2,922
Views
21
CrossRef citations to date
0
Altmetric
Review

Facing the challenges of multidrug-resistant Acinetobacter baumannii: progress and prospects in the vaccine development

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3784-3794 | Received 03 Feb 2021, Accepted 05 May 2021, Published online: 09 Jun 2021

References

  • Vallenet D, Nordmann P, Barbe V, Poirel L, Mangenot S, Bataille E, Dossat C, Gas S, Kreimeyer A, Lenoble P, et al. Comparative analysis of acinetobacters: three genomes for three lifestyles. PLoS One. 2008;3(3):e1805. doi:10.1371/journal.pone.0001805.
  • Doughari HJ, Ndakidemi PA, Human IS, Benade S. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ. 2011;26(2):101–12. doi:10.1264/jsme2.ME10179.
  • Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB, Cha CJ, Jeong BC, Lee SH. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol. 2017;7:55. 2235-2988 (Electronic).
  • Roca I, Espinal P, Vila-Farres X, Vila J. The Acinetobacter baumannii oxymoron: commensal hospital dweller turned pan-drug-resistant menace. Front Microbiol. 2012;3:148. 1664-302X (Electronic). doi:10.3389/fmicb.2012.00148.
  • Hiraki Y, Yoshida M, Masuda Y, Inoue D, Tsuji Y, Kamimura H, Karube Y, Takaki K, Kawano F. Successful treatment of skin and soft tissue infection due to carbapenem-resistant Acinetobacter baumannii by ampicillin-sulbactam and meropenem combination therapy. Int J Infect Dis. 2013;17(12):e1234–e1236. doi:10.1016/j.ijid.2013.05.002.
  • Fournier P-E, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L, Richet H, Robert C, Mangenot S, Abergel C, et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet. 2006;2(1):e7. doi:10.1371/journal.pgen.0020007.
  • Howard A, O’Donoghue M, Feeney A, Sleator RD. Acinetobacter baumannii. Virulence. 2012;3(3):243–50. doi:10.4161/viru.19700.
  • Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21:538–82.
  • Mortensen E, Trivedi KK, Rosenberg J, Cody SH, Long J, Jensen BJ, Vugia DJ. Multidrug-resistant Acinetobacter baumannii infection, colonization, and transmission related to a long-term care facility providing subacute care. Infect Control Hospit Epidemiol. 2014;35(4):406–11. doi:10.1086/675612.
  • Sengstock M, Thyagarajan R, Apalara J, Mira A, Chopra T, Kaye KS. Multidrug-resistant Acinetobacter baumannii: an emerging pathogen among older adults in community hospitals and nursing homes. Clin Infect Dis. 2010;50(12):1611–16. doi:10.1086/652759.
  • Meumann EM, Anstey NM, Currie BJ, Piera KA, Kenyon JJ, Hall RM, Davis JS, Sarovich DS. Genomic epidemiology of severe community-onset Acinetobacter baumannii infection. Microbial Genomics. 2019;5:5. 2057-5858 (Electronic). doi:10.1099/mgen.0.000258.
  • CDC. Antibiotic Resistance Threats in the United States, 2019. Atlanta (GA): U.S. Department of Health and Human Services, CDC; 2019.
  • Jit M, Ng DHL, Luangasanatip N, Sandmann F, Atkins KE, Robotham JV, Pouwels KB. Quantifying the economic cost of antibiotic resistance and the impact of related interventions: rapid methodological review, conceptual framework and recommendations for future studies. BMC Med. 2020;18(1):38–38. doi:10.1186/s12916-020-1507-2.
  • Lee BY, McGlone SM, Doi Y, Bailey RR, Harrison LH. Economic impact of Acinetobacter baumannii infection in the intensive care unit. Infect Control Hospit Epidemiol. 2010;31:1087–89.
  • Shrestha P, Cooper BS, Coast J, Oppong R, Do Thi Thuy N, Phodha T, Celhay O, Guerin PJ, Wertheim H, Lubell Y. Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrob Resist Infect Control. 2018;7(1):98. doi:10.1186/s13756-018-0384-3.
  • Liu L, Cui Y, Zheng B, Jiang S, Yu W, Shen P, Ji J, Li L, Qin N, Xiao Y. Analysis of tigecycline resistance development in clinical Acinetobacter baumannii isolates through a combined genomic and transcriptomic approach. Sci Rep. 2016 May 31;6:26930. doi:10.1038/srep26930.
