5,508
Views
15
CrossRef citations to date
0
Altmetric
Review

Exploring the COVID-19 vaccine candidates against SARS-CoV-2 and its variants: where do we stand and where do we go?

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4714-4740 | Received 22 Jul 2021, Accepted 15 Oct 2021, Published online: 02 Dec 2021

References

  • Parkin J, Cohen B. An overview of the immune system. Lancet. 2001;357:1777–89. doi:10.1016/S0140-6736(00)04904-7.
  • Baxter D. Active and passive immunity, vaccine types, excipients and licensing. Occup Med (Lond). 2007;57:552–56. doi:10.1093/occmed/kqm110.
  • Heffernan JM, Keeling MJ. Implications of vaccination and waning immunity. Proc Biol Sci. 2009;276:2071–80. doi:10.1098/rspb.2009.0057.
  • Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26:450–52. doi:10.1038/s41591-020-0820-9.
  • Yee S, Tan CS, Khan A, Lee KS, Goh BH, Ming LC. SARS-COV-2 as an artificial creation: scientific arguments and counterarguments. J Med Life. 2021;14:118–20. doi:10.25122/jml-2020-0175.
  • Amanat F, Krammer F. SARS-CoV-2 vaccines: status report. Immunity. 2020;52:583–89. doi:10.1016/j.immuni.2020.03.007.
  • Thakur S, Sarkar B, Ansari AJ, Khandelwal A, Arya A, Poduri R, Joshi G. Exploring the magic bullets to identify Achilles’ heel in SARS-CoV-2: delving deeper into the sea of possible therapeutic options in Covid-19 disease: an update. Food Chem Toxicol. 2021;147:111887. doi:10.1016/j.fct.2020.111887.
  • Poduri R, Joshi G, Jagadeesh G. Drugs targeting various stages of the SARS-CoV-2 life cycle: exploring promising drugs for the treatment of Covid-19. Cell Signal. 2020;74:109721. doi:10.1016/j.cellsig.2020.109721.
  • Plotkin SA, Plotkin SL. The development of vaccines: how the past led to the future. Nat Rev Microbiol. 2011;9:889–93. doi:10.1038/nrmicro2668.
  • Rappuoli R, Pizza M, Del Giudice G, De Gregorio E. Vaccines, new opportunities for a new society. Proc Natl Acad Sci USA. 2014;111:12288–93. doi:10.1073/pnas.1402981111.
  • Wherry EJ, Jaffee EM, Warren N, D’Souza G, Ribas A. How did we get a COVID-19 vaccine in less than 1 year?. Clin Cancer Res. 2021;27:2136–38. doi:10.1158/1078-0432.CCR-21-0079.
  • Funk CD, Laferriere C, Ardakani A. A snapshot of the global race for vaccines targeting SARS-CoV-2 and the COVID-19 pandemic. Front Pharmacol. 2020;11:937. doi:10.3389/fphar.2020.00937.
  • Zepp F. Principles of vaccine design—lessons from nature. Vaccine. 2010;28:C14–C24. doi:10.1016/j.vaccine.2010.07.020.
  • Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform. 2015;53:405–14. doi:10.1016/j.jbi.2014.11.003.
  • Rueckert C, Guzman CA. Vaccines: from empirical development to rational design. PLoS Pathog. 2012;8:e1003001. doi:10.1371/journal.ppat.1003001.
  • Abidi A, Can M. On the accuracies of sequence based linear B cell epitope predictors. Southeast Eur J Soft Comput. 2018;6. doi:10.21533/scjournal.v6i2.142.
  • Wang J, Wang H, Wang X, Chang H. Predicting drug-target interactions via FM-DNN learning. Curr Bioinform. 2020;15:68–76. doi:10.2174/1574893614666190227160538.
  • Wong KK. Optimization in the design of natural structures, biomaterials, bioinformatics and biometric techniques for solving physiological needs and ultimate performance of bio-devices. Curr Bioinform. 2019;14:374–75. doi:10.2174/157489361405190628122355.
  • Fast E, Altman RB, Chen B. Potential T-cell and B-cell epitopes of 2019-nCoV. BioRxiv 2020:2020 02 19 955484. doi:10.1101/2020.02.19.955484.
