40,272
Views
14
CrossRef citations to date
0
Altmetric
Review

Early approval of COVID-19 vaccines: Pros and cons

ORCID Icon &
Pages 3288-3296 | Received 05 Mar 2021, Accepted 13 Jun 2021, Published online: 20 Jul 2021

References

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo. Science (80-). 1990;247(4949):1465–68. doi:10.1126/science.1690918.
  • Liu MA. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines. 2019;7(2):37. doi:10.3390/vaccines7020037.
  • Leitner WW, Ying H, Restifo NP. DNA and RNA-based vaccines: principles, progress and prospects. Vaccine. 1999;18(9–10):765–77. doi:10.1016/S0264-410X(99)00271-6.
  • Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–79. doi:10.1038/nrd.2017.243.
  • Nichols WW, Ledwith BJ, Manam SV, Troilo PJ. Potential DNA vaccine integration into host cell genome. Ann N Y Acad Sci. 1995;772:30–39. doi:10.1111/j.1749-6632.1995.tb44729.x.
  • Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, Weissman D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833–40. doi:10.1038/mt.2008.200.
  • Kauffman KJ, Webber MJ, Anderson DG. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J Control Release. 2016;240:227–34. doi:10.1016/j.jconrel.2015.12.032.
  • Guan S, Rosenecker J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 2017;24(3):133–43. doi:10.1038/gt.2017.5.
  • #Vaccineswork. [accessed 2021 May 25]. https://www.gavi.org/vaccineswork?gclid=Cj0KCQjwna2FBhDPARIsACAEc_Xs53mjrz5yZ4vp5vpsxMqzGQhoWQ0jVVFlviYNGFfXMz8VkFpQ-74aAm-KEALw_wcB
  • WHO. COVAX. 2020. [cited 2021 Mar 2]. https://www.who.int/initiatives/act-accelerator/covax
  • WHO. COVID-19 vaccine doses shipped by the COVAX Facility head to Ghana, marking beginning of global rollout. 2021. [cited 2021 Mar 2]. https://www.who.int/news/item/24-02-2021-covid-19-vaccine-doses-shipped-by-the-covax-facility-head-to-ghana-marking-beginning-of-global-rollout
  • Winsor M What is COVAX? How a global initiative is helping get COVID-19 vaccines to poorer countries. [accessed 2021 Mar 2]. https://abcnews.go.com/Health/covax-global-initiative-helping-covid-19-vaccines-poorer/story?id=76106981
  • COVID live update: 167,986,676 cases and 3,487,062 deaths from the coronavirus – worldometer. 2021. [cited 2021 May 25]. https://www.worldometers.info/coronavirus/
  • Wang T, Du Z, Zhu F, Cao Z, An Y, Gao Y, Jiang B. Comorbidities and multi-organ injuries in the treatment of COVID-19. Lancet. 2020;395(10228):e52. doi:10.1016/S0140-6736(20)30558-4.
  • Elezkurtaj S, Greuel S, Ihlow J, Michaelis EG, Bischoff P, Kunze CA, Sinn BV, Gerhold M, Hauptmann K, Ingold-Heppner B, et al. Causes of death and comorbidities in hospitalized patients with COVID-19. Sci Rep. 2021;11(1):4263. doi:10.1038/s41598-021-82862-5.
  • Renu K, Prasanna PL, Valsala Gopalakrishnan A. Coronaviruses pathogenesis, comorbidities and multi-organ damage – a review. Life Sci. 2020;255:117839. doi:10.1016/j.lfs.2020.117839.
  • Lee LA, Franzel L, Atwell J, Datta SD, Friberg IK, Goldie SJ, Reef SE, Schwalbe N, Simons E, Strebel PM, et al. The estimated mortality impact of vaccinations forecast to be administered during 2011-2020 in 73 countries supported by the gavi alliance. Vaccine. 2013;31:B61–72. doi:10.1016/j.vaccine.2012.11.035.
