1,630
Views
7
CrossRef citations to date
0
Altmetric
Review

Adjuvants: friends in vaccine formulations against infectious diseases

ORCID Icon &
Pages 3539-3550 | Received 03 Mar 2021, Accepted 19 May 2021, Published online: 21 Jul 2021

References

  • World Health Organization. New Global Commitment to End Tuberculosis requires research support. 2018 Sept 18. http://www.who.int/tdr/news-room/fact-sheets/detail/tuberculosis.
  • Lavelle EC, McLachlan JB. Editorial overview: immunomodulation: striking the right balance: using immunomodulators to target infectious diseases, cancer, and autoimmunity. Curr Opin Pharmacol. 2018:1–3. doi:10.1016/j.coph.2018.07.013.
  • Mohan T, Zhu W, Wang Y, Wang BZ. Applications of chemokines as adjuvants for vaccine immunotherapy. Immunobiology 2018;223:477–85. doi:10.1016/j.imbio.2017.12.001.
  • Dosler S, Karaaslan E, Gerceker AA. Antibacterial and anti-biofilm activities of melittin and colistin, alone and in combination with antibiotics against Gram-negative bacteria. J Chemother. 2016;28:95–103. doi:10.1179/1973947815Y.0000000004.
  • Palucka K, Banchereau J, Mellman I. Designing vaccines based on biology of human dendritic cell subsets. Immunity 2010;33:464–71. doi:10.1016/j.immuni.2010.10.007.
  • Longet S, Lundahl MLE, Lavelle EC. Targeted strategies for mucosal vaccination. Bioconjug Chem. 2018;29:613–23. doi:10.1021/acs.bioconjchem.7b00738.
  • Mori A, Oleszycka E, Sharp FA, Coleman M, Osaka Y, Singh M, O’Hagan DT, Tajber I, Corngan OI, McNeela EA, et al. The vaccine adjuvant alum inhibits IL-12 by promoting PI3 kinase signaling while chitosan does not inhibit IL-12 and enhances Th1 and Th17 responses. Eur J Immunol. 2012;42:2709–19. doi:10.1002/eji.201242372.
  • Carroll EC, Jin L, Mori A, Muñoz-Wolf N, Oleszycka E, Moran HBT, Mansouri S, McEntee CP, Lambe E, Agger EM, et al. The vaccine adjuvant Chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity. 2016;44:597–608. doi:10.1016/j.immuni.2016.02.004.
  • Lee JB, Jang JE, Song MK, Chang J. Intranasal delivery of cholera toxin induces Th17 dominated T cell-response to bystander antigens. PLoS ONE. 2009;4:1–8. doi:10.1371/journal.pone.0005190.
  • Pandiyan P, Lavelle EC. Immune cells in the mucosa. Ed. Frontiers Imunol. 2016;7:657–58. doi:10.3389/fimmu.2016.00657.
  • Longhi MP, Trumpheller C, Idoyaga J, Caskey M, Matos I, Klager C, Salazar AM, Colonna M, Steinmman RM. Dendritic cells require a systemic type I interferon response to mature and induce CD4+Th1 immunity with poly IC adjuvants. JEM 2000;206:1589–602. doi:10.1084/jem.20090247.
  • Sugai T, Mori M, Nakazawa M, Ichino M, Naruto T, Kobayashi N, Kobayashi Y, Minami M, Yokota S. A CpG-containing oligodeoxynucleotide as an efficient adjuvant counterbalancing the Th1/Th2 immune response in diphtheria-tetanus-pertussis vaccine. Vaccine. 2005;23:5450–56. doi:10.1016/j.vaccine.2004.09.041.
  • Pirahmadi S, Zakeri S, Mehriz AA, Djadid ND, Raz-AA, Sani J. Combining Monophosphoryl Lipid A (MPL), CpG Oligodeoxynucleotide (ODN), and QS-21 Adjuvants Induces Strong and Persistent Functional Antibodies and T Cell Responses against Cell-Traversal Protein for Ookinetes and Sporozoites (CelTOS) of Plasmodium falciparum in BALB/c Mice. Infect Immun. 2019;87:e00911–18.