  • Ong E, Wong MU, Huffman A, He Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. Front Immunol. 2020;11:1581. doi:10.3389/fimmu.2020.01581.
  • Yang Z, Bogdan P, Nazarian S. An in silico deep learning approach to multi-epitope vaccine design: a SARS-CoV-2 case study. Sci Rep. 2021;11:3238. doi:10.1038/s41598-021-81749-9.
  • Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 2019;47:D339–D43. doi:10.1093/nar/gky1006.
  • Toussaint NC, Kohlbacher O. OptiTope—a web server for the selection of an optimal set of peptides for epitope-based vaccines. Nucleic Acids Res. 2009;37:W617–W22. doi:10.1093/nar/gkp293.
  • Karosiene E, Lundegaard C, Lund O, Nielsen M. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics. 2012;64:177–86. doi:10.1007/s00251-011-0579-8.
  • Sharma R, Palanisamy A, Dhama K, Mal G, Singh B, Singh KP. Exploring the possible use of saponin adjuvants in COVID-19 vaccine. Hum Vaccines Immunother. 2020;16:2944–53. doi:10.1080/21645515.2020.1833579.
  • Cox JC, Coulter AR. Adjuvants—a classification and review of their modes of action. Vaccine. 1997;15:248–56. doi:10.1016/s0264-410x(96)00183-1.
  • Pulendran B, S. Arunachalam P, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;20:454–75. doi:10.1038/s41573-021-00163-y.
  • Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 2013;4:114. doi:10.3389/fimmu.2013.00114.
  • McKee AS, MacLeod MK, Kappler JW, Marrack P. Immune mechanisms of protection: can adjuvants rise to the challenge? BMC Biol. 2010;8:1–10. doi:10.1186/1741-7007-8-37.
  • Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019;10:594. doi:10.3389/fimmu.2019.00594.
  • Federico S, Pozzetti L, Papa A, Carullo G, Gemma S, Butini S, Campiani G, Relitti N. Modulation of the innate immune response by targeting toll-like receptors: a perspective on their agonists and antagonists. J Med Chem. 2020;63:13466–513. doi:10.1021/acs.jmedchem.0c01049.
  • Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem. 2013;8:360–76. doi:10.1002/cmdc.201200487.
  • Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011;12:509–17. doi:10.1038/ni.2039.
  • Gomez PL, Robinson JM. Vaccine manufacturing. Plotkin’s Vaccines. 2018;51–60.e1. doi:10.1016/B978-0-323-35761-6.00005-5.
  • Philippidis A. COVID-19: top 60 drug treatments in development: the biopharma industry is ramping up the development of dozens of potential drug therapies and clinical testing in an all-hands effort to combat the pandemic. Genet Eng Biotechnol News. 2020;40:10–13. doi:10.1089/gen.40.04.02.
  • Rodrigues CM, Plotkin SA. Impact of vaccines; health, economic and social perspectives. Front Microbiol. 2020;11. doi:10.3389/fmicb.2020.01526.
  • Saylor K, Gillam F, Lohneis T, Zhang C. Designs of antigen structure and composition for improved protein-based vaccine efficacy. Front Immunol. 2020;11:283. doi:10.3389/fimmu.2020.00283.
  • Heinz FX, Stiasny K. Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. NPJ Vaccines. 2021;6:104. doi:10.1038/s41541-021-00369-6.
  • Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018;17:261–79. doi:10.1038/nrd.2017.243.
  • Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2021;21:83–100. doi:10.1038/s41577-020-00479-7.
  • Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586:516–27. doi:10.1038/s41586-020-2798-3.
  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465–68. doi:10.1126/science.1690918.
  • Borah P, Deb PK, Deka S, Venugopala KN, Singh V, Mailavaram RP, Kalia K, Tekade RK. Current scenario and future prospect in the management of COVID-19. Curr Med Chem. 2021;28:284–307. doi:10.2174/0929867327666200908113642.
  • Borah P, Deb PK, Al-Shar’i NA, Dahabiyeh LA, Venugopala KN, Singh V, Shinu P, Hussain S, Deka S, Chandrasekaran B. Perspectives on RNA vaccine candidates for COVID-19. Front Mol Biosci. 2021;8:635245. doi:10.3389/fmolb.2021.635245.