  • Manchanda V, Sanchaita S, Singh N. Multidrug resistant Acinetobacter. J Glob Infect Dis. 2010;2(3):291–304. doi:10.4103/0974-777X.68538.
  • Olaitan AO, Berrazeg M, Fagade OE, Adelowo OO, Alli JA, Rolain JM. Emergence of multidrug-resistant Acinetobacter baumannii producing oxa-23 carbapenemase, Nigeria. Int J Infect Dis. 2013;17(6):e469–e470. doi:10.1016/j.ijid.2012.12.008.
  • WorldHealthOrganization. WHO priority pathogens list of  R&D of new antibiotics. In: Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics; Essential Medicines and Health Products Information Portal: World Health Organization; 2017.
  • Wellcome Trust. Tackling drug-resistant infections globally: final report and recommendations / the Review on Antimicrobial Resistance chaired by Jim O'Neill. Wellcome Collection. Attribution 4.0 International (CC BY 4.0).
  • Makri A. Progress lags on vaccines to beat antimicrobial resistance. Lancet. 2019;394(10211):1793–94. doi:10.1016/S0140-6736(19)32758-8.
  • Jansen KU, Knirsch C, Anderson AS. The role of vaccines in preventing bacterial antimicrobial resistance. Nat Med. 2018;24(1):10–19. doi:10.1038/nm.4465.
  • Laxminarayan R, Matsoso P, Pant S, Brower C, Rottingen JA, Klugman K, Davies S. Access to effective antimicrobials: a worldwide challenge. Lancet. 2016;387:168–75. 1474-547X (Electronic). doi:10.1016/S0140-6736(15)00474-2.
  • Morris FC, Dexter C, Kostoulias X, Uddin MI, Peleg AY. The mechanisms of disease caused by Acinetobacter baumannii. Front Microbiol. 2019;10:1601. doi:10.3389/fmicb.2019.01601.
  • Abdollahi S, Rasooli I, Mousavi Gargari SL. The role of tonb-dependent copper receptor in virulence of Acinetobacter baumannii. Infect Genet Evol. 2018;60:181–90. 1567-7257 (Electronic). doi:10.1016/j.meegid.2018.03.001.
  • Stahl J, Bergmann H, Gottig S, Ebersberger I, Averhoff B. Acinetobacter baumannii virulence is mediated by the concerted action of three phospholipases d. PLoS One. 2015;10(9):e0138360. 1932-6203 (Electronic). doi:10.1371/journal.pone.0138360.
  • Dhabaan GN, AbuBakar S, Cerqueira GM, Al-Haroni M, Pang SP, Hassan H. Imipenem treatment induces expression of important genes and phenotypes in a resistant Acinetobacter baumannii isolate. Antimicrob Agents Chemother. 2015;60(3):1370–76. doi:10.1128/AAC.01696-15.
  • Asif M, Alvi IA, Rehman SU. Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect Drug Resist. 2018;11:1249–60. doi:10.2147/IDR.S166750.
  • Gebhardt MJ, Gallagher LA, Jacobson RK, Usacheva EA, Peterson LR, Zurawski DV, Shuman HA. Joint transcriptional control of virulence and resistance to antibiotic and environmental stress in Acinetobacter baumannii. mBio. 2015;6(6):e01660–01615. doi:10.1128/mBio.01660-15.
  • Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol. 2018;16(2):91–102. doi:10.1038/nrmicro.2017.148.
  • Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010;2(5):a000414. doi:10.1101/cshperspect.a000414.
  • Skerniskyte J, Karazijaite E, Deschamps J, Krasauskas R, Armalyte J, Briandet R, Suziedeliene E. Blp1 protein shows virulence-associated features and elicits protective immunity to Acinetobacter baumannii infection. BMC Microbiol. 2019;19(1):259. doi:10.1186/s12866-019-1615-3.
  • Lee HW, Koh YM, Kim J, Lee JC, Lee YC, Seol SY, Cho DT, Kim J. Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clin Microbiol Infect. 2008;14(1):49–54. doi:10.1111/j.1469-0691.2007.01842.x.
  • Skerniskyte J, Krasauskas R, Pechoux C, Kulakauskas S, Armalyte J, Suziedeliene E. Surface-related features and virulence among Acinetobacter baumannii clinical isolates belonging to international clones i and ii. Front Microbiol. 2019;9:3116. 1664-302X (Print). doi:10.3389/fmicb.2018.03116.