  • Favela-Hernández JM, Balderas RI, Guerrero GG. The potential of a commercial product based on Bacillus thuringiensis Cry1A-Cry2A as a immunogen and adjuvant. Madridge J Immunol. 2018;2:58–64. doi:10.18689/mjim-1000114.
  • O’Hagan DT, Valiante NM. Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov. 2003;2:727–35. doi:10.1038/nrd1176.
  • de Souza AJ, Santos LVA, Coirada FC, Boscardin SB, Santoro RD. Adjuvants: classification, modus operandi, and licensing. J Immunol Res. 2016:1–16. ID. 1469394. doi:10.1155/2016/1459394.
  • Di Pasquale A, Preiss S, Tavares Da Silva F, Garçon N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines. 2015;16:320–43. doi:10.3390/vaccines3020320.
  • Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trend Immunol. 2009;30:23–30. doi:10.1016/j.it.2008.09.006.
  • Lebre F, Bento D, Ribeiro J, Colaço M, Borchard G, Pedroso de Lima MC, Borges O. Association of Chitosan and aluminium as a new adjuvant strategy for improved vaccination. Int J Pharm. 2017;527:103–14. doi:10.1016/j.ijpharm.2017.05.028.
  • Lebre F, Pedroso de Lima MC, Lavelle EC, Borges O. Mechanistic study of the adjuvant effect of Chitosan-aluminum nanoparticles. Int J Pharm. 2018;552:7–15. doi:10.1016/j.ijpharm.2018.09.044.
  • Lin Y, Wang X, Huang X, Zhang J, Xia N, Zhao Q. Calcium phosphate nanoparticles as a new generation vaccine adjuvant. Expert Rev Vaccines. 2017;16:895–906. doi:10.1080/14760584.2017.1355733.
  • Lacaille-Dubois MA, Wagner H. New perspectives for natural triterpene glycosides as potential adjuvants. Phytomedicine. 2017;37:49–57. doi:10.1016/j.phymed.2017.10.019.
  • Fernandez-Tejada A, Chea EK, George C, Pillarsetty N, Gardner JR, Livingston PO, Ragupathi G, Lewis JS, Tan DS, Glin DY. Development of a minimal saponin vaccine adjuvant base don QS-21. Nat Chem. 2014;6:635–43. doi:10.1038/nchem.1963.
  • Givena BE, Geary SM, Salem AK. Nanoparticle based CpG-oligonucleotides therapy for treating allergic asthma. Immunotherapy 2018;10:595–604. doi:10.2217/imt-2017-0142.
  • Blaise C, Bioley G. Lipid-based particles: versatile delivery systems for mucosal vaccination against infection. Front Immunol. 2018;9:431–51. doi:10.3389/fimmu.2018.00431.
  • Bracci L, Canini I, Puzelli S, Sestili P, Venditti M, Spleda M, Donatelli I, Belardelli F, Proietti E. Type I IFN is a powerful mucosal adjuvant for a selective intranasal vaccination against influenza virus in mice and affects antigen capture at mucosal level. Vaccine 2005;23:2994–3004. doi:10.1016/j.vaccine.2004.12.006.
  • Prchal M, Pilz A, Simma O, Lingnau K, von Gabain A, Strobl B, Müller M, Decker T. Type I Interferon as mediators of immune adjuvants for T and B cell dependent acquired immunity. Vaccine 2009;275:G17–G20. doi:10.1016/j.vaccine.2009.10.016.
  • Tough DF. Modulation of T-cell function by type I interferón. Immunol Cell Biol. 2012;90:493–97. doi:10.1038/icb.2012.7.
  • Tovey MG, Lallemand CH, Thyphronitis G. Adjuvant activity of type I interferon. Biol Chem. 2008;389:541–45. doi:10.1515/bc.2008.051.
  • Gonzalez-Navajas JM, Lee J, David M, Raz E. Immunomodulatory functions of type I IFNs. Nat Rev Immunol. 2012;12:125–35. doi:10.1038/nri3133.
  • Guerrero GG, Rangel-Moreno J, Islas-Trujillo S, Rojas-Espinoza O. Successive Intramuscular Boosting with IFN-Alpha Protects Mycobacterium bovis BCG-Vaccinated Mice against M. lepraemurium Infection. BioMed Res Int. 2015;2015:1–9. ID. 414027. doi:10.1155/2015/414027.