  • Liu MA. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines (Basel). 2019;7:37. doi:10.3390/vaccines7020037.
  • Jensen S, Thomsen AR. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol. 2012;86:2900–10. doi:10.1128/JVI.05738-11.
  • Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomed. 2019;14:1937. doi:10.2147/IJN.S198353.
  • de Queiroz N, Marinho FV, Chagas MA, Leite LCC, Homan EJ, de Magalhaes MTQ, Oliveira SC. Vaccines for COVID-19: perspectives from nucleic acid vaccines to BCG as delivery vector system. Microbes Infect. 2020;22:515–24. doi:10.1016/j.micinf.2020.09.004.
  • Maruggi G, Chiarot E, Giovani C, Buccato S, Bonacci S, Frigimelica E, Margarit I, Geall A, Bensi G, Maione D, et al. Immunogenicity and protective efficacy induced by self-amplifying mRNA vaccines encoding bacterial antigens. Vaccine. 2017;35:361–68. doi:10.1016/j.vaccine.2016.11.040.
  • Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, Cu Y, Beard CW, Brito LA, Krucker T, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA. 2012;109:14604–09. doi:10.1073/pnas.1209367109.
  • Beissert T, Perkovic M, Vogel A, Erbar S, Walzer KC, Hempel T, Brill S, Haefner E, Becker R, Türeci Ö, et al. A trans-amplifying RNA vaccine strategy for induction of potent protective immunity. Mol Ther. 2020;28(1):119–28. doi:10.1016/j.ymthe.2019.09.009.
  • Bloom K, van den Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 2021;28:117–29. doi:10.1038/s41434-020-00204-y.
  • Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 2019;10:128. doi:10.1038/s41419-019-1413-8.
  • Dolgin E. The tangled history of mRNA vaccines. Nature. 2021;597(7876):318–24. doi:10.1038/d41586-021-02483-w.
  • Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, McCullough MP, Chappell JD, Denison MR, Stevens LJ, et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N Engl J Med. 2020;383:1920–31. doi:10.1056/NEJMoa2022483.
  • Crommelin DJA, Anchordoquy TJ, Volkin DB, Jiskoot W, Mastrobattista E. Addressing the cold reality of mRNA vaccine stability. J Pharm Sci. 2021;110:997–1001. doi:10.1016/j.xphs.2020.12.006.
  • Walsh EE, Frenck R, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, Swanson KA, et al. RNA-based COVID-19 vaccine BNT162b2 selected for a pivotal efficacy study. Medrxiv. 2020. doi:10.1101/2020.08.17.20176651.
  • Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383:2603–15. doi:10.1056/NEJMoa2034577.
  • Lamb YN. BNT162b2 mRNA COVID-19 vaccine: first approval. Drugs. 2021;81:495–501. doi:10.1007/s40265-021-01480-7.
  • Mukherjee R. Global efforts on vaccines for COVID-19: since, sooner or later, we all will catch the coronavirus. J Biosci. 2020;45:1–10. doi:10.1007/s12038-020-00040-7.
  • Oostvogels L, Kremsner P, Kreidenweiss A, Leroux-Roels I, Leroux-Roels G, Kroidl A, Schunk M, Schindler C, Bosch J, Fendel R, Gabor JJ. Phase 1 assessment of the safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-CoV-2 in human volunteers. Medrxiv. 2020. doi:10.1101/2020.11.09.20228551.
  • Silveira MM, Oliveira TL, Schuch RA, McBride AJA, Dellagostin OA, Hartwig DD. DNA vaccines against leptospirosis: a literature review. Vaccine. 2017;35:5559–67. doi:10.1016/j.vaccine.2017.08.067.
  • Duerr GD, Heine A, Hamiko M, Zimmer S, Luetkens JA, Nattermann J, Rieke G, Isaak A, Jehle J, Held SAE, et al. Parameters predicting COVID-19-induced myocardial injury and mortality. Life Sci. 2020;260:118400. doi:10.1016/j.lfs.2020.118400.
  • Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, Voysey M, Aley PK, Angus B, Babbage G, Belij-Rammerstorfer S. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet. 2021;396:1979–93. doi:10.1016/S0140-6736(20)32466-1.