  • Hartmann G. Nucleic acid immunity. In: Alt FW, editor. Advances in immunology. New York, NY: Academic Press; 2017. p. 121–69.
  • Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, Cu Y, Beard CW, Brito LA, Krucker T, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA. 2012;109(36):14604–09. doi:10.1073/pnas.1209367109.
  • Martin JE, Pierson TC, Hubka S, Rucker S, Gordon IJ, Enama ME, Andrews CA, Xu Q, Davis BS, Nason M, et al. A west Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a phase 1 clinical trial. J Infect Dis. 2007;196(12):1732–40. doi:10.1086/523650.
  • Ledgerwood JE, Pierson TC, Hubka SA, Desai N, Rucker S, Gordon IJ, Enama ME, Nelson S, Nason M, Gu W, et al. A west Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. J Infect Dis. 2011;203(10):1396–404. doi:10.1093/infdis/jir054.
  • Sarwar UN, Costner P, Enama ME, Berkowitz N, Hu Z, Hendel CS, Sitar S, Plummer S, Mulangu S, Bailer RT, et al. Safety and immunogenicity of DNA vaccines encoding ebolavirus and marburgvirus wild-type glycoproteins in a phase I clinical trial. J Infect Dis. 2015;211(4):549–57. doi:10.1093/infdis/jiu511.
  • Gaudinski MR, Houser KV, Morabito KM, Hu Z, Yamshchikov G, Rothwell RS, Berkowitz N, Mendoza F, Saunders JG, Novik L, et al. Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: randomised, open-label, phase 1 clinical trials. Lancet. 2018;391(10120):552–62. doi:10.1016/S0140-6736(17)33105-7.
  • Kim TJ, Jin H-T, Hur S-Y, Yang HG, Seo YB, Hong SR, Lee C-W, Kim S, Woo J-W, Park KS, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun. 2014;5(1):1–14. doi:10.1038/ncomms6317.
  • Pardi N, Hogan MJ, Pelc RS, Muramatsu H, Andersen H, DeMaso CR, Dowd KA, Sutherland LL, Scearce RM, Parks R, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature. 2017;543(7644):248–51. doi:10.1038/nature21428.
  • Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA, Hassett KJ, Laska ME, Smith M, Almarsson Ö, Thompson J, et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol Ther. 2017;25(6):1316–27. doi:10.1016/j.ymthe.2017.03.035.
  • Schnee M, Vogel AB, Voss D, Petsch B, Baumhof P, Kramps T, Stitz L. An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Negl Trop Dis. 2016;10(6):10. doi:10.1371/journal.pntd.0004746.
  • Chahal JS, Khan OF, Cooper CL, McPartlan JS, Tsosie JK, Tilley LD, Sidik SM, Lourido S, Langer R, Bavari S, et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci USA. 2016;113(29):E4133–42. doi:10.1073/pnas.1600299113.
  • Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, Gottardo R, Bica MA, Garofano A, Koch SD, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. The Lancet. 2017;390(10101):1511–20. doi:10.1016/S0140-6736(17)31665-3.
  • Jacobson JM, Routy J-P, Welles S, DeBenedette M, Tcherepanova I, Angel JB, Asmuth DM, Stein DK, Baril J-G, McKellar M, et al. Dendritic cell immunotherapy for HIV-1 infection using autologous HIV-1 RNA: a randomized, double-blind, placebo-controlled clinical trial. J Acquir Immune Defic Syndr. 2016;72(1):31–38. doi:10.1097/QAI.0000000000000926.
  • Gandhi RT, Kwon DS, Macklin EA, Shopis JR, McLean AP, McBrine N, Flynn T, Peter L, Sbrolla A, Kaufmann DE, et al. Immunization of HIV-1-infected persons with autologous dendritic cells transfected with mRNA encoding HIV-1 Gag and Nef: results of a randomized, placebo-controlled clinical trial. J Acquir Immune Defic Syndr. 2016;71(3):246–53. doi:10.1097/QAI.0000000000000852.