  • Blanchard C, Barnett P, Perlmutter J, Dunman PM. Identification of Acinetobacter baumannii serum-associated antibiotic efflux pump inhibitors. Antimicrob Agents Chemother. 2014;58(11):6360–70. doi:10.1128/AAC.03535-14.
  • Qin H, Lo NW-S, Loo JF-C, Lin X, Yim AK-Y, Tsui SK-W, Lau TC-K, Ip M, Chan T-F. Comparative transcriptomics of multidrug-resistant Acinetobacter baumannii in response to antibiotic treatments. Sci Rep. 2018;8(1):3515. doi:10.1038/s41598-018-21841-9.
  • Mortensen BL, Rathi S, Chazin WJ, Skaar EP. Acinetobacter baumannii response to host-mediated zinc limitation requires the transcriptional regulator zur. J Bacteriol. 2014;196(14):2616–26. doi:10.1128/JB.01650-14.
  • Gaddy JA, Arivett BA, McConnell MJ, Lopez-Rojas R, Pachon J, Actis LA. Role of acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain atcc 19606t with human lung epithelial cells, galleria mellonella caterpillars, and mice. Infect Immun. 2012;80(3):1015–24. doi:10.1128/IAI.06279-11.
  • Mortensen BL, Skaar EP. The contribution of nutrient metal acquisition and metabolism to Acinetobacter baumannii survival within the host. Front Cell Infect Microbiol. 2013;3:3. 2235-2988 (Print). doi:10.3389/fcimb.2013.00095.
  • Yamamoto S, Okujo N, Sakakibara Y. Isolation and structure elucidation of acinetobactin, a novel siderophore from Acinetobacter baumannii. Arch Microbiol. 1994;162(4):249–54. doi:10.1007/BF00301846.
  • Proschak A, Lubuta P, Grun P, Lohr F, Wilharm G, De Berardinis V, Bode HB. Structure and biosynthesis of fimsbactins a-f, siderophores from Acinetobacter baumannii and acinetobacter baylyi. Chembiochem. 2013;14(5):633–38. doi:10.1002/cbic.201200764.
  • Penwell WF, DeGrace N, Tentarelli S, Gauthier L, Gilbert CM, Arivett BA, Miller AA, Durand-Reville TF, Joubran C, Actis LA. Discovery and characterization of new hydroxamate siderophores, baumannoferrin a and b, produced by Acinetobacter baumannii. Chembiochem. 2015;16(13):1896–904. doi:10.1002/cbic.201500147.
  • Moynié L, Serra I, Scorciapino MA, Oueis E, Page MG, Ceccarelli M, Naismith JH. Preacinetobactin not acinetobactin is essential for iron uptake by the baua transporter of the pathogen Acinetobacter baumannii. eLife. 2018;7:e42270. doi:10.7554/eLife.42270.
  • Runci F, Gentile V, Frangipani E, Rampioni G, Leoni L, Lucidi M, Visaggio D, Harris G, Chen W, Stahl J, et al. Contribution of active iron uptake to Acinetobacter baumannii pathogenicity. Infect Immun. 2019;87(4). doi:10.1128/IAI.00755-18.
  • Modarresi F, Azizi O, Shakibaie MR, Motamedifar M, Valibeigi B, Mansouri S. Effect of iron on expression of efflux pump (adeABC) and quorum sensing (luxi, luxr) genes in clinical isolates of Acinetobacter baumannii. APMIS. 2015;123(11):959–68. doi:10.1111/apm.12455.
  • Tiwari V, Rajeswari MR, Tiwari M. Proteomic analysis of iron-regulated membrane proteins identify fhue receptor as a target to inhibit siderophore-mediated iron acquisition in Acinetobacter baumannii. Int J Biol Macromol. 2019;125:1156–67. doi:10.1016/j.ijbiomac.2018.12.173.
  • McConnell MJ, Pachon J. Active and passive immunization against Acinetobacter baumannii using an inactivated whole cell vaccine. Vaccine. 2010;29:1–5. 1873-2518 (Electronic). doi:10.1016/j.vaccine.2010.10.052.
  • Bentancor LV, O’Malley JM, Bozkurt-Guzel C, Gb P, Maira-Litrán T. Poly-n-acetyl-beta-(1-6)-glucosamine is a target for protective immunity against Acinetobacter baumannii infections. Infect Immun. 2012;80:651–56. 1098-5522 (Electronic). doi:10.1128/IAI.05653-11.