  • Lee P, Kim CU, Seo SH, Kim DJ. Current status of COVID-19 vaccine development: focusing on antigen design and clinical trials on later stages. Immune Network. 2021;21:e4. doi:10.4110/in.2021.21.e4.
  • Coronavirus vaccine tracker. [ accessed 2021 Sep 19]. https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html.
  • Bottomley MJ, Rappuoli R, Finco O. Vaccine design in the 21st century. In: Bloom BR, and Lambert P-H, editors. The vaccine book. USA: Academic Press; 2016. p. 45–65.
  • Chen J, Gao K, Wang R, Wei GW. Prediction and mitigation of mutation threats to COVID-19 vaccines and antibody therapies. Chem Sci. 2021;12:6929–48. doi:10.1039/d1sc01203g.
  • Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581:215–20. doi:10.1038/s41586-020-2180-5.
  • Callaway E, Mallapaty S. Novavax covid vaccine protects people against variants. Nature. 2021;590:17. doi:10.1038/d41586-021-00268-9.
  • Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, Plested JS, Zhu M, Cloney-Clark S, Zhou H, Smith G. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020;383:2320–32. doi:10.1056/NEJMoa2026920.
  • Mahase E. Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. Br Med J. 2021. doi:10.1136/bmj.n296.
  • Cheng RZ. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)?. Med Drug Discov. 2020;5:100028. doi:10.1016/j.medidd.2020.100028.
  • Richmond P, Hatchuel L, Dong M, Ma B, Hu B, Smolenov I, Li P, Liang P, Han HH, Liang J, Clemens R. Safety and immunogenicity of S-Trimer (SCB-2019), a protein subunit vaccine candidate for COVID-19 in healthy adults: a phase 1, randomised, double-blind, placebo-controlled trial. Lancet. 2021;397:682–94. doi:10.1016/S0140-6736(21)00241-5.
  • Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol. 2021;21:73–82. doi:10.1038/s41577-020-00480-0.
  • Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, Padayachee SD, Dheda K, Barnabas SL, Bhorat QE. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021;384:1885–98. doi:10.1056/NEJMoa2102214.
  • Montastruc F, Thuriot S, Durrieu G. Hepatic disorders with the use of Remdesivir for Coronavirus 2019. Clin Gastroenterol Hepatol. 2020;18:2835–36. doi:10.1016/j.cgh.2020.07.050.
  • Fan Q, Zhang B, Ma J, Zhang S. Safety profile of the antiviral drug Remdesivir: an update. Biomed Pharmacother. 2020;130:110532. doi:10.1016/j.biopha.2020.110532.
  • Ryzhikov AB, Ryzhikov EА, Bogryantseva MP, Danilenko ED, Imatdinov IR, Nechaeva EA, Pyankov OV, Pyankova OG, Susloparov IM, Taranov OS, Gudymo AS, Immunogenicity and protectivity of the peptide vaccine against SARS-CoV-2. Ann Russ Acad Sci Med Sci. 2021;76:5–19. doi:10.15690/vramn1528.
  • Gupta S, Wang W, Hayek SS, Chan L, Mathews KS, Melamed ML, Brenner SK, Leonberg-Yoo A, Schenck EJ, Radbel J, Reiser J, Investigators SC, Association between early treatment with Tocilizumab and mortality among critically Ill patients with COVID-19. JAMA Intern Med. 2021;181:41–51. doi:10.1001/jamainternmed.2020.6252.
  • Guirakhoo F, Kuo L, Peng J, Huang JH, Kuo B, Lin F, A novel SARS-CoV-2 multitope protein/peptide vaccine candidate is highly immunogenic and prevents lung infection in an Adeno associated virus human angiotensin-converting enzyme 2 (AAV hACE2) mouse model. BioRxiv. 202010.1101/2020.11.30.399154.
  • Bouard D, Alazard-Dany D, Cosset FL. Viral vectors: from virology to transgene expression. Br J Pharmacol. 2009;157:153–65. doi:10.1038/bjp.2008.349.
  • Bezbaruah R, Borah P, Kakoti BB, Al-Shar IN, Chandrasekaran B, Jaradat DMM, Al-Zeer MA, Abu-Romman S, Developmental landscape of potential vaccine candidates based on viral vector for prophylaxis of COVID-19. Front Mol Biosci. 2021;8:635337. doi:10.3389/fmolb.2021.635337.
