73:113–23.
  • Trump Administration Announces Framework and Leadership for ‘Operation Warp Speed’. United States department of health and human services. [accessed 2020 Oct 2]. https://www.hhs.gov/about/news/2020/05/15/trump-administration-announces-framework-and-leadership-for-operation-warp-speed.html
  • Howard KL, Wright CN. Operation warp speed: accelerated COVID-19 vaccine development status and efforts to address manufacturing challenges. Report to Congressional Addresses; 2021 February.
  • Russell WW DEFENSE PRODUCTION ACT: opportunities exist to increase transparency and identify future actions to mitigate medical supply chain issues. Report to Congressional Committees. 2020 Nov.
  • Cox B. How operation warp speed helps clear obstacles to COVID-19 vaccine production. informa pharma intelligence. [accessed 2021 Feb 15]. https://pink.pharmaintelligence.informa.com/PS143777/How-Operation-Warp-Speed-Helps-Clear-Obstacles-To-COVID-19-Vaccine-Production?vid=Pharma&processId=cfd18ede-9413-4c6b-a0c6-83de4f8744fd
  • The Access to COVID-19 Tools (ACT) Accelerator. World Health Organization. [accessed 2020 Oct 2]. https://www.who.int/initiatives/act-accelerator
  • Status report & plan. ACT accelerator: access to COVID-19 tools; 2020 Sept. p. 1–36.
  • An economic investment case & financing requirements. ACT accelerator: access to COVID-19 tools; 2020 Sept 25.
  • Berkley S. COVAX explained. GAVI. [accessed 2020 Oct 2]. https://www.gavi.org/vaccineswork/covax-explained
  • Biological reference materials. The National Institute for Biological Standards and Control (NIBSC). [accessed 2021 Feb 9]. https://www.nibsc.org/products/brm_product_catalogue.aspx
  • Main outcomes of the meeting of the WHO expert committee on biological standardization held from 9 to 10 December 2020. World Health Organization. [accessed 2021 Mar 3]. https://www.who.int/publications/m/item/ECBS-Executive-Summary.IF.IK.TW-15_Dec_2020
  • Vaccine and Related Biological Product Guidances. U.S. food and drug administration. [accessed 2021 Feb 8]. https://www.fda.gov/vaccines-blood-biologics/biologics-guidances/vaccine-and-related-biological-product-guidances
  • Biologicals: active substance. European Medicines Agency. [accessed 2021 Feb 8]. https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-guidelines/biologicals/biologicals-active-substance
  • Biologicals: finished product. European medicines agency. [accessed 2021 Feb 8]. https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-guidelines/biologicals/biologicals-finished-product
  • Schofield I. EMA: no application received for Sputnik V vaccine. Informa Pharma Intelligence. [accessed 2021 Feb 15]. https://pink.pharmaintelligence.informa.com/PS143771/EMA-No-Application-Received-For-Sputnik-V-Vaccine
  • Zerhouni E, Hamburg M. The need for global regulatory harmonization: a public health imperative. Sci Transl Med. 2016;8(338):338ed6–338ed6. doi:10.1126/scitranslmed.aaf1396.
  • Health product and policy standards. World Health Organization; 2021 Feb 8.
  • Coronavirus disease (COVID-19): vaccine access and allocation. World Health Organization. [accessed 2021 Dec 12]. https://www.who.int/news-room/q-a-detail/coronavirus-disease-(covid-19)-vaccine-access-and-allocation
  • Patrick SM, Wright JA. Designing a global coalition of medicines regulators; 2014.
  • Atouf F, Venema J. Do standards matter? What is their value? J Pharm Sci. 2020 May 1;109(8):2387–92. doi:10.1016/j.xphs.2020.04.017.
  • Lichfield G. This is what it will take to get us back outside. MIT Technology Review. Massachusetts Institute of Technology; 2020.
  • Thomson-Deveaux A, Paine N. Even with a vaccine, the economy could take many months to return to normal. ABC News. [accessed 2020 Sept 7]. https://fivethirtyeight.com/features/even-with-a-vaccine-the-economy-could-take-many-months-to-return-to-normal
  • Zhang S. A vaccine reality check. The Altantic. Washington DC: Romer, Hayley; 2020.
  • CDC. Health equity considerations and racial and ethnic minority groups. Centers for Disease Control and Prevention. [accessed 2020 Sept 7]. https://www.cdc.gov/coronavirus/2019-ncov/community/health-equity/race-ethnicity.html
  • AMA. Impact of COVID-19 on minoritized and marginalized communities. American Medical Association. [accessed 2020 Sept 7]. https://www.ama-assn.org/delivering-care/health-equity/impact-covid-19-minoritized-and-marginalized-communities
  • Artiga S, Orgera K, Pham O, Corallo B. Growing data underscore that communities of color are being harder hit by COVID-19. Policy Watch. [accessed 2020 Apr 12]. https://www.kff.org/policy-watch/growing-data-underscore-communities-color-harder-hit-covid-19/
  • Laurencin CT, McClinton A. The COVID-19 pandemic: a call to action to identify and address racial and ethnic disparities. J Racial Ethn Health Disparities. 2020;7(3):398–402. doi:10.1007/s40615-020-00756-0.
  • Koyama T, Weeraratne D, Snowdon JL, Parida L. Emergence of drift variants that may affect COVID-19 vaccine development and antibody treatment. Pathogens. 2020;9(5):324. doi:10.3390/pathogens9050324.