2,150
Views
4
CrossRef citations to date
0
Altmetric
Review

The potential applications of T cell receptor (TCR)-like antibody in cervical cancer immunotherapy

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2981-2994 | Received 20 Oct 2020, Accepted 01 Apr 2021, Published online: 14 May 2021

References

  • InformedHealth.org. Cervical cancer: overview. 2006; 2017 Dec 14 [accessed 2019 Nov 10]. https://www.ncbi.nlm.nih.gov/books/NBK279259/.
  • WHO. Cervical cancer. 2019 [accessed 2019 Nov 30]. https://www.who.int/cancer/prevention/diagnosis-screening/cervical-cancer/en/.
  • Denny L, Herrero R, Levin C, Kim JJ. Cervical Cancer In: Gelband H, Jha P, Sankaranarayan R, Horton S, eds. Cancer: Disease Control Priorities. Washington (DC): The International Bank for Reconstruction and Development / The World Bank, 2015:69–84
  • Mwaka AD, Orach CG, Were EM, Lyratzopoulos G, Wabinga H, Roland M. Awareness of cervical cancer risk factors and symptoms: cross-sectional community survey in post-conflict northern Uganda. Health Expectations. 2016;19(4):854–67. doi:10.1111/hex.12382.
  • Franco EL, Duarte-Franco E, Ferenczy A. Cervical cancer: epidemiology, prevention and the role of human papillomavirus infection. CMAJ. 2001;164:1017–25.
  • Momenimovahed Z, Salehiniya H. Incidence, mortality and risk factors of cervical cancer in the world. Biomed Res Ther. 2017;4(12):1795–811. doi:10.15419/bmrat.v4i12.386.
  • Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet. 2019;393(10167):169–82. doi:10.1016/S0140-6736(18)32470-X.
  • Robboy SJ, Anderson MC, Russell P. The etiology of cervical cancer. In: Fu SY, editor. Pathology of the female reproductive tract. London: Churchill Livingstone, Elsevier Science; 2000. p. 146–64
  • Luria L, Cardoza-Favarato G. Human papillomavirus. StatPearls [Internet]: 2019. [accessed 2020 Jan 20]. https://www.ncbi.nlm.nih.gov/books/NBK448132/.
  • Braaten KP, Laufer MR. Human papillomavirus (HPV), HPV-related disease, and the HPV vaccine. Rev Obstet Gynecol. 2008;1:2–10.
  • Woodman CBJ, Collins SI, Young LS. The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer. 2007;7(1):11–22. doi:10.1038/nrc2050.
  • Wang -C-CJ, Palefsky JM. Human papillomavirus (HPV) infections and the importance of HPV vaccination. Curr Epidemiol Rep. 2015;2(2):101–09. doi:10.1007/s40471-015-0039-3.
  • Yim E-K, Park J-S. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat. 2005;37(6):319–24. doi:10.4143/crt.2005.37.6.319.
  • PATE Board. Cervical cancer treatment (PDQ®): patient version. PDQ Cancer Information Summaries 2019; 2020 Jan 10 [accessed 2002 Nov 8]. https://www.ncbi.nlm.nih.gov/books/NBK65985/.
  • Grace PCY, Paul de S, Levon MK. Current and potential treatments for cervical cancer. Curr Cancer Drug Targets. 2013;13(2):205–20. doi:10.2174/1568009611313020009.
  • Bellati F, et al. Monoclonal antibodies in gynecological cancer: a critical point of view. J Immunol Res. 2011;2011(Article ID 890758):16.
  • Fujimoto J, Toyoki H, Sato E, Sakaguchi H, Tamaya T. Clinical implication of expression of vascular endothelial growth factor-C in metastatic lymph nodes of uterine cervical cancers. Br J Cancer. 2004;91(3):466–69. doi:10.1038/sj.bjc.6601963.
  • Eskander RN, Tewari KS. Development of bevacizumab in advanced cervical cancer: pharmacodynamic modeling, survival impact and toxicology. Future Oncol (London, England). 2015;11(6):909–22. doi:10.2217/fon.14.276.
  • Tewari KS, Sill MW, Penson RT, Huang H, Ramondetta LM, Landrum LM, Oaknin A, Reid TJ, Leitao MM, Michael HE, et al. Bevacizumab for advanced cervical cancer: final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (gynecologic oncology group 240). Lancet. 2017;390(10103):1654–63. doi:10.1016/S0140-6736(17)31607-0.
  • Heinzerling L, De Toni EN, Schett G, Hundorfean G, Zimmer L. Checkpoint inhibitors. Dtsch Arztebl Int. 2019;116(8):119–26. doi:10.3238/arztebl.2019.0119.