  • Rivas-Santiago, Guerrero GG. IFN-α boosting of Mycobacterium bovis BCG-vaccinated mice promoted Th1 type cytokines and protect against M. tuberculosis. Biomed Res Int. 2017; ID. 8796760. doi:10.1155/2017/8796760.
  • Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ. Antimicrobial peptides for therapeutic applications: a review. Molecules 2012;17:12276–86. doi:10.3390/molecules171012276.
  • Mendez-Samperio P. Recent advances in the field of antimicrobial peptides in inflammatory diseases. Adv Biomed Res. 2013;2:50–55. doi:10.4103/2277-9175.114192.
  • Lee J, Lee DG. Antimicrobial peptides (AMPs) with dual mechanisms: membrane disruption and apoptosis. J Microbiol Biotechnol. 2015;25:759–64. doi:10.4014/jmb.1411.11058.
  • Ageitos JM, Sánchez-Pérez A, Calo-Mata P, Villa TG. Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol. 2017;133:117–38. doi:10.1016/j.bcp.2016.09.018.
  • Ladram A, Nicolas P. Antimicrobial peptides from frog skin: biodiversity and therapeutic promises. Front Biosci (Landmark Ed). 2016;21:341–1371. doi:10.2741/4461.
  • Bechinger B, Lohner K. Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta. 2006;1758:1529–39. doi:10.1016/j.bbamem.2006.07.001.
  • Sumi CD, Yang BW, Yeo IC, Young TH. Antimicrobial peptides of the Genus Bacillus: a new era for antibiotics. Can J Microbiol. 2015;61:93–103. doi:10.1139/cjm-2014-0613.
  • Rončević T, Puizina J, Tossi A. Antimicrobial Peptides as Anti-Infective Agents in Pre-Post-Antibiotic Era? Int J Mol Sci. 2019;14:1–22. doi:10.3390/ijms20225713.
  • Patel S, Akhtar N. Antimicrobial peptides (AMPs): the quintessential ‘Offense and Defense’ molecules are more than antimicrobials. Biomed Pharmacother. 2017;95:1276–83. doi:10.1016/j.biopha.2017.09.042.
  • Wilmes M, Hans-Georg Sahl HG. Defensin-based anti-infective strategies. Int J Med Microbiol. 2014;304:93–99. doi:10.1016/j.ijmm.2013.08.007.
  • Sambhara S, McEIhaney JE. Immunosenescence and influenza vaccine efficacy. Curr Top Microbiol Immunol. 2009;333:413–29. doi:10.1007/978-3-540-92165-3_20.
  • Luchner M, Reinke S, Milicic A. TLR agonists as vaccine adjuvants targeting cancer and infectious disease. Pharmaceutics 2021;13:142–58. doi:10.3390/pharmaceutics13020142.
  • Kool M, Petrilli V, De Smedf T, Rolaz A, Hammad H, van NInwegen M, Bergen IM, Castillo R, Lambrecht BN, Tschopp J. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol. 2008;181:3755–59. doi:10.4049/jimmunol.181.6.3755.
  • Marrack P, McKee AS, Munks MW. Towards an understating of the adjuvant action of aluminium. Nat Rev Immunol. 2009;9:287–93. doi:10.1038/nri2510.
  • Kool M, Soullie T, van Nimwegen M, Willart MA, Musken F, Jung S, Hoogsteden HC, Hammad H, Lambrecht BN. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med. 2008;205:869–82. doi:10.1084/jem.20071087.
  • Gavin AI, Hoebe K, Duong B, Ota T, Martin C, Beutler B, Nemazee D. Adjuvant-enhanced antibody response in the absence of Toll-like receptor signaling. Science 2006;314:1936–38. doi:10.1126/science.1135299.
  • Fritz JH, Ferrero RL, Philpott DJ, Girardin SE. Nod-like protein in immunity, inflammation and disease. Nat Immunol. 2006;7:1250–57. doi:10.1038/ni1412.
  • Franchi I, Park JH, Shaw MH, Marina-Garcia N, Chen G, Kim GY, Nuñez G. Intracellular NOD-like receptors in innate immunity, infection and disease. Cell Microbio. 2008;10:1–8. doi:10.1111/j.1462-5822.2007.01059.x.