  • Shu MH, MatRahim N, NorAmdan N, Pang SP, Hashim SH, Phoon WH, AbuBakar S. An inactivated antibiotic-exposed whole-cell vaccine enhances bactericidal activities against multidrug-resistant Acinetobacter baumannii. Sci Rep. 2016;6:22332. 2045-2322 (Electronic). doi:10.1038/srep22332.
  • Sheweita SA, Batah AM, Ghazy AA, Hussein A, Amara AA. A new strain of Acinetobacter baumannii and characterization of its ghost as a candidate vaccine. J Infect Public Health. 2019;12(6):831–42. doi:10.1016/j.jiph.2019.05.009.
  • Das S, Mohakud NK, Suar M, Sahu BR. Vaccine development for enteric bacterial pathogens: where do we stand? Pathog Dis. 2018;76(5). doi:10.1093/femspd/fty057.
  • McConnell MJ, Dominguez-Herrera J, Smani Y, Lopez-Rojas R, Docobo-Perez F, Pachon J. Vaccination with outer membrane complexes elicits rapid protective immunity to multidrug-resistant Acinetobacter baumannii. Infect Immun. 2011;79(1):518–26. doi:10.1128/IAI.00741-10.
  • McConnell MJ, Rumbo C, Bou G, Pachón J. Outer membrane vesicles as an acellular vaccine against Acinetobacter baumannii. Vaccine. 2011;29:5705–10.
  • Huang W, Yao Y, Long Q, Yang X, Sun W, Liu C, Jin X, Li Y, Chu X, Chen B, et al. Immunization against multidrug-resistant Acinetobacter baumannii effectively protects mice in both pneumonia and sepsis models. PLoS One. 2014;9:e100727. 1932-6203 (Electronic). doi:10.1371/journal.pone.0100727.
  • Pulido MR, Garcia-Quintanilla M, Pachon J, McConnell MJ. Immunization with lipopolysaccharide-free outer membrane complexes protects against Acinetobacter baumannii infection. Vaccine. 2018;36(29):4153–56. doi:10.1016/j.vaccine.2018.05.113.
  • Garcia-Quintanilla M, Pulido MR, Pachon J, McConnell MJ. Immunization with lipopolysaccharide-deficient whole cells provides protective immunity in an experimental mouse model of Acinetobacter baumannii infection. PLoS One. 2014;9(12):e114410. doi:10.1371/journal.pone.0114410.
  • Pulido MR, Garcia-Quintanilla M, Pachon J, McConnell MJ. A lipopolysaccharide-free outer membrane vesicle vaccine protects against Acinetobacter baumannii infection. Vaccine. 2020;38(4):719–24. doi:10.1016/j.vaccine.2019.11.043.
  • Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E, Seemann T, Henry R, Crane B, Michael FS, Cox AD, et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother. 2010;54:4971–77. 1098-6596 (Electronic). doi:10.1128/AAC.00834-10.
  • Miquel-Clopes A, Bentley EG, Stewart JP, Carding SR. Mucosal vaccines and technology. Clin Exp Immunol. 2019;196(2):205–14. doi:10.1111/cei.13285.
  • Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev. 2018;42:388–423.
  • Micoli F, Del Bino L, Alfini R, Carboni F, Romano MR, Adamo R. Glycoconjugate vaccines: current approaches towards faster vaccine design. Expert Rev Vaccines. 2019;18(9):881–95. doi:10.1080/14760584.2019.1657012.
  • Russo TA, Beanan JM, Olson R, MacDonald U, Cox AD, Michael FS, Vinogradov EV, Spellberg B, Luke-Marshall NR, Campagnari AA. The k1 capsular polysaccharide from Acinetobacter baumannii is a potential therapeutic target via passive immunization. Infect Immun. 2013;81:915–22. 1098-5522 (Electronic). doi:10.1128/IAI.01184-12.
  • Chen W. Current advances and challenges in the development of acinetobacter vaccines. Hum Vaccin Immunother. 2015;11(10):2495–500. doi:10.1080/21645515.2015.1052354.
  • Singh JK, Adams FG, Brown MH. Diversity and function of capsular polysaccharide in Acinetobacter baumannii. Front Microbiol. 2018;9:3301. doi:10.3389/fmicb.2018.03301.