  • Karim R, Jordanova ES, Piersma SJ, Kenter GG, Chen L, Boer JM, Melief CJM, Van der Burg SH. Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clin Cancer Res. 2009;15(20):6341–47. doi:10.1158/1078-0432.CCR-09-1652.
  • Liu Y, Wu L, Tong R, Yang F, Yin L, Li M, You L, Xue J, Lu Y. PD-1/PD-L1 inhibitors in cervical cancer. Front Pharmacol. 2019;10:65–65. doi:10.3389/fphar.2019.00065.
  • AACR. Pembrolizumab OK’d for cervical cancer. Cancer Discov. 2018;8(8):904.
  • Tucker N. FDA grants fast track designation to balstilimab in metastatic cervical cancer. Targeted Oncology; 2020 Apr 8 [accessed 30 May 2020]. https://www.targetedonc.com/view/fda-grants-fast-track-designation-to-balstilimab-in-metastatic-cervical-cancer.
  • Chen W, Li T, Wang J, Liang L, Huang D, Yan G, Tian Y, Zhang X, Zhang W. Clinical study of nimotuzumab combined with concurrent radiochemotherapy for treatment of locally advanced cervical cancer. Cancer Manag Res. 2019;11:8157–65. doi:10.2147/CMAR.S191134.
  • Cao Y, Deng L, Lian S, Jiang Y. Research on the efficacy of cisplatin and nimotuzumab combined with concurrent chemoradiotherapy on locally advanced cervical cancer. J buon. 2019;24:2013–19.
  • Santin AD, Sill MW, McMeekin DS, Leitao MM, Brown J, Sutton GP, Van le L, Griffin P, Boardman CH. Phase II trial of cetuximab in the treatment of persistent or recurrent squamous or non-squamous cell carcinoma of the cervix: a gynecologic oncology group study. Gynecol Oncol. 2011;122(3):495–500. doi:10.1016/j.ygyno.2011.05.040.
  • Hong DS, Concin N, Vergote I, de Bono JS, Slomovitz BM, Drew Y, et al. Tisotumab Vedotin in Previously Treated Recurrent or Metastatic Cervical Cancer. Clinical Cancer Research 2020; 26:1220–8
  • Lheureux S, Butler MO, Clarke B, Cristea MC, Martin LP, Tonkin K, Fleming GF, Tinker AV, Hirte HW, Tsoref D, et al. Association of ipilimumab with safety and antitumor activity in women with metastatic or recurrent human papillomavirus-related cervical carcinoma. JAMA Oncol. 2018;4(7):e173776. doi:10.1001/jamaoncol.2017.3776.
  • Naumann RW, Hollebecque A, Meyer T, Devlin M-J, Oaknin A, Kerger J, López-Picazo JM, Machiels J-P, Delord J-P, Evans TRJ, et al. Safety and efficacy of nivolumab monotherapy in recurrent or metastatic cervical, vaginal, or vulvar carcinoma: results from the phase I/II checkmate 358 trial. J Clin Oncol. 2019;37(31):2825–34. doi:10.1200/JCO.19.00739.
  • Rischin D, Gil-Martin M, González-Martin A, Brana I, Hou JY, Cho D, Falchook G, Formenti S, Jabbour S, Moore K, et al. 75P-cemiplimab, a human PD-1 monoclonal antibody, in patients (pts) with recurrent or metastatic cervical cancer: interim data from phase I cohorts. Ann Oncol. 2018;29:x27–x28. doi:10.1093/annonc/mdy487.006.
  • Papadopoulos KP, Johnson ML, Lockhart AC, Moore K, Falchook GS, Formenti SC, Naing A, Carvajal RD, Rosen LS, Weiss GJ, et al. First-in-human study of cemiplimab alone or in combination with radiotherapy and/or low-dose cyclophosphamide in patients with advanced malignancies. Clin Cancer Res. 2020;26(5):1025. doi:10.1158/1078-0432.CCR-19-2609.
  • Tse K-Y. Avelumab with axitinib in persistent or recurrent cervical cancer after platinum-based chemotherapy (ALARICE); 2019 Feb 18 [accessed 2020 Mar 31]. https://clinicaltrials.gov/ct2/show/NCT03826589#contacts.
  • Mayadev J, Nunes AT, Li M, Marcovitz M, Lanasa MC, Monk BJ. CALLA: efficacy and safety of concurrent and adjuvant durvalumab with chemoradiotherapy versus chemoradiotherapy alone in women with locally advanced cervical cancer: a phase III, randomized, double-blind, multicenter study. Int J Gynecol Cancer. 2020;30(7):1065–70. doi:10.1136/ijgc-2019-001135.