  • Knoll MD, Wonodi C. Oxford–AstraZeneca COVID-19 vaccine efficacy. Lancet. 2021;397(10269):72–74. doi:10.1016/S0140-6736(20)32623-4.
  • FDA. Moderna COVID-19 vaccine. 2021 [cited 2021 Feb 23]. https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/moderna-covid-19-vaccine
  • Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med. 2020;383(27):2603–15. doi:10.1056/NEJMoa2034577.
  • Walsh EE, Frenck RW, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, et al. Safety and immunogenicity of two RNA-based covid-19 vaccine candidates. N Engl J Med. 2020;383(25):2439–50. doi:10.1056/NEJMoa2027906.
  • Vaccines and related biological products advisory committee December 17, 2020 meeting briefing document - FDA. 2020;
  • Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403–16. doi:10.1056/NEJMoa2035389.
  • Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtein E, Loes AN, Hilton SK, Huddleston J, Eguia R, Crawford KHD, et al. Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition. Cell Host Microbe. 2021;29(1):44–57.e9. doi:10.1016/j.chom.2020.11.007.
  • Kreiter S, Castle JC, Türeci Ö, Sahin U. Targeting the tumor mutanome for personalized vaccination therapy. Oncoimmunology. 2012;1(5):768–69. doi:10.4161/onci.19727.
  • Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, Schlake T, Thess A, Kallen KJ, Stitz L, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. 2012;30:1210–16. doi:10.1038/nbt.2436.
  • FDA. Pfizer-BioNTech COVID-19 Vaccine. 2021 [cited 2021 Feb 19]. https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/pfizer-biontech-covid-19-vaccine
  • WHO. WHO lists two additional COVID-19 vaccines for emergency use and COVAX roll-out. 2021 [cited 2021 Mar 3]. https://www.who.int/news/item/15-02-2021-who-lists-two-additional-covid-19-vaccines-for-emergency-use-and-covax-roll-out
  • Corbett K, Edwards D, Leist S, Abiona O, Boyoglu-Barnum S, Gillespie R, Himansu S, Schäfer A, Ziwawo C, DiPiazza A, et al. SARS-CoV-2 mRNA vaccine development enabled by prototype pathogen preparedness. bioRxiv Prepr Serv Biol. 2020;2020.06.11.145920.
  • Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (80-). 2020;367(6483):1260–63. doi:10.1126/science.abb2507.
  • Van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham J, Port J, Avanzato V, Bushmaker T, Flaxman A, Ulaszewska M, et al. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv Prepr Serv Biol. 2020;2020.05.13.093195. [cited 2021 Mar 1]. 10.1101/2020.05.13.093195
  • Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, Bellamy D, Bibi S, Bittaye M, Clutterbuck EA, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020;396(10249):467–78. doi:10.1016/S0140-6736(20)31604-4.
  • Platt LR, Estivariz CF, Sutter RW. Vaccine-associated paralytic poliomyelitis: a review of the epidemiology and estimation of the global burden. J Infect Dis. 2014;210(suppl 1):S380–9. doi:10.1093/infdis/jiu184.
  • Chaves M, Riccio P, Patrucco L, Rojas J, Cristiano E. Longitudinal myelitis associated with yellow fever vaccination. J Neurovirol. 2009;15(4):348–50. doi:10.1080/13550280903062805.
  • Shoenfeld Y, Aharon-Maor A, Sherer Y. Vaccination as an additional player in the mosaic of autoimmunity. Clin Exp Rheumatol. 2000;18:181–84.
  • Fleeton MN, Chen M, Berglund P, Rhodes G, Parker SE, Murphy M, Atkins GJ, Liljeström P. Self‐replicative RNA vaccines elicit protection against influenza a virus, respiratory syncytial virus, and a tickborne encephalitis virus. J Infect Dis. 2001;183(9):1395–98. doi:10.1086/319857.