  • Ahmad TA, Tawfik DM, Sheweita SA, Haroun M, El-Sayed LH. Development of immunization trials against Acinetobacter baumannii. Trials Vaccinol. 2016;5:53–60. doi:10.1016/j.trivac.2016.03.001.
  • Baxter D. Active and passive immunity, vaccine types, excipients and licensing. Occup Med (Lond). 2007;57(8):552–56. doi:10.1093/occmed/kqm110.
  • Nie D, Hu Y, Chen Z, Li M, Hou Z, Luo X, Mao X, Xue X. Outer membrane protein a (ompa) as a potential therapeutic target for Acinetobacter baumannii infection. J Biomed Sci. 2020;27(1):26. doi:10.1186/s12929-020-0617-7.
  • Luo G, Lin L, Ibrahim AS, Baquir B, Pantapalangkoor P, Bonomo RA, Doi Y, Adams MD, Russo TA, Spellberg B. Active and passive immunization protects against lethal, extreme drug resistant-Acinetobacter baumannii infection. PLoS One. 2012;7:e29446.
  • Zhang X, Yang T, Cao J, Sun J, Dai W, Zhang L. Mucosal immunization with purified OmpA elicited protective immunity against infections caused by multidrug-resistant Acinetobacter baumannii. Microb Pathog. 2016;96:20–25. 1096-1208 (Electronic). doi:10.1016/j.micpath.2016.04.019.
  • Ansari H, Tahmasebi-Birgani M, Bijanzadeh M, Doosti A, Kargar M. Study of the immunogenicity of outer membrane protein a (OmpA) gene from Acinetobacter baumannii as DNA vaccine candidate in vivo. Iran J Basic Med Sci. 2019;22(6):669–75. doi:10.22038/ijbms.2019.30799.7427.
  • Lei L, Yang F, Zou J, Jing H, Zhang J, Xu W, Zou Q, Zhang J, Wang X. DNA vaccine encoding ompa and pal from Acinetobacter baumannii efficiently protects mice against pulmonary infection. Mol Biol Rep. 2019;46(5):5397–408. doi:10.1007/s11033-019-04994-2.
  • Viale AM, Evans BA. Microevolution in the major outer membrane protein OmpA of Acinetobacter baumannii. Microb Genom. 2020:6(6).
  • Huang W, Yao Y, Wang S, Xia Y, Yang X, Long Q, Sun W, Liu C, Li Y, Chu X, et al. Immunization with a 22-kda outer membrane protein elicits protective immunity to multidrug-resistant Acinetobacter baumannii. Sci Rep. 2016;6:20724. 2045-2322 (Electronic). doi:10.1038/srep20724.
  • Singh R, Capalash N, Sharma P. Immunoprotective potential of bama, the outer membrane protein assembly factor, against MDR Acinetobacter baumannii. Sci Rep. 2017;7(1):12411. doi:10.1038/s41598-017-12789-3.
  • Wang-Lin SX, Olson R, Beanan JM, MacDonald U, Balthasar JP, Russo TA. The capsular polysaccharide of Acinetobacter baumannii is an obstacle for therapeutic passive immunization strategies. Infect Immun. 2017;85(12). doi:10.1128/IAI.00591-17.
  • Bentancor LV, Routray A, Bozkurt-Guzel C, Camacho-Peiro A, Pier GB, Maira-Litrán T. Evaluation of the trimeric autotransporter ata as a vaccine candidate against Acinetobacter baumannii infections. Infect Immun. 2012;80:3381–88. 1098-5522 (Electronic). doi:10.1128/IAI.06096-11.
  • Weidensdorfer M, Ishikawa M, Hori K, Linke D, Djahanschiri B, Iruegas R, Ebersberger I, Riedel-Christ S, Enders G, Leukert L, et al. The acinetobacter trimeric autotransporter adhesin ata controls key virulence traits of Acinetobacter baumannii. Virulence. 2019;10(1):68–81. doi:10.1080/21505594.2018.1558693.
  • Li H, Tan H, Hu Y, Pan P, Su X, Hu C. Small protein a and phospholipase d immunization serves a protective role in a mouse pneumonia model of Acinetobacter baumannii infection. Mol Med Rep. 2017;16(2):1071–78. doi:10.3892/mmr.2017.6688.
  • Hubert K, Devos N, Mordhorst I, Tans C, Baudoux G, Feron C, Goraj K, Tommassen J, Vogel U, Poolman JT, et al. Znud, a potential candidate for a simple and universal neisseria meningitidis vaccine. Infect Immun. 2013;81(6):1915–27. doi:10.1128/IAI.01312-12.