  • Roche H-L A phase II, safety, and efficacy study of tiragolumab plus atezolizumab and atezolizumab monotherapy in patients with metastatic and/or recurrent PD-L1−positive cervical cancer (NCT04300647); ClinicalTrials.gov, 2020 [ accessed 2020 July 17]. https://clinicaltrials.gov/ct2/show/NCT04300647#contacts.
  • Friedman CF, Snyder Charen A, Zhou Q, Carducci MA, Buckley De Meritens A, Corr BR, et al. Phase II study of atezolizumab in combination with bevacizumab in patients with advanced cervical cancer. Journal for immunotherapy of cancer 2020; 8:e001126.
  • Grau JF, Farinas-Madrid L, Oaknin A. A randomized phase III trial of platinum chemotherapy plus paclitaxel with bevacizumab and atezolizumab versus platinum chemotherapy plus paclitaxel and bevacizumab in metastatic (stage IVB), persistent, or recurrent carcinoma of the cervix: the BEATcc study (ENGOT-Cx10/GEICO 68-C/JGOG1084/GOG-3030). Int J Gynecol Cancer. 2020;30(1):139–43. doi:10.1136/ijgc-2019-000880.
  • Cruz E, Kayser V. Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy. Biologics. 2019;13:33–51.
  • Bharti AC, Singh T, Bhat A, Pande D, Jadli M. Therapeutic strategies for human papillomavirus infection and associated cancers. Front Biosci (Elite Ed). 2018;10(1):15–73. doi:10.2741/e808.
  • Pal A, Kundu R. Human papillomavirus E6 and E7: the cervical cancer hallmarks and targets for therapy. Front Microbiol. 2020;10:3116–3116. doi:10.3389/fmicb.2019.03116.
  • Áyen Á, Jiménez Martínez Y, Boulaiz H. Targeted gene delivery therapies for cervical cancer. Cancers. 2020;12(5):1301. doi:10.3390/cancers12051301.
  • Kumar S, Biswas M, Jose T. HPV vaccine: current status and future directions. Med J Armed Forces India. 2015;71(2):171–77. doi:10.1016/j.mjafi.2015.02.006.
  • Nayereh KG, Khadem G. Preventive and therapeutic vaccines against human papillomaviruses associated cervical cancers. Iran J Basic Med Sci. 2012;15:585–601.
  • Barra F, Della Corte L, Noberasco G, Foreste V, Riemma G, Di Filippo C, Bifulco G, Orsi A, Icardi G, Ferrero S, et al. Advances in therapeutic vaccines for treating human papillomavirus-related cervical intraepithelial neoplasia. J Obstetrics Gynaecol Res. 2020;46(7):989–1006. doi:10.1111/jog.14276.
  • Rohaan MW, Wilgenhof S, Haanen J. Adoptive cellular therapies: the current landscape. Virchows Arch. 2019;474(4):449–61. doi:10.1007/s00428-018-2484-0.
  • Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299–308. doi:10.1038/nrc2355.
  • Stoiber S, Cadilha BL, Benmebarek M-R, Lesch S, Endres S, Kobold S. Limitations in the design of chimeric antigen receptors for cancer therapy. Cells. 2019;8(5):472. doi:10.3390/cells8050472.
  • Orbegoso C, Murali K, Banerjee S. The current status of immunotherapy for cervical cancer. Rep Pract Oncol Radiother. 2018;23(6):580–88. doi:10.1016/j.rpor.2018.05.001.
  • Piersma SJ, Jordanova ES, Van Poelgeest MIE, Kwappenberg KMC, Van der Hulst JM, Drijfhout JW, Melief CJM, Kenter GG, Fleuren GJ, Offringa R, et al. High number of intraepithelial CD8+tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res. 2007;67(1):354–61. doi:10.1158/0008-5472.CAN-06-3388.
  • Jazaeri A, Gontcharova V, Blaskovich M, Kunkalla K, Masteller E, Fardis M, Chartier C. 873P in vivo persistence of iovance tumour-infiltrating lymphocytes LN-145 in cervical cancer patients. Ann Oncol. 2020;31:S642. doi:10.1016/j.annonc.2020.08.1012.
  • Jazaeri AA, Edwards RP, Wenham RM, Matsuo K, Fleming GF, O’Malley DM, Slomovitz BM, Monk BJ, Brown RJ, Suzuki S, et al. A phase 2, multicenter study to evaluate the efficacy and safety using autologous tumor infiltrating lymphocytes (LN-145) in patients with recurrent, metastatic, or persistent cervical carcinoma. J Clin Oncol. 2018;36(15_suppl): TPS5604–TPS5604. doi:10.1200/JCO.2018.36.15_suppl.TPS5604.