  • Han S, Asoyan A, Rabenstein H, Nakano N, Obst R. Role of antigen persistence and dose for CD4+ T-cell exhaustion and recovery. Proc Natl Acad Sci USA. 2010;107(47):20453–58. doi:10.1073/pnas.1008437107.
  • Shin H, Wherry EJ. CD8 T cell dysfunction during chronic viral infection. Curr Opin Immunol. 2007;19(4):408–15. doi:10.1016/j.coi.2007.06.004.
  • Wherry EJ, Blattman JN, Murali-Krishna K, Van Der Most R, Ahmed R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol. 2003;77(8):4911–27. doi:10.1128/JVI.77.8.4911-4927.2003.
  • Edwards DK, Jasny E, Yoon H, Horscroft N, Schanen B, Geter T, Fotin-Mleczek M, Petsch B, Wittman V. Adjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response. J Transl Med. 2017;15(1):1. doi:10.1186/s12967-016-1111-6.
  • Theofilopoulos AN, Baccala R, Beutler B, Kono DH. Type I interferons (α/β) in immunity and autoimmunity. Annu Rev Immunol. 2005;23(1):307–36. doi:10.1146/annurev.immunol.23.021704.115843.
  • Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, Burg G, Liu Y-J, Gilliet M. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J Exp Med. 2005;202(1):135–43. doi:10.1084/jem.20050500.
  • Caso F, Costa L, Ruscitti P, Navarini L, Del Puente A, Giacomelli R, Scarpa R. Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects? Autoimmun Rev. 2020;19(5):102524. doi:10.1016/j.autrev.2020.102524.
  • White SM Could COVID-19 mRNA vaccines cause autoimmune diseases? 2020 [cited 2021 Mar 1]. https://www.bmj.com/content/371/bmj.m4347/rr-6
  • Kannemeier C, Shibamiya A, Nakazawa F, Trusheim H, Ruppert C, Markart P, Song Y, Tzima E, Kennerknecht E, Niepmann M, et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci USA. 2007;104(15):6388–93. doi:10.1073/pnas.0608647104.
  • Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med. 2021;384(22):2092–101. doi:10.1056/NEJMoa2104840.
  • Hause AM, Gee J, Johnson T, Jazwa A, Marquez P, Miller E, Su J, Shimabukuro TT, Shay DK. Anxiety-related adverse event clusters after Janssen COVID-19 vaccination — five U.S. mass vaccination sites, April 2021. MMWR Morb Mortal Wkly Rep. 2021;70(18):685–88. doi:10.15585/mmwr.mm7018e3.
  • See I, Su JR, Lale A, Woo EJ, Guh AY, Shimabukuro TT, Streiff MB, Rao AK, Wheeler AP, Beavers SF, et al. US case reports of cerebral venous sinus thrombosis with thrombocytopenia after Ad26.COV2.S vaccination, March 2 to April 21, 2021. JAMA. 2021;325(24):2448. 10.1001/jama.2021.7517.
  • Singh Malhotra H, Gupta P, Prabhu V, Garg RK, Dandu H, Agarwal V. COVID-19 vaccination-associated myelitis. QJM An Int J Med. 2021;2021:1–3.
  • Goss AL, Samudralwar RD, Das RR, Nath A. ANA investigates: neurological complications of COVID-19 vaccines. Ann Neurol. 2021;89(5):856–57. doi:10.1002/ana.26065.
  • Menaka P, Schull M, Razak F, Grill A, Ivers N, Maltsev A, Miller KJ, Schwartz B, Stall NM, Steiner R, et al. Vaccine-induced prothrombotic immune thrombocytopenia (VIPIT) following AstraZeneca COVID-19 vaccination: interim guidance for healthcare professionals in emergency department and inpatient settings. 2021.
  • Pottegård A, Lund LC, Ø K, Dahl J, Andersen M, Hallas J, Lidegaard Ø, Tapia G, Gulseth HL, Ruiz PL-D, et al. Arterial events, venous thromboembolism, thrombocytopenia, and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: population based cohort study. BMJ. 2021;373:n1114. doi:10.1136/bmj.n1114.