  • Qamsari MM, Rasooli I, Chaudhuri S, Astaneh SDA, Schryvers AB. Hybrid antigens expressing surface loops of znud from Acinetobacter baumannii is capable of inducing protection against infection. Front Immunol. 2020;11:158–158. doi:10.3389/fimmu.2020.00158.
  • Rappuoli R. Reverse vaccinology. Curr Opin Microbiol. 2000;3:445–50. 1369-5274 (Print). doi:10.1016/S1369-5274(00)00119-3.
  • Singh R, Garg N, Shukla G, Capalash N, Sharma P. Immunoprotective efficacy of Acinetobacter baumannii outer membrane protein, filf, predicted in silico as a potential vaccine candidate. Front Microbiol. 2016;7. 1664-302X (Print). doi:10.3389/fmicb.2016.00158.
  • Sette A, Rappuoli R. Reverse vaccinology: developing vaccines in the era of genomics. Immunity. 2010;33(4):530–41. doi:10.1016/j.immuni.2010.09.017.
  • Serruto D, Bottomley MJ, Ram S, Giuliani MM, Rappuoli R. The new multicomponent vaccine against meningococcal serogroup b, 4cmenb: immunological, functional and structural characterization of the antigens. Vaccine. 2012;30(Suppl 2):B87–97. 1873-2518 (Electronic). doi:10.1016/j.vaccine.2012.01.033.
  • Ni Z, Chen Y, Ong E, He Y. Antibiotic resistance determinant-focused Acinetobacter baumannii vaccine designed using reverse vaccinology. Int J Mol Sci. 2017;18:E458. 1422-0067 (Electronic). doi:10.3390/ijms18020458.
  • Chiang MH, Sung WC, Lien SP, Chen YZ, Lo AFY, Huang JH, Kuo SC, Chong P. Identification of novel vaccine candidates against Acinetobacter baumannii using reverse vaccinology. Hum Vaccin Immunother. 2015;11:1065–73. 2164-554X (Electronic). doi:10.1080/21645515.2015.1010910.
  • Ahmad S, Azam SS. A novel approach of virulome based reverse vaccinology for exploring and validating peptide-based vaccine candidates against the most troublesome nosocomial pathogen: Acinetobacter baumannii. J Mol Graph Model. 2018;83:1–11. 1873-4243 (Electronic). doi:10.1016/j.jmgm.2018.04.020.
  • Solanki V, Tiwari V. Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Sci Rep. 2018;8(1):9044. doi:10.1038/s41598-018-26689-7.
  • Tapia-Calle G, Stoel M, de Vries-idema J, Huckriede A. Distinctive responses in an in vitro human dendritic cell-based system upon stimulation with different influenza vaccine formulations. Vaccine. 2017;5:E21. 2076-393X (Print).
  • Stech M, Nikolaeva O, Thoring L, Stocklein WFM, Wustenhagen DA, Hust M, Dubel S, Kubick S. Cell-free synthesis of functional antibodies using a coupled in vitro transcription-translation system based on cho cell lysates. Sci Rep. 2017;7:12030. 2045-2322 (Electronic). doi:10.1038/s41598-017-12364-w.
  • Dilworth MV, Piel MS, Bettaney KE, Ma P, Luo J, Sharples D, Poyner DR, Gross SR, Moncoq K, Henderson PJF, et al. Microbial expression systems for membrane proteins. Methods. 2018;147:3–39. doi:10.1016/j.ymeth.2018.04.009.
  • Fakruddin M, Mohammad Mazumdar R, Bin Mannan KS, Chowdhury A, Hossain MN. Critical factors affecting the success of cloning, expression, and mass production of enzymes by recombinant E. coli. ISRN Biotechnol. 2013;2013:590587. doi:10.5402/2013/590587.
  • Rosano GL, Ceccarelli EA. Recombinant protein expression in escherichia coli: advances and challenges. Front Microbiol. 2014;5:172. 1664-302X (Print). doi:10.3389/fmicb.2014.00172.
  • Jahangiri A, Rasooli I, Owlia P, Fooladi AAI, Salimian J. An integrative in silico approach to the structure of omp33-36 in Acinetobacter baumannii. Comput Biol Chem. 2018;72:77–86. 1476–928X (Electronic). doi:10.1016/j.compbiolchem.2018.01.003.