  • Doran SL, Stevanović S, Adhikary S, Gartner JJ, Jia L, Kwong ML, Faquin WC, Hewitt SM, Sherry RM, Yang JC, Rosenberg SA. T-cell receptor gene therapy for human papillomavirus-associated epithelial cancers: a first-in-human, phase I/II study. J Clin Oncol. 2019;37(30):2759–68. doi:10.1200/JCO.18.02424.
  • Thommen DS, Schumacher TN. T cell dysfunction in cancer. Cancer Cell. 2018;33(4):547–62. doi:10.1016/j.ccell.2018.03.012.
  • Zhang Z, Liu S, Zhang B, Qiao L, Zhang Y, Zhang Y. T cell dysfunction and exhaustion in cancer. Front Cell Dev Biol. 2020;8:17–17. doi:10.3389/fcell.2020.00017.
  • Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6(6):e1792–e1792. doi:10.1038/cddis.2015.162.
  • Cheng J, Zhao L, Zhang Y, Qin Y, Guan Y, Zhang T, Liu C, Zhou J. Understanding the mechanisms of resistance to CAR T-cell therapy in malignancies. Front Oncol. 2019;9:1237–1237. doi:10.3389/fonc.2019.01237.
  • Andersen PS, Stryhn A, Hansen BE, Fugger L, Engberg J, Buus S. A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells. Proc Natl Acad Sci U S A. 1996;93(5):1820–24. doi:10.1073/pnas.93.5.1820.
  • Sela-Culang I, Kunik V, Ofran Y. The structural basis of antibody-antigen recognition. Front Immunol. 2013;4:302–302. doi:10.3389/fimmu.2013.00302.
  • Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev Immunol. 2013;31(1):443–73. doi:10.1146/annurev-immunol-032712-095910.
  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Helper T cells and lymphocyte activation. In: Molecular biology of the cell. New York: Garland Science; 2002. https://www.ncbi.nlm.nih.gov/books/NBK26827/
  • Dubrovsky L, Dao T, Gejman RS, Brea EJ, Chang AY, Oh CY, Casey E, Pankov D, Scheinberg DA. T cell receptor mimic antibodies for cancer therapy. OncoImmunology. 2016;5(1):e1049803.
  • Cohen M, Reiter Y. T-cell receptor-like antibodies: targeting the intracellular proteome therapeutic potential and clinical applications. Antibodies. 2013;2(3):517–34. doi:10.3390/antib2030517.
  • Dass SA, Norazmi MN, Dominguez AA, Miguel MESGS, Tye GJ. Generation of a T cell receptor (TCR)-like single domain antibody (sDAb) against a mycobacterium tuberculosis (Mtb) heat shock protein (HSP) 16kDa antigen presented by Human Leukocyte Antigen (HLA)-A*02. Mol Immunol. 2018;101:189–96. doi:10.1016/j.molimm.2018.07.001.
  • Lai J, Choo JAL, Tan WJ, Too CT, Oo MZ, Suter MA, Mustafa FB, Srinivasan N, Chan CEZ, Lim AGX, et al. TCR–like antibodies mediate complement and antibody-dependent cellular cytotoxicity against Epstein-Barr virus–transformed B lymphoblastoid cells expressing different HLA-A*02 microvariants. Sci Rep. 2017;7(1):9923. doi:10.1038/s41598-017-10265-6.
  • Weidanz JA, Piazza P, Hickman-Miller H, Woodburn D, Nguyen T, Wahl A, Neethling F, Chiriva-Internati M, Rinaldo CR, Hildebrand WH, et al. Development and implementation of a direct detection, quantitation and validation system for class I MHC self-peptide epitopes. J Immunol Methods. 2007;318(1):47–58. doi:10.1016/j.jim.2006.09.019.
  • Dahan R, Tabul M, Chou YK, Meza-Romero R, Andrew S, Ferro AJ, Burrows GG, Offner H, Vandenbark AA, Reiter Y, et al. TCR-like antibodies distinguish conformational and functional differences in two vs. four-domain auto-reactive MHC II-peptide complexes. Eur J Immunol. 2011;41(5):1465–79. doi:10.1002/eji.201041241.
  • He Q, Liu Z, Liu Z, Lai Y, Zhou X, Weng J. TCR-like antibodies in cancer immunotherapy. J Hematol Oncol. 2019;12(1):99. doi:10.1186/s13045-019-0788-4.
  • Høydahl LS, Frick R, Sandlie I, Løset GÅ. Targeting the MHC ligandome by use of TCR-like antibodies. Antibodies (Basel, Switzerland). 2019;8(2):32.