  • van Riel D, de Wit E. Next-generation vaccine platforms for COVID-19. Nat Mater. 2020;19:810–12. doi:10.1038/s41563-020-0746-0.
  • Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, Angus B, Baillie VL, Barnabas SL, Bhorat QE, Bibi S B, Baillie VL, Barnabas SL, Bhorat QE, Bibi S. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397:99–111. doi:10.1016/S0140-6736(20)32661-1.
  • Khan Sharun RS, Dhama K. Oxford-AstraZeneca COVID-19 vaccine (AZD1222) is ideal for resource-constrained low-and middle-income countries. Ann Med Surg. 2021. doi:10.1016/j.amsu.2021.102264.
  • Knoll MD, Wonodi C. Oxford–AstraZeneca COVID-19 vaccine efficacy. Lancet. 2021;397:72–74. doi:10.1016/S0140-6736(20)32623-4.
  • Xi CE, Singh J. A review of the animal and human trials of the Ad5-nCoV vaccine candidate. Int J Stud Res. 2021;10. doi:10.47611/jsr.v10i1.1159.
  • Wu S, Zhong G, Zhang J, Shuai L, Zhang Z, Wen Z, Wang B, Zhao Z, Song X, Chen Y, et al. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge. Nat Commun. 2020;11:4081. doi:10.1038/s41467-020-17972-1.
  • Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, Kovyrshina AV, Lubenets NL, Grousova DM, Erokhova AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671–81. doi:10.1016/S0140-6736(21)00234-8.
  • Sadoff J, Gray G, Vandebosch A, Cardenas V, Shukarev G, Grinsztejn B, Goepfert PA, Truyers C, Fennema H, Spiessens B, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med. 2021;384:2187–201. doi:10.1056/NEJMoa2101544.
  • Stephenson E, Reynolds G, Botting RA, Calero-Nieto FJ, Morgan MD, Tuong ZK, Bach K, Sungnak W, Worlock KB, Yoshida M, et al. Single-cell multi-omics analysis of the immune response in COVID-19. Nat Med. 2021;27(5):904–16. doi:10.1038/s41591-021-01329-2.
  • Roldão A, Mellado MCM, Castilho LR, Carrondo MJ, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines. 2010;9:1149–76. doi:10.1586/erv.10.115.
  • Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnol. 2021;19:1–27. doi:10.1186/s12951-021-00806-7.
  • Morel S, Didierlaurent A, Bourguignon P, Delhaye S, Baras B, Jacob V, Planty C, Elouahabi A, Harvengt P, Carlsen H, Kielland A. C, Elouahabi A, Harvengt P, Carlsen H, Kielland A. Adjuvant system AS03 containing alpha-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine. 2011;29:2461–73. doi:10.1016/j.vaccine.2011.01.011.
  • Burny W, Callegaro A, Bechtold V, Clement F, Delhaye S, Fissette L, Janssens M, Leroux-Roels G, Marchant A, van den Berg RA, Garçon N M, Leroux-Roels G, Marchant A, Van den Berg RA, Garçon N. Different adjuvants induce common innate pathways that are associated with enhanced adaptive responses against a model antigen in humans. Front Immunol. 2017;8:943. doi:10.3389/fimmu.2017.00943.
  • Ward BJ, Gobeil P, Seguin A, Atkins J, Boulay I, Charbonneau PY, Couture M, D’Aoust M-A, Dhaliwall J, Finkle C, et al. Phase 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19. Nat Med. 2021;27:1071–78. doi:10.1038/s41591-021-01370-1.
  • Gobeil P, Pillet S, Séguin A, Boulay I, Mahmood A, Vinh DC, Charland N, Boutet P, Roman FP, Van Der Most R, Perez MD N, Boutet P, Roman FP, Van Der Most R, Perez MD. Interim report of a phase 2 randomized trial of a plant-produced virus-like particle vaccine for Covid-19 in healthy adults aged 18-64 and older adults aged 65 and older. Medrxiv. 2021. doi:10.1101/2021.05.14.21257248.
  • Bakhiet M, Taurin S. SARS-CoV-2: targeted managements and vaccine development. Cytokine Growth Factor Rev. 2021;58:16–29. doi:10.1016/j.cytogfr.2020.11.001.