  • Gefen T, Vaya J, Khatib S, Rapoport I, Lupo M, Barnea E, Admon A, Heller ED, Aizenshtein E, Pitcovski J. The effect of haptens on protein-carrier immunogenicity. Immunology. 2015;144(1):116–26. doi:10.1111/imm.12356.
  • Meyer H, Schmidhalter D. Microbial Expression Systems and Manufacturing from a Market and Economic Perspective, Innovations in Biotechnology. In: Dr. Eddy C. Agbo editor. InTech. ISBN: 978-953-51- 0096-6. Available from: http://www.intechopen.com/books/innovations-in-biotechnology/microbialexpression-systems-and-manufacturing-from-a-market-and-economic-perspective.
  • White J. Protein expression in corynebacterium glutamicum. Bioprocess J. 2011;9:53–55. doi:10.12665/J92.White.
  • Tavares Batista M, Souza RD, Paccez JD, Luiz WB, Ferreira EL, Cavalcante RCM, Ferreira RCC, Ferreira LCS. Gut adhesive bacillus subtilis spores as a platform for mucosal delivery of antigens. Infect Immun. 2014;82(4):1414–23. doi:10.1128/IAI.01255-13.
  • Lefevre M, Racedo SM, Ripert G, Housez B, Cazaubiel M, Maudet C, Justen P, Marteau P, Urdaci MC. Probiotic strain bacillus subtilis cu1 stimulates immune system of elderly during common infectious disease period: a randomized, double-blind placebo-controlled study. Immun Ageing. 2015;12:24. doi:10.1186/s12979-015-0051-y.
  • Rosales-Mendoza S, Angulo C. Bacillus subtilis comes of age as a vaccine production host and delivery vehicle. Expert Rev Vaccines. 2015;4:1135–48. 1744–8395 (Electronic).
  • Wenzel M, Muller A, Siemann-Herzberg M, Altenbuchner J. Self-inducible bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation. Appl Environ Microbiol. 2011;77(18):6419–25. doi:10.1128/AEM.05219-11.
  • Copland A, Diogo GR, Hart P, Harris S, Tran AC, Paul MJ, Singh M, Cutting SM, Reljic R. Mucosal delivery of fusion proteins with bacillus subtilis spores enhances protection against tuberculosis by Bacillus calmette-guérin. Front Immunol. 2018;9:346. doi:10.3389/fimmu.2018.00346.
  • Sun H, Lin Z, Zhao L, Chen T, Shang M, Jiang H, Tang Z, Zhou X, Shi M, Zhou L, et al. Bacillus subtilis spore with surface display of paramyosin from clonorchis sinensis potentializes a promising oral vaccine candidate. Parasit Vectors. 2018;11(1):156. doi:10.1186/s13071-018-2757-0.
  • Sibley L, Reljic R, Radford DS, Huang J-M, Hong HA, Cranenburgh RM, Cutting SM. Recombinant bacillus subtilis spores expressing mpt64 evaluated as a vaccine against tuberculosis in the murine model. FEMS Microbiol Lett. 2014;358(2):170–79. doi:10.1111/1574-6968.12525.
  • Yan Z, Yang J, Hu R, Hu X, Chen K. Acinetobacter baumannii infection and il-17 mediated immunity. Mediators Inflamm. 2016;2016:9834020. doi:10.1155/2016/9834020.
  • Erridge C, Moncayo-Nieto OL, Morgan R, Young M, Poxton IR. Acinetobacter baumannii lipopolysaccharides are potent stimulators of human monocyte activation via toll-like receptor 4 signalling. J Med Microbiol. 2007;56:165–71. 0022-2615 (Print). doi:10.1099/jmm.0.46823-0.
  • Peck A, Mellins ED. Precarious balance: Th17 cells in host defense. Infect Immun. 2010;78(1):32–38. doi:10.1128/IAI.00929-09.
  • Wang S, Liu H, Zhang X, Qian F. Intranasal and oral vaccination with protein-based antigens: advantages, challenges and formulation strategies. Protein Cell. 2015;6(7):480–503. doi:10.1007/s13238-015-0164-2.
  • Rhayat L, Maresca M, Nicoletti C, Perrier J, Brinch KS, Christian S, Devillard E, Eckhardt E. Effect of bacillus subtilis strains on intestinal barrier function and inflammatory response. Front Immunol. 2019;10:564. doi:10.3389/fimmu.2019.00564.