  • Hammers CM, Stanley JR. Antibody phage display: technique and applications. J Invest Dermatol. 2014;134(2):e17–e17. doi:10.1038/jid.2013.521.
  • Kabir ME, Krishnaswamy S, Miyamoto M, Furuichi Y, Komiyama T. An improved phage-display panning method to produce an HM-1 killer toxin anti-idiotypic antibody. BMC Biotechnol. 2009;9(1):99. doi:10.1186/1472-6750-9-99.
  • Turunen L, Takkinen K, Söderlund H, Pulli T. Automated panning and screening procedure on microplates for antibody generation from phage display libraries. J Biomol Screen. 2009;14(3):282–93. doi:10.1177/1087057108330113.
  • Trenevska I, Li D, Banham AH. Therapeutic antibodies against intracellular tumor antigens. Front Immunol. 2017;8(1001). doi:10.3389/fimmu.2017.01001.
  • Jiang T, Shi T, Zhang H, Hu J, Song Y, Wei J, Ren S, Zhou C. Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol. 2019;12(1):93. doi:10.1186/s13045-019-0787-5.
  • Vigneron N. Human tumor antigens and cancer immunotherapy. Biomed Res Int. 2015;2015:948501–948501. doi:10.1155/2015/948501.
  • Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, Freund C. Major Histocompatibility Complex (MHC) Class I and MHC class II proteins: conformational plasticity in antigen presentation. Front Immunol. 2017;8(292). doi:10.3389/fimmu.2017.00292.
  • van Erp EA, Luytjes W, Ferwerda G, Van Kasteren PB. Fc-mediated antibody effector functions during respiratory syncytial virus infection and disease. Front Immunol. 2019;10(548). doi:10.3389/fimmu.2019.00548.
  • Sergeeva A, He H, Ruisaard K, St John L, Alatrash G, Clise-Dwyer K, Li D, Patenia R, Hong R, Sukhumalchandra P, et al. Activity of 8F4, a T cell receptor-like anti-PR1/HLA-A2 antibody, against primary human AML in vivo. Leukemia. 2016;30. doi:10.1038/leu.2016.57
  • Wittman VP, Woodburn D, Nguyen T, Neethling FA, Wright S, Weidanz JA. Antibody targeting to a class I MHC-peptide epitope promotes tumor cell death. J Immunol. 2006;177(6):4187. doi:10.4049/jimmunol.177.6.4187.
  • Dubrovsky L, Dao T, Gejman RS, Brea EJ, Chang AY, Oh CY, Casey E, Pankov D, Scheinberg DA. T cell receptor mimic antibodies for cancer therapy. Oncoimmunology. 2015;5(1):e1049803–e1049803. doi:10.1080/2162402X.2015.1049803.
  • Ataie N, Xiang J, Cheng N, Brea EJ, Lu W, Scheinberg DA, Liu C, Ng HL. Structure of a TCR-mimic antibody with target predicts pharmacogenetics. J Mol Biol. 2016;428(1):194–205. doi:10.1016/j.jmb.2015.12.002.
  • Aruna G. Immunotoxins: a review of their use in cancer treatment. J Stem Cells Regen Med. 2006;1:31–36.
  • Kreitman RJ. Immunotoxins for targeted cancer therapy. Aaps J. 2006;8:E532–E551.
  • Klechevsky E, Gallegos M, Denkberg G, Palucka K, Banchereau J, Cohen C, Reiter Y. Antitumor activity of immunotoxins with T-cell receptor-like specificity against human melanoma xenografts. Cancer Res. 2008;68(15):6360–67. doi:10.1158/0008-5472.CAN-08-0928.
  • Epel M, Carmi I, Soueid‐Baumgarten S, Oh S, Bera T, Pastan I, Berzofsky J, Reiter Y. Targeting TARP, a novel breast and prostate tumor-associated antigen, with T cell receptor-like human recombinant antibodies. Eur J Immunol. 2008;38(6):1706–20. doi:10.1002/eji.200737524.
  • Shen Y, Li Y-M, Zhou -J-J, Zhou Z, Xu Y-C, Zhao W-B, Chen S-Q. The antitumor activity of TCR-mimic antibody-drug conjugates (TCRm-ADCs) targeting the intracellular Wilms tumor 1 (WT1) oncoprotein. Int J Mol Sci. 2019;20(16):3912. doi:10.3390/ijms20163912.
  • Kurosawa N, Wakata Y, Ida K, Midorikawa A, Isobe M. High throughput development of TCR-mimic antibody that targets survivin-2B80-88/HLA-A*A24 and its application in a bispecific T-cell engager. Sci Rep. 2019;9(1):9827. doi:10.1038/s41598-019-46198-5.