  • Coronavirus vaccine - weekly summary of Yellow Card reporting - GOV.UK. 2021. [cited 2021 May 12]. https://www.gov.uk/government/publications/coronavirus-covid-19-vaccine-adverse-reactions/coronavirus-vaccine-summary-of-yellow-card-reporting
  • COVID-19 vaccine weekly safety report - 06-05-2021 | therapeutic Goods Administration (TGA). 2021. [cited 2021 May 12]. https://www.tga.gov.au/periodic/covid-19-vaccine-weekly-safety-report-06-05-2021
  • COVID-19 Vaccine AstraZeneca: benefits still outweigh the risks despite possible link to rare blood clots with low blood platelets | European medicines agency. 2021. [cited 2021 Apr 5]. https://www.ema.europa.eu/en/news/covid-19-vaccine-astrazeneca-benefits-still-outweigh-risks-despite-possible-link-rare-blood-clots
  • Gorse GJ, Patel GB, Vitale JN, O’Connor TZ. Prevalence of antibodies to four human coronaviruses is lower in nasal secretions than in serum. Clin Vaccine Immunol. 2010;17(12):1875–80. doi:10.1128/CVI.00278-10.
  • Sariol A, Perlman S. Lessons for COVID-19 immunity from other coronavirus infections. Immunity. 2020;53(2):248–63. doi:10.1016/j.immuni.2020.07.005.
  • Bradburne AF, Bynoe ML, Tyrrell DAJ. Effects of a “New” human respiratory virus in volunteers. Br Med J. 1967;3(5568):767–69. doi:10.1136/bmj.3.5568.767.
  • Callow KA, Parry HF, Sergeant M, Tyrrell DAJ. The time course of the immune response to experimental coronavirus infection of man. Epidemiol Infect. 1990;105(2):435–46. doi:10.1017/S0950268800048019.
  • Hendley JO, Fishburne HB, Gwaltney JM. Coronavirus infections in working adults. Eight-year study with 229 E and OC 43. Am Rev Respir Dis. 1972;105(5):805–11. doi:10.1164/arrd.1972.105.5.805.
  • Monto AS, Lim SK. The Tecumseh study of respiratory illness. VI. Frequency of and relationship between outbreaks of coronavirus infection. J Infect Dis. 1974;129(3):271–76. doi:10.1093/infdis/129.3.271.
  • Schmidt OW, Allan ID, Cooney MK, Foy HM, Fox JP. Rises in titers of antibody to human corona viruses oc43 and 229e in Seattle families during 1975-1979. Am J Epidemiol. 1986;123(5):862–68. doi:10.1093/oxfordjournals.aje.a114315.
  • Habibi MS, Jozwik A, Makris S, Dunning J, Paras A, DeVincenzo JP, De Haan CAM, Wrammert J, Openshaw PJM, Chiu C. Impaired antibody-mediated protection and defective iga b-cell memory in experimental infection of adults with respiratory syncytial virus. Am J Respir Crit Care Med. 2015;191(9):1040–49. doi:10.1164/rccm.201412-2256OC.
  • Liu WM, Van Der Zeijst BAM, Boog CJP, Soethout EC. Aging and impaired immunity to influenza viruses: implications for vaccine development. Hum Vaccin. 2011;7(sup1):94–98. doi:10.4161/hv.7.0.14568.
  • Gr M. Developing a vaccine for human rhinoviruses. J Vaccines Immun. 2014;2(3):16–20. doi:10.14312/2053-1273.2014-3.
  • Glanville N, Johnston SL. Challenges in developing a cross-serotype rhinovirus vaccine. Curr Opin Virol. 2015;11:83–88. doi:10.1016/j.coviro.2015.03.004.