  • Martinon F, Tschopp J. Inflammatory caspases and inflammasomes master switches of inflammation. Cell Death Differ. 2007;14:10–22. doi:10.1038/sj.cdd.4402038.
  • Petrilli VC, Dostert DA, Muruve DA, Tschopp J. The inflammasome a danger sensing complex triggering innate immunity. Curr Opi Immunol. 2007;19:615–22. doi:10.1016/j.coi.2007.09.002.
  • Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminum adjuvants. Nature 2008;453:1122–26. doi:10.1038/nature06939.
  • Shi Y, Evans JE, Rock KI. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature. 2003;452:516–21. doi:10.1038/nature01991.
  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511. doi:10.1038/nri1391.
  • Daubenberger CA. TLR9 agonists as adjuvants for prophylactic and therapeutic vaccines. Curr Opin Mol Ther. 2007;9:45–52.
  • Wang Y-Q, Bazin-Lee H, Evams JT, Casella CR, Mitchell TC. MPL adjuvant contains competitive antagonists of human TLR4. Front Immunol. 2020;11:577823–35. doi:10.3389/fimmu.2020.577823.
  • Tripathi RP, Tewari N, Dwivedi N, Trwan VK. Fighting tuberculosis: an old disease with new challenges. Med Res Rev. 2005;25:93–131. doi:10.1002/med.20017.
  • Didierlaurent AM, Laupieze B, Di Pasquale A, Hergli N, Collignon C, Garcon N. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines. 2017;16:55–63. doi:10.1080/14760584.2016.1213632.
  • Didierlaureant AM, Collignon C, Bourguignon P, Wouters S, Fierens K, Fochesato M, Dendouga N, Langlet CH, Melissen B, Lambrecht BN, et al. Enhancement of adaptive immunity by the human vaccine adjuvant AS01 depends on activated dendritic cells. J Immunol. 2014;193:1920–30. doi:10.4049/jimmunol.1400948.
  • Garçon N, Van Mechelen M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines. 2011;10:471–86. doi:10.1586/erv.11.29.
  • Fochesato M, Dendouga N, Boxus M. Comparative preclinical evaluation of AS01 versus other adjuvant systems in a candidate herpes zoster glycoprotein E subunit vaccine. Hum Vaccin Immunother. 2016;12:2092–95. doi:10.1080/21645515.2016.1154247.
  • Heath MD, Mohsen MO, de Kam P-J, Carreno VTL, Hewings SJ, Kramer MF, Kunidng TM, Bachmann MF, Skinner MA. Shaping modern vaccines: adjuvant systems using microcrystalline tyrosine (MCT ®). Front Immunol. 2020;11:59491–594923. doi:10.3389/fimmu.2020.594911.
  • Kim WS, Zhi Y, Guo H, Byun E-B, Lim JH, Seo HS. Promotion of cellular and humoral immunity against foot-and-mouth disease virus by immunization with virus-like particles encapsulated in monophosphoryl lipid a and liposomes. Vaccines 2020;8:633.647. doi:10.3390/vaccines8040633.
  • De Maagd RA, Bravo A, Berry N, Crickmore N, Schnepf HE. Structure, diversity, and evolution of proteins toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet. 2003;37:409–33. doi:10.1146/annurev.genet.37.110801.143042.
  • De Maagd RA, Bravo A, Crickmore N. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 2001;17:193–99. doi:10.1016/s0168-9525(01)02237-5.
  • Salkowski CA, Detore GR, Vogel SN. Lipopolysaccharide and monophosphoryl lipid A differentially regulate interleukin-12, gamma interferon, and interleukin-10 mRNA production in mRNA production in macrophages. Infect Immun. 1997;65:3239. doi:10.1128/IAI.65.8.3239-3247.1997.
  • Thompson BS, Chilton PM, Ward JR, Eans JT, Mitchell TC. The low-toxicity versions of LPS, MPL, adjuvant and RC529, are efficient adjuvants for CD4+ T cells. J Leukoc Biol. 2005;78:1273–80. doi:10.1189/jlb.0305172.
  • Jegerlehner A, Wiesel M, Dietmeier K, Zabel F, Gatto D, Saudan P, Bachmann MF. Carrier induced epitopic suppression of antibody responses induced by virus-like particles is a dynamic phenomenon caused by carrier-specific antibodies. Vaccine 2010;28:5503–12. doi:10.1016/j.vaccine.2010.02.103.