  • Akatsuka Y. TCR-like CAR-T cells targeting MHC-bound minor histocompatibility antigens. Front Immunol. 2020;11(257). doi:10.3389/fimmu.2020.00257.
  • Zhang G, Wang L, Cui H, Wang X, Zhang G, Ma J, Han H, He W, Wang W, Zhao Y, et al. Anti-melanoma activity of T cells redirected with a TCR-like chimeric antigen receptor. Sci Rep. 2014;4:3571. doi:10.1038/srep03571.
  • Yim E-K, Park J-S. Biomarkers in cervical cancer. Biomark Insights. 2007;1:215–25.
  • Wentzensen N, von Knebel Doeberitz M. Biomarkers in cervical cancer screening. Dis Markers. 2007;23(4):315–30. doi:10.1155/2007/678793.
  • Suri A, Saini S, Sinha A, Agarwal S, Verma A, Parashar D, Singh S, Gupta N, Jagadish N. Cancer testis antigens: a new paradigm for cancer therapy. Oncoimmunology. 2012;1(7):1194–96. doi:10.4161/onci.20686.
  • Dang E, Yang S, Song C, Jiang D, Li Z, Fan W, Sun Y, Tao L, Wang J, Liu T, et al. BAP31, a newly defined cancer/testis antigen, regulates proliferation, migration, and invasion to promote cervical cancer progression. Cell Death Dis. 2018;9(8):791. doi:10.1038/s41419-018-0824-2.
  • Garg M, Kanojia D, Salhan S, Suri S, Gupta A, Lohiya NK, Suri A. Sperm-associated antigen 9 is a biomarker for early cervical carcinoma. Cancer. 2009;115(12):2671–83. doi:10.1002/cncr.24293.
  • Sarcevic B, Spagnoli GC, Terracciano L, Schultz-Thater E, Heberer M, Gamulin M, Krajina Z, Oresic T, Separovic R, Juretic A, et al. Expression of cancer/testis tumor associated antigens in cervical squamous cell carcinoma. Oncology. 2003;64(4):443–49. doi:10.1159/000070305.
  • Chang AY, Dao T, Gejman RS, Jarvis CA, Scott A, Dubrovsky L, Mathias MD, Korontsvit T, Zakhaleva V, Curcio M, Hendrickson RC. A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest. 2017;127(7):2705–18. doi:10.1172/JCI92335.
  • Spaans VM, Trietsch MD, Peters AAW, Osse M, Ter Haar N, Fleuren GJ, Jordanova ES. Precise classification of cervical carcinomas combined with somatic mutation profiling contributes to predicting disease outcome. Plos One. 2015;10(7):e0133670. doi:10.1371/journal.pone.0133670.
  • Jiang W, Xiang L, Pei X, He T, Shen X, Wu X, Yang H. Mutational analysis of KRAS and its clinical implications in cervical cancer patients. J Gynecol Oncol. 2018;29(1):e4. doi:10.3802/jgo.2018.29.e4.
  • Shen Y, Wei X, Jin S, Wu Y, Zhao W, Xu Y, Pan L, Zhou Z, Chen S. TCR-mimic antibody-drug conjugates targeting intracellular tumor-specific mutant antigen KRAS G12V mutation. Asian J Pharm Sci. 2020;15(6):777–85. doi:10.1016/j.ajps.2020.01.002.
  • Skora AD, Douglass J, Hwang MS, Tam AJ, Blosser RL, Gabelli SB, Cao J, Diaz LA, Papadopoulos N, Kinzler KW. Generation of MANAbodies specific to HLA-restricted epitopes encoded by somatically mutated genes. Proc Natl Acad Sci USA. 2015;112(32):9967–72. doi:10.1073/pnas.1511996112.
  • Nakamura H, Taguchi A, Kawana K, Baba S, Kawata A, Yoshida M, Fujimoto A, Ogishima J, Sato M, Inoue T, et al. Therapeutic significance of targeting survivin in cervical cancer and possibility of combination therapy with TRAIL. Oncotarget. 2018;9(17):13451–61. doi:10.18632/oncotarget.24413.
  • Vranic S, Cyprian FS, Akhtar S, Al Moustafa A-E. The role of Epstein–Barr virus in cervical cancer: a brief update. Front Oncol. 2018;8(113). doi:10.3389/fonc.2018.00113.