  • Khuroo MS, Khuroo M, Khuroo MS, Sofi AA, Khuroo NS. COVID-19 vaccines: a race against time in the middle of death and devastation! J Clin Exp Hepatol. 2020;10:610–21. doi:10.1016/j.jceh.2020.06.003.
  • Tielemans S, de Melker HE, Hahne SJM, Boef AGC, van der Klis FRM, Sanders EAM, van der Sande MAB, Knol MJ. Non-specific effects of measles, mumps, and rubella (MMR) vaccination in high income setting: population based cohort study in the Netherlands. Br Med J. 2017;358:j3862. doi:10.1136/bmj.j3862.
  • Plotkin S. History of vaccination. Proc Natl Acad Sci USA. 2014;111:12283–87. doi:10.1073/pnas.1400472111.
  • Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, Xu Y, Tian Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17:533–35. doi:10.1038/s41423-020-0402-2.
  • Netland J, DeDiego ML, Zhao J, Fett C, Alvarez E, Nieto-Torres JL, Enjuanes L, Perlman S. Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease. Virology. 2010;399:120–28. doi:10.1016/j.virol.2010.01.004.
  • Hou Y, Meulia T, Gao X, Saif LJ, Wang Q, Gallagher T. Deletion of both the tyrosine-based endocytosis signal and the endoplasmic reticulum retrieval signal in the cytoplasmic tail of spike protein attenuates porcine epidemic diarrhea virus in pigs. J Virol. 2019;93. doi:10.1128/JVI.01758-18.
  • Menachery VD, Yount BL Jr., Josset L, Gralinski LE, Scobey T, Agnihothram S, Katze MG, Baric RS. Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2’-o-methyltransferase activity. J Virol. 2014;88:4251–64. doi:10.1128/JVI.03571-13.
  • Zhao J, Zhao S, Ou J, Zhang J, Lan W, Guan W, Wu X, Yan Y, Zhao W, Wu J. COVID-19: Coronavirus vaccine development updates. Front Immunol. 2020;11:602256. doi:10.3389/fimmu.2020.602256.
  • Sharun K, Dhama K. India’s role in COVID-19 vaccine diplomacy. J Travel Med. 2021;28. doi:10.1093/jtm/taab064.
  • Luca S, Mihaescu T. History of BCG vaccine. Maedica (Bucur). 2013;8:53–58. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749764/.
  • Report on BCG vaccine use for protection against mycobacterial infections including tuberculosis, leprosy, and other nontuberculous mycobacteria (NTM) infections. [ accessed 2021 Sep 10]. https://www.who.int/immunization/sage/meetings/2017/october/1_BCG_report_revised_version_online.pdf .
  • Shann F. Nonspecific effects of vaccines and the reduction of mortality in children. Clin Ther. 2013;35:109–14. doi:10.1016/j.clinthera.2013.01.007.
  • Netea MG, Dominguez-Andres J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, Joosten LAB, van der Meer JWM, Mhlanga MM, Mulder WJM, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20:375–88. doi:10.1038/s41577-020-0285-6.
  • Moorlag S, Arts RJW, Van Crevel R, Netea MG. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect. 2019;25:1473–78. doi:10.1016/j.cmi.2019.04.020.
  • Miller A, Reandelar MJ, Fasciglione K, Roumenova V, Li Y, Otazu GH. Correlation between universal BCG vaccination policy and reduced mortality for COVID-19. Medrxiv. 2020. doi:10.1101/2020.03.24.20042937.
  • Hegarty PK, Kamat A, Zafirakis H, Dinardo A. BCG vaccination may be protective against Covid-19. Preprint. 2020. doi:10.13140/RG.2.2.35948.10880.
  • Dayal D, Gupta S. Connecting BCG vaccination and COVID-19: additional data. Medrxiv. 2020. doi:10.1101/2020.04.07.20053272.
  • Bacille Calmette-Guérin (BCG) vaccination and COVID-19: scientific brief, 12 April 2020. [accessed 2021 Sep 10]. https://www.who.int/news-room/commentaries/detail/bacille-calmette-gu%C3%A9rin-(bcg)-vaccination-and-covid-19 .