  • Garcia-Beltran WF, Lam EC, St. Denis K, Nitido AD, Garcia ZH, Hauser BM, Feldman J, Pavlovic MN, Gregory DJ, Poznansky MC, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. 2021;184(9):2372–2383.e9. 10.1016/j.cell.2021.03.013.
  • Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, Wang M, Yu J, Zhang B, Kwong PD, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021; 593:1–9.
  • McCallum M, Bassi J, De Marco A, Chen A, Walls AC, Di Iulio J, Alejandra Tortorici M, Navarro M-J, Silacci-Fregni C, Agostini M, et al. SARS-CoV-2 immune evasion by variant B.1.427/B.1.429. bioRxiv. 2021;2021.03.31.437925. doi:10.1101/2021.03.31.437925
  • Frasca D, Riley RL, Blomberg BB. Humoral immune response and B-cell functions including immunoglobulin class switch are downregulated in aged mice and humans. Semin Immunol. 2005;17(5):378–84. doi:10.1016/j.smim.2005.05.005.
  • Han S, Yang K, Ozen Z, Peng W, Marinova E, Kelsoe G, Zheng B. Enhanced differentiation of splenic plasma cells but diminished long-lived high-affinity bone marrow plasma cells in aged mice. J Immunol. 2003;170(3):1267–73. doi:10.4049/jimmunol.170.3.1267.
  • Naylor K, Li G, Vallejo AN, Lee -W-W, Koetz K, Bryl E, Witkowski J, Fulbright J, Weyand CM, Goronzy JJ. The influence of age on T cell generation and TCR diversity. J Immunol. 2005;174(11):7446–52. doi:10.4049/jimmunol.174.11.7446.
  • Cicin-Sain L, Smyk-Paerson S, Currier N, Byrd L, Koudelka C, Robinson T, Swarbrick G, Tackitt S, Legasse A, Fischer M, et al. Loss of naive T cells and repertoire constriction predict poor response to vaccination in old primates. J Immunol. 2010;184(12):6739–45. doi:10.4049/jimmunol.0904193.
  • Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med. 2008;205(3):711–23. doi:10.1084/jem.20071140.
  • Effros RB, Boucher N, Porter V, Zhu X, Spaulding C, Walford RL, Kronenberg M, Cohen D, Schächter F. Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause for both in vivo and in vitro immunosenescence. Exp Gerontol. 1994;29(6):601–09. doi:10.1016/0531-5565(94)90073-6.
  • Ahrenfeldt LJ, Otavova M, Christensen K, Lindahl-Jacobsen R. Sex and age differences in COVID-19 mortality in Europe. Wien Klin Wochenschr. 2020;133:1–6.
  • Kang SJ, Jung SI. Age-related morbidity and mortality among patients with COVID-19. Infect Chemother. 2020;52(2):154–64. doi:10.3947/ic.2020.52.2.154.
  • Undurraga EA, Chowell G, Mizumoto K. COVID-19 case fatality risk by age and gender in a high testing setting in Latin America: chile, March–August 2020. Infect Dis Poverty. 2021;10(1):11. doi:10.1186/s40249-020-00785-1.
  • Yanez ND, Weiss NS, Romand J-A, Treggiari MM. COVID-19 mortality risk for older men and women. BMC Public Health. 2020;20(1):1742. doi:10.1186/s12889-020-09826-8.
  • Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, Hernán MA, Lipsitch M, Reis B, Balicer RD. BNT162b2 mRNA covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med. 2021;384:NEJMoa2101765.
  • Bernal JL, Andrews N, Gower C, Stowe J, Robertson C, Tessier E, Simmons R, Cottrell S, Roberts R, O’Doherty M, et al. Early effectiveness of COVID-19 vaccination with BNT162b2 mRNA vaccine and ChAdOx1 adenovirus vector vaccine on symptomatic disease, hospitalisations and mortality in older adults in England. medRxiv. 2021;2021.03.01.21252652. 10.1101/2021.03.01.21252652
  • Hyams C, Marlow R, Maseko Z, King J, Ward L, Fox K, Heath R, Turner A, Friedrich Z, Morrison L, et al. Assessing the effectiveness of BNT162b2 and ChAdOx1nCoV-19 COVID-19 vaccination in prevention of hospitalisations in elderly and frail adults: a single centre test negative case-control study. SSRN Electron J. 2021. doi:10.2139/ssrn.3796835.