  • Ahmed M, Lopez-Albaitero A, Pankov D, Santich BH, Liu H, Yan S, Xiang J, Wang P, Hasan AN, Selvakumar A, O’Reilly RJ. TCR-mimic bispecific antibodies targeting LMP2A show potent activity against EBV malignancies. JCI Insight. 2018;3(4):e97805. doi:10.1172/jci.insight.97805.
  • Napoletano C, Bellati F, Tarquini E, Tomao F, Taurino F, Spagnoli G, Rughetti A, Muzii L, Nuti M, Panici PB. MAGE-A and NY-ESO-1 expression in cervical cancer: prognostic factors and effects of chemotherapy. Am J Obstet Gynecol. 2008;198(1):99.e1–7. doi:10.1016/j.ajog.2007.05.019.
  • Holland CJ, Crean RM, Pentier JM, de Wet B, Lloyd A, Srikannathasan V, Lissin N, Lloyd KA, Blicher TH, Conroy PJ, Hock M. Specificity of bispecific T cell receptors and antibodies targeting peptide-HLA. J Clin Invest. 2020;130(5):2673–88. doi:10.1172/JCI130562.
  • Cai S, Han K. Research on expression and importance of p53, p16 and VEGF-C in cervical cancer. J Gynecol Obstet Biol Reprod (Paris). 2015;44(7):639–45. doi:10.1016/j.jgyn.2014.07.012.
  • Low L, Goh A, Koh J, Lim S, Wang CI. Targeting mutant p53-expressing tumours with a T cell receptor-like antibody specific for a wild-type antigen. Nat Commun. 2019;10(1):5382–5382. doi:10.1038/s41467-019-13305-z.
  • Saeed M, Schooten E, Van Brakel M, Cole D, Ten Hagen TLM, Debets R. T cells expressing a TCR-like antibody selected against the heteroclitic variant of a shared MAGE-A epitope do not recognise the cognate epitope. Cancers. 2020;12(5):1255. doi:10.3390/cancers12051255.
  • Kwek ME-J, Kwek J, Lim YH, Lim SL, Wong WL. Metastatic squamous cell carcinoma of the cervix secreting ectopic serum beta human chorionic gonadotropin. 2018.
  • Neethling FA, Ramakrishna V, Keler T, Buchli R, Woodburn T, Weidanz JA. Assessing vaccine potency using TCRmimic antibodies. Vaccine. 2008;26(25):3092–102. doi:10.1016/j.vaccine.2008.02.025.
  • Luo Q, Zhang S, Wei H, Pang X, Zhang H. Roles of Foxp3 in the occurrence and development of cervical cancer. Int J Clin Exp Pathol. 2015;8:8717–30.
  • Dao T, Mun SS, Scott AC, Jarvis CA, Korontsvit T, Yang Z, Liu L, Klatt MG, Guerreiro M, Selvakumar A, et al. Depleting T regulatory cells by targeting intracellular Foxp3 with a TCR mimic antibody. OncoImmunology. 2019;8(7):e1570778. doi:10.1080/2162402X.2019.1570778.
  • Mathias MD, Sockolosky JT, Chang AY, Tan KS, Liu C, Garcia KC, Scheinberg DA. CD47 blockade enhances therapeutic activity of TCR mimic antibodies to ultra-low density cancer epitopes. Leukemia. 2017;31(10):2254–57. doi:10.1038/leu.2017.223.
  • Zhou C, Tuong ZK, Frazer IH. Papillomavirus immune evasion strategies target the infected cell and the local immune system. Front Oncol. 2019;9:682–682. doi:10.3389/fonc.2019.00682.
  • Fausch SC, Fahey LM, Da Silva DM, Kast WM. Human papillomavirus can escape immune recognition through Langerhans cell phosphoinositide 3-kinase activation. J Immunol. 2005;174(11):7172–78. doi:10.4049/jimmunol.174.11.7172.
  • Shreya K, Laura MF, Kast WM. Mechanisms used by human papillomaviruses to escape the host immune response. Curr Cancer Drug Targets. 2007;7(1):79–89. doi:10.2174/156800907780006869.
  • Gonçalves MAG, Donadi EA. Immune cellular response to HPV: current concepts. Braz J Infect Dis. 2004;8:1–9.
  • Hewitt EW. The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology. 2003;110(2):163–69. doi:10.1046/j.1365-2567.2003.01738.x.
  • Garcia-Lora A, Algarra I, Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol. 2003;195(3):346–55. doi:10.1002/jcp.10290.
  • Gameiro SF, Zhang A, Ghasemi F, Barrett J, Nichols A, Mymryk J. Analysis of class I major histocompatibility complex gene transcription in human tumors caused by human papillomavirus infection. Viruses. 2017;9(9):252. doi:10.3390/v9090252.