  • Fu W, Ho PC, Liu CL, Tzeng KT, Nayeem N, Moore JS, Wang L-S, Chou S-Y. Reconcile the debate over protective effects of BCG vaccine against COVID-19. Sci Rep. 2021;11:8356. doi:10.1038/s41598-021-87731-9.
  • Birkhoff M, Leitz M, Marx D. Advantages of intranasal vaccination and considerations on device selection. Indian J Pharm Sci. 2009;71:729–31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846493/ .
  • Remy KE, Brakenridge SC, Francois B, Daix T, Deutschman CS, Monneret G, Jeannet R, Laterre P-F, Hotchkiss RS, Moldawer LL. Immunotherapies for COVID-19: lessons learned from sepsis. Lancet Respir Med. 2020;8:946–49. doi:10.1016/S2213-2600(20)30217-4.
  • Greenwood M, Yule GU. The statistics of anti-typhoid and anti-cholera inoculations, and the interpretation of such statistics in general. Proc R Soc Med. 1915;8:113–94. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2004181/ .
  • Moore JP. Approaches for optimal use of different COVID-19 vaccines: issues of viral variants and vaccine efficacy. JAMA. 2021;325:1251–52. doi:10.1001/jama.2021.3465.
  • Goldfarb JL, Kreps S, Brownstein JS, Kriner DL. Beyond the first dose - Covid-19 vaccine follow-through and continued protective measures. N Engl J Med. 2021;385:101–03. doi:10.1056/NEJMp2104527.
  • Abbasi J. Study suggests lasting immunity after COVID-19, with a big boost from vaccination. JAMA. 2021;326:376–77. doi:10.1001/jama.2021.11717.
  • Hung IF, Poland GA. Single-dose Oxford–AstraZeneca COVID-19 vaccine followed by a 12-week booster. Lancet. 2021;397:854–55. doi:10.1016/S0140-6736(21)00528-6.
  • Pritchard E, Matthews PC, Stoesser N, Eyre DW, Gethings O, Vihta KD, Jones J, House T, VanSteenHouse H, Bell I, et al. Impact of vaccination on new SARS-CoV-2 infections in the United Kingdom. Nat Med. 2021;27:1370–78. doi:10.1038/s41591-021-01410-w.
  • Thomas SJ, Moreira ED, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Marc GP, Polack FP, Zerbini C, Bailey R. Six month safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. Medrxiv. 2021. doi:10.1101/2021.07.28.21261159.
  • Bar-On YM, Goldberg Y, Mandel M, Bodenheimer O, Freedman L, Kalkstein N, Mizrahi B, Alroy-Preis S, Ash N, Milo R, et al. BNT162b2 vaccine booster dose protection: a nationwide study from Israel. N Engl J Med. 2021;385:1393–400. doi:10.1056/NEJMoa2114255.
  • Moore JP, Offit PA. SARS-CoV-2 vaccines and the growing threat of viral variants. JAMA. 2021;325:821–22. doi:10.1001/jama.2021.1114.
  • Martin MA, VanInsberghe D, Koelle K. Insights from SARS-CoV-2 sequences. Science. 2021;371:466–67. doi:10.1126/science.abf3995.
  • Diurno F, Numis FG, Porta G, Cirillo F, Maddaluno S, Ragozzino A, De Negri P, Di Gennaro C, Pagano A, Allegorico E, Bressy L. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci. 2020;24:4040–47. doi:10.26355/eurrev_202004_20875.
  • Kupferschmidt K, Wadman M. Delta variant triggers new phase in the pandemic. Science. 2021;372(6549):1375–76. doi:10.1126/science.372.6549.1375.
  • Delta variant: what we know about the science. [ accessed 2021 Sep 15]. https://www.cdc.gov/coronavirus/2019-ncov/variants/delta-variant.html .
  • Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, Stowe J, Tessier E, Groves N, Dabrera G, et al. Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant. N Engl J Med. 2021;385:585–94. doi:10.1056/NEJMoa2108891.
  • Sanderson K. COVID vaccines protect against Delta, but their effectiveness wanes. Nature. 2021. doi:10.1038/d41586-021-02261-8.
  • Tang P, Hasan MR, Chemaitelly H, Yassine HM, Benslimane F, Al Khatib HA, AlMukdad S, Coyle P, Ayoub HH, Al Kanaani Z, Al Kuwari E. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the Delta (B. 1.617. 2) variant in Qatar. Medrxiv. 2021. doi:10.1101/2021.08.11.21261885.