  • Jacobs AC, Thompson MG, Black CC, Kessler JL, Clark LP, McQueary CN, Gancz HY, Corey BW, Moon JK, Si Y, et al. Ab5075, a highly virulent isolate of Acinetobacter baumannii, as a model strain for the evaluation of pathogenesis and antimicrobial treatments. mBio. 2014;5(3):e01076–01014. doi:10.1128/mBio.01076-14.
  • Harris G, Kuo Lee R, Lam CK, Kanzaki G, Patel GB, Xu HH, Chen W. A mouse model of Acinetobacter baumannii-associated pneumonia using a clinically isolated hypervirulent strain. Antimicrob Agents Chemother. 2013;57(8):3601–13. doi:10.1128/AAC.00944-13.
  • Luo G, Spellberg B, Gebremariam T, Bolaris M, Lee H, Fu Y, French SW, Ibrahim AS. Diabetic murine models for Acinetobacter baumannii infection. J Antimicrob Chemother. 2012;67(6):1439–45. doi:10.1093/jac/dks050.
  • Luna BM, Yan J, Reyna Z, Moon E, Nielsen TB, Reza H, Lu P, Bonomo R, Louie A, Drusano G, et al. Natural history of Acinetobacter baumannii infection in mice. PLOS ONE. 2019;14(7):e0219824. doi:10.1371/journal.pone.0219824.
  • Harris G, KuoLee R, Xu HH, Chen W. Acute intraperitoneal infection with a hypervirulent Acinetobacter baumannii isolate in mice. Sci Rep. 2019;9(1):6538. doi:10.1038/s41598-019-43000-4.
  • McConnell MJ, Actis L, Pachon J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev. 2013;37(2):130–55. doi:10.1111/j.1574-6976.2012.00344.x.
  • Qiu H, KuoLee R, Harris G, Chen W. High susceptibility to respiratory Acinetobacter baumannii infection in A/J mice is associated with a delay in early pulmonary recruitment of neutrophils. Microbes Infect. 2009;11(12):946–55. doi:10.1016/j.micinf.2009.06.003.
  • Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and pathophysiological overview of acinetobacter infections: a century of challenges. Clin Microbiol Rev. 2017;30:409–47.
  • Russo TA, Beanan JM, Olson R, MacDonald U, Luke NR, Gill SR, Campagnari AA. Rat pneumonia and soft-tissue infection models for the study of Acinetobacter baumannii biology. Infect Immun. 2008;76(8):3577–86. doi:10.1128/IAI.00269-08.
  • WellcomeTrust, BostonConsultingGroup. Vaccines to tackle drug-resistant infections: An evaluation of R&D opportunities.[Online]. https://vaccinesforamr.org/wp-content/uploads/2018/09/Vaccines_for_AMR.pdf
  • Weinberger B. Vaccines for the elderly: current use and future challenges. Immun Ageing. 2018;15:3. doi:10.1186/s12979-017-0107-2.
  • Gu H, Liu D, Zeng X, Peng LS, Yuan Y, Chen ZF, Zou QM, Shi Y. Aging exacerbates mortality of Acinetobacter baumannii pneumonia and reduces the efficacies of antibiotics and vaccine. Aging. 2018;10(7):1597–608. doi:10.18632/aging.101495.
  • Chen WH, Kozlovsky BF, Effros RB, Grubeck-Loebenstein B, Edelman R, Sztein MB. Vaccination in the elderly: an immunological perspective. Trends Immunol. 2009;30(7):351–59. doi:10.1016/j.it.2009.05.002.
  • Whitman TJ, Qasba SS, Timpone JG, Babel BS, Kasper MR, English JF, Sanders JW, Hujer KM, Hujer AM, Endimiani A, et al. Occupational transmission of Acinetobacter baumannii from a united states serviceman wounded in iraq to a health care worker. Clin Infect Dis. 2008;47(4):439–43. doi:10.1086/589247.
  • Sacadura-Leite E, Mendonça-Galaio L, Shapovalova O, Pereira I, Rocha R, Sousa-Uva A. Biological hazards for healthcare workers: occupational exposure to vancomycin-resistant staphylococcus aureus as an example of a new challenge. Portuguese J Public Health. 2018;36(1):26–31. doi:10.1159/000487746.
  • Gruenheid S, Gros P. Forward genetic dissection of innate response to infection in inbred mouse strains: selected success stories. Clin Exp Immunol. 2010;162(3):393–401. doi:10.1111/j.1365-2249.2010.04249.x.