  • Piersma SJ. Immunosuppressive tumor microenvironment in cervical cancer patients. Cancer Microenviron. 2011;4(3):361–75. doi:10.1007/s12307-011-0066-7.
  • Hallermalm K, Seki K, Wei C, Castelli C, Rivoltini L, Kiessling R, Levitskaya J. Tumor necrosis factor-alpha induces coordinated changes in major histocompatibility class I presentation pathway, resulting in increased stability of class I complexes at the cell surface. Blood. 2001;98(4):1108–15. doi:10.1182/blood.V98.4.1108.
  • Wan S, Pestka S, Jubin RG, Lyu YL, Tsai Y-C, Liu LF. Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-beta signaling in breast cancer cells. Plos One. 2012;7(3):e32542. doi:10.1371/journal.pone.0032542.
  • Yang X, Xie S, Yang X, Cueva JC, Hou X, Tang Z, Yao H, Mo F, Yin S, Liu A, et al. Opportunities and challenges for antibodies against intracellular antigens. Theranostics. 2019;9(25):7792–806. doi:10.7150/thno.35486.
  • Dao T, Pankov D, Scott A, Korontsvit T, Zakhaleva V, Xu Y, Xiang J, Yan S, De Morais Guerreiro MD, Veomett N, et al. Therapeutic bispecific T-cell engager antibody targeting the intracellular oncoprotein WT1. Nat Biotechnol. 2015;33(10):1079–86. doi:10.1038/nbt.3349.
  • Lu J, Gu Y, Li Q, Zhong H, Wang X, Zheng Z, Hu W, Wen L. Wilms’ tumor 1 (WT1) as a prognosis factor in gynecological cancers: a meta-analysis. Medicine. 2018;97(28):e11485–e11485. doi:10.1097/MD.0000000000011485.
  • Lowe DB, Bivens CK, Mobley AS, Herrera CE, McCormick AL, Wichner T, Sabnani MK, Wood LM, Weidanz JA. TCR-like antibody drug conjugates mediate killing of tumor cells with low peptide/HLA targets. mAbs. 2017;9(4):603–14. doi:10.1080/19420862.2017.1302630.
  • Zhu X, Belmont HJ, Price-Schiavi S, Liu B, Lee H-I, Fernandez M, Wong RL, Builes J, Rhode PR, Wong HC, et al. Visualization of p53 264–272/HLA-A*0201 complexes naturally presented on tumor cell surface by a multimeric soluble single-chain T cell receptor. J Immunol. 2006;176(5):3223–32. doi:10.4049/jimmunol.176.5.3223.
  • He Q, Jiang X, Zhou X, Weng J. Targeting cancers through TCR-peptide/MHC interactions. J Hematol Oncol. 2019;12(1):139. doi:10.1186/s13045-019-0812-8.
  • Chang AY, Gejman RS, Brea EJ, Oh CY, Mathias MD, Pankov D, Casey E, Dao T, Scheinberg DA. Opportunities and challenges for TCR mimic antibodies in cancer therapy. Expert Opin Biol Ther. 2016;16(8):979–87. doi:10.1080/14712598.2016.1176138.
  • Krausa P, Iii MB, Savage D, Hui KM, Bunce M, Ngai JLF, Teo DLT, Ong YW, Barouch D, Allsop CEM, et al. Genetic polymorphism within HLA-A*02: significant allelic variation revealed in different populations. Tissue Antigens. 1995;45(4):223–31. doi:10.1111/j.1399-0039.1995.tb02444.x.
  • Li D, Toji S, Watanabe K, Torigoe T, Tsukahara T. Identification of novel human leukocyte antigen-A*11:01-restricted cytotoxic T-lymphocyte epitopes derived from osteosarcoma antigen papillomavirus binding factor. Cancer Sci. 2019;110(4):1156–68. doi:10.1111/cas.13973.
  • Maciag PC, Schlecht NF, Souza PS, Franco EL, Villa LL, Petzl-Erler ML. Major histocompatibility complex class II polymorphisms and risk of cervical cancer and human papillomavirus infection in Brazilian women. Cancer Epidemiol Biomarkers Prev. 2000;9(11):1183.
  • Dass SA, Norazmi MN, Acosta A, Sarmiento ME, Tye GJ. TCR-like domain antibody against mycobacterium tuberculosis (Mtb) heat shock protein antigen presented by HLA-A*11 and HLA-A*24. Int J Biol Macromol. 2020;155:305–14. doi:10.1016/j.ijbiomac.2020.03.229.
  • Garrido F. MHC/HLA class I loss in cancer cells. Adv Exp Med Biol. 2019;1151:15–78.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.