  • Novavax announces COVID-19 vaccine booster data demonstrating four-fold increase in neutralizing antibody levels versus peak responses after primary vaccination. [ accessed 2021 Sep 15]. https://ir.novavax.com/2021-08-05-Novavax-Announces-COVID-19-Vaccine-Booster-Data-Demonstrating-Four-Fold-Increase-in-Neutralizing-Antibody-Levels-Versus-Peak-Responses-After-Primary-Vaccination .
  • Russia’s Sputnik V shot around 83% effective against delta variant, health minister says. [ accessed 2021 Sep 15]. https://www.reuters.com/business/healthcare-pharmaceuticals/russias-sputnik-v-shot-around-83-effective-against-delta-variant-health-minister-2021-08-11/ .
  • Mlcochova P, Kemp S, Dhar MS, Papa G, Meng B, Ferreira I, Datir R, Collier DA, Albecka A, Singh S, et al. SARS-CoV-2 B.1.617.2 delta variant replication and immune evasion. Nature. 2021. doi:10.1038/s41586-021-03944-y.
  • Rubin R. COVID-19 vaccines vs variants—determining how much immunity is enough. JAMA. 2021;325:1241–43. doi:10.1001/jama.2021.3370.
  • Green MD, Al-Humadi NH. Preclinical toxicology of vaccines. In: A comprehensive guide to toxicology in nonclinical drug development; 2017. p. 709–35. doi:10.1016/B978-0-12-803620-4.00027-X.
  • Hernandez AF, Calina D, Poulas K, Docea AO, Tsatsakis AM. Safety of COVID-19 vaccines administered in the EU: should we be concerned? Toxicol Rep. 2021;8:871–79. doi:10.1016/j.toxrep.2021.04.003.
  • Novak N, Tordesillas L, Cabanillas B. Adverse rare events to vaccines for COVID-19: from hypersensitivity reactions to thrombosis and thrombocytopenia. Int Rev Immunol. 2021;1–10. doi:10.1080/08830185.2021.1939696.
  • Wu Q, Dudley MZ, Chen X, Bai X, Dong K, Zhuang T, Salmon D, Yu H. Evaluation of the safety profile of COVID-19 vaccines: a rapid review. BMC Med. 2021;19:173. doi:10.1186/s12916-021-02059-5.
  • COVID C, Team R. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine—United States, December 14–23, 2020. Morb Mortal Wkly Rep. 2021;70;46. doi:10.1001/jama.2021.0600.
  • Myocarditis and pericarditis after mRNA COVID-19 vaccination. [ accessed 2021 Sep 1]. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/myocarditis.html .
  • Gargano JW, Wallace M, Hadler SC, Langley G, Su JR, Oster ME, Broder KR, Gee J, Weintraub E, Shimabukuro T. Use of mRNA COVID-19 vaccine after reports of myocarditis among vaccine recipients: update from the Advisory Committee on immunization practices—United States, June 2021. Morb Mortal Wkly Rep. 2021;70:977. doi:10.15585/mmwr.mm7027e2external.
  • Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat Rev Immunol. 2021;1:11. doi:10.1038/s41577-021-00592-1.
  • Vaxzevria (previously COVID-19 vaccine AstraZeneca): risk of thrombocytopenia and coagulation disorders. [ accessed 2021 Sep 10]. https://www.ema.europa.eu/en/medicines/dhpc/vaxzevria-previously-covid-19-vaccine-astrazeneca-risk-thrombocytopenia-coagulation-disorders#documents-section .
  • Joint CDC and FDA statement on Johnson & Johnson COVID-19 vaccine. [ accessed 2021 Sep 7]. https://www.fda.gov/news-events/press-announcements/joint-cdc-and-fda-statement-johnson-johnson-covid-19-vaccine .
  • MacIntyre CR, Veness B, Berger D, Hamad N, Bari N. Thrombosis with Thrombocytopenia Syndrome (TTS) following AstraZeneca ChAdOx1 nCoV-19 (AZD1222) COVID-19 vaccination - A risk-benefit analysis for people < 60 years in Australia. Vaccine. 2021;39:4784–87. doi:10