  • Lycke N, Lebrero-Fernández C. ADP-ribosylating enterotoxins as vaccine adjuvants. Curr Opin Pharmacol. 2018;41:42–51. doi:10.1016/j.coph.2018.03.015.
  • Williams NA. Immune modulation by the cholera-like enterotoxin B-subunits: from adjuvant to immunotherapeutic. Int J Med Microbiol. 2000;290:447–53. doi:10.1016/S1438-4221(00)80062-4.
  • Datta SK, Sabet M, Nguyen KPI, Valdez PA, Gonzalez-Navajas JM, Islam S, Mihajlov I, Fierer J, Insel PA, Webster NJ, et al. Mucosal adjuvant activity of cholera toxin requires Th17 cells and protects against inhalation anthrax. PNAs 2010;107:10638–43. doi:10.1073/pnas.1002348107.
  • Cai CY, Kurita-Ochiai T, Kobayashi R, Hashizume T, Yamamoto M. Nasal immunization with the 40 KDa outer membrane protein of Porphyromonas gingivalis plus cholera toxin induces protective immunity in aged mice. J Oral Sci. 2013;55:107–14. doi:10.2334/josnusd.55.107.
  • Da Hora VP, Conceicao FR, Dellagostin OA, Doolan DL. Non-toxic derivatives of LT as potent adjuvants. Vaccine 2011;29:1538–44. doi:10.1016/j.vaccine.2010.11.091.
  • Thiam F, Chernilienne A, Poncet D, Kohh E, Basset C. B subunits of cholera toxin and thermolabile enterotoxin of Escherichia coli have similar adjuvant effect as whole molecules on rotavirus 2/6-VLP specific antibody responses and induce a Th17-like response after intrarectal immunization. Microb Pathog. 2015;89:27–34. doi:10.1016/j.micpath.2015.08.013.
  • Yongping M. Recent advances in nontoxic Escherichia coli heat-labile toxin and its derivative adjuvants. Expert Rev Vaccines. 2016;15:1361–71. doi:10.1080/14760584.2016.1182868.
  • Millar DG, Hirst TR, Snider DP. Escherichia coli heat-labile enterotoxin B subunit is a more potent mucosal adjuvant than its closely related homologue, the B subunit of cholera toxin. Infect Immun. 2001;69:3476–82. doi:10.1128/IAI.69.5.3476-3482.2001.
  • Rojas-Hernández S, Rodriguez-Monroy MA, López-Revilla R, Reséndiz-Albor AA, Moreno-Fierros L. Intranasal coadministration of the Cry1Ac protoxin with amoebal lysates increases protection against Naegleria fowleri meningoencephalitis. Infect Immun. 2004;72:4368–75. doi:10.1128/IAI.72.8.4368-4375.2004.
  • Ibarra-Moreno S, García-Hernández AL, Moreno-Fierros L. Coadministration of protoxin Cry1Ac from Bacillus thuringiensis with metacestode extract confers protective immunity to murine cysticercosis. Parasite Immunol. 2014;36:266–70. doi:10.1111/pim.12103.
  • González-González E, García-Hernández AL, Flores-Mejía R, López-Santiago R, Moreno-Fierros L. The protoxin Cry1Ac of Bacillus thuringiensis improves the protection conferred by intranasal immunization with Brucella abortus RB51 in a mouse model. Vet Microbiol. 2016;175:382–88. doi:10.1016/j.vetmic.2014.11.021.
  • Legorreta-Herrera M, Oviedo MR, Moreno-Fierros L. Pretreatment with Cry1Ac protoxin modulates the immune response,and increases the survival of Plasmodium-infected CBA/Ca mice. J Biomed Biotech. 2010;2010:1–11. ID 198921. doi:10.1155/2010/198921.
  • Tundup S, Srivastava I, Harn D Jr. Polarization of the host immune responses by helminth-expressed glycans. Ann NY Acad Sci. 2012;1253:EI–EI3. doi:10.1111/j.1749-6632.2012.06618.x.
  • Demet CJ, Ishii KJ. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat Rev Immunol. 2012;12:479–91. doi:10.1038/nri3247.