  • Nie Y, Wang -Y-Y. Innate immune responses to DNA viruses. Protein Cell. 2013;4(1):1–7. doi:10.1007/s13238-012-2122-6.
  • Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441(7089):101–05. doi:10.1038/nature04734.
  • Schlee M, Roth A, Hornung V, Hagmann CA, Wimmenauer V, Barchet W, Coch C, Janke M, Mihailovic A, Wardle G, et al. Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity. 2009;31(1):25–34. doi:10.1016/j.immuni.2009.05.008.
  • Liu G, Zhou Y, Tsai B. Cytoplasm and beyond: dynamic innate immune sensing of influenza a virus by RIG-I. J Virol. 2019;93(8):2299–317. doi:10.1128/JVI.02299-18.
  • Schlee M. Master sensors of pathogenic RNA – RIG-I like receptors. Immunobiology. 2013;218(11):1322–35. doi:10.1016/j.imbio.2013.06.007.
  • Davis WG, Bowzard JB, Sharma SD, Wiens ME, Ranjan P, Gangappa S, Stuchlik O, Pohl J, Donis RO, Katz JM, et al. The 3′ untranslated regions of influenza genomic sequences are 5′PPP-independent ligands for RIG-i. PLoS One. 2012;7(3):e32661. doi:10.1371/journal.pone.0032661.
  • Bowzard JB, Ranjan P, Sambhara S. RIG-I goes beyond naked recognition. Cell Host Microbe. 2013;13(3):247–49. doi:10.1016/j.chom.2013.02.012.
  • Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann -K-K, Schlee M, et al. 5’-triphosphate RNA is the ligand for RIG-I. Science (80-). 2006;314(5801):994–97. doi:10.1126/science.1132505.
  • Gorini S, Gatta L, Pontecorvo L, Vitiello L, la Sala A. Regulation of innate immunity by extracellular nucleotides. Am J Blood Res. 2013;3:14–28.
  • Gil A. Modulation of the immune response mediated by dietary nucleotides. Eur J Clin Nutr. 2002;56(S3):S1–4. doi:10.1038/sj.ejcn.1601475.
  • Fulginiti VA, Eller JJ, Sieber OF, Joyner JW, Minamitani M, Meiklejohn G. Respiratory virus immunization: a field trial of two inactivated respiratory virus vaccines; an aqueous trivalent parainfluenza virus vaccine and an alum-precipitated respiratory syncytial virus vaccine. Am J Epidemiol. 1969;89(4):435–48. doi:10.1093/oxfordjournals.aje.a120956.
  • Smatti MK, Al Thani AA, Yassine HM. Viral-induced enhanced disease illness. Front Microbiol. 2018;9:2991. doi:10.3389/fmicb.2018.02991.
  • Martin DB. Atypical measles in adolescents and young adults. Ann Intern Med. 1979;90(6):877–81. doi:10.7326/0003-4819-90-6-877.
  • Davis BS, Chang GJJ, Cropp B, Roehrig JT, Martin DA, Mitchell CJ, Bowen R, Bunning ML. West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J Virol. 2001;75(9):4040–47. doi:10.1128/JVI.75.9.4040-4047.2001.
  • Garver KA, LaPatra SE, Kurath G. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon. Dis Aquat Organ. 2005;64:13–22. doi:10.3354/dao064013.
  • The global race to vaccinate – foreign policy. 2021. [cited 2021 Apr 6]. https://foreignpolicy.com/2021/03/29/covid-19-vaccine-diplomacy-global-pandemic-response/