  • Kubelkova K, Macela A. Innate immune recognition: an issue more complex than expected. Front Cell Infect Microbiol. 2019;9:1–19. doi:10.3389/fcimb.2019.00241.
  • Kumar S, Ingle H, Prasad DVR, Kumar H. Recognition of bacterial infection by innate immune sensors. Crit Rev Microbiol. 2013;39:229–46. doi:10.3109/1040841X.2012.706249.
  • Pulendra B, Ahmed R. Immunological mechanism of vaccination. Nat Immunol. 2011;12:509–17. doi:10.1038/ni.2039.
  • Fujkuyama Y, Tokuhara D, Kataoka K, Gilbert RS, McGhee JR, Yuki Y, Kiyono H. Fujihashi K novel vaccine development strategies for inducing mucosal immunity. Expert Rev Vaccines. 2012;11:367–79. doi:10.1586/erv.11.196.
  • Walker LS, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunology. 2011;11:852–63. doi:10.1038/nri3108.
  • Walker LSK, Lecture EFIS. Understanding the CTLA-4 checkpoint in the maintenance of immune homeostasis. Immunol Letter. 2017;184:43–50. doi:10.1016/j.imlet.2017.02.007.
  • Schijns VE. Immunological concepts of vaccine adjuvant activity. Curr Opin Immunol. 2000;12:456–63. doi:10.1016/s0952-7915(00)00120-5.
  • Yoshino S, Sasatomi E, Ohsawa M. Bacterial lipopolysaccharide acts as adjuvant to induce autoimmune arthritis in mice. Immunology 2000;4:607–14. doi:10.1046/j.1365-2567.2000.00015.x.
  • van Dissel JT, Arend SM, Prims C, Bang P, Tugkov PN, Lingnau K, Nouta J, Klein MR, Rocenkrands I, Ottenhoff THM. Ag85B-ESAT-6 adjuvanted with K31 promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naive human volunteers. Vaccine 2010;28:3571–81. doi:10.1016/j.vaccine.2010.02.094.
  • Fraser CK, Diener KR, Brown MP, Huyball JD. Improving vaccine by incorporating immunological adjuvants. Expert Rev Vaccines. 2007;6:559–78. doi:10.1586/14760584.6.4.559.
  • Locht C, Houghardy JM, Rouanet C, Place S, Mascart F. Heparin-binding haemagglutinin, from an extrapulmonary dissemination factor to a powerful diagnostic and protective antigen against tuberculosis. Tuberculosis 2006;86:303–09. doi:10.1016/j.tube.2006.01.016.
  • Guerrero GG, Debrie AS, Locht C. Boosting with mycobacterial heparin-binding haemagglutinin enhanced protection of Mycobacterium bovis BCG vaccinated newborns mice against M. tuberculosis. Vaccine 2010;28:4340–47. doi:10.1016/j.vaccine.2010.04.062.
  • Guerrero GG, Locht C. Recombinant HBHA boosting effect on BCG-induced immunity against Mycobacterium tuberculosis infection. Clin Dev Immunol. 2011;2011:730702. doi:10.1155/2011/730702.
  • Xia S, Duan K, Zhang Y, Zhao D, Zhang H, Xie Z, Li X, Peng C, Zhang Y, Zhang W, et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials. JAMA 2020;324:951–60. doi:10.1001/jama.2020.15543.
  • Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao FG, Tan W, Wu G, Xu M, Lou Z, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2021;21:39–51. doi:10.1016/S1473-3099(20)30831-8.
  • Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, Han W, Chen Z, Tang R, Yin W, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021;21:181–92. doi:10.1016/S1473-3099(20)30843-4.
  • Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, Plested JS, Zhu M, Cloney-Clark S, Zhou H, et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020;383:2320–32. doi:10.1056/NEJMoa2026920.
  • Topol EJ. Messenger RNA vaccines against SARS-CoV2. Cell 2021;184:1401–02. doi:10.1016/j.cell.2020.12.039ç.
  • Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, John L, Perez GM, Moreira ED, Zerbini C, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. Clinical Trial N Engl J Med. 2020;383:2603–15. doi:10.1056/NEJMoa2034577.
  • Pulendran B, Arunachalam PS, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;6:1–22. doi:10.1038/s41573-021-00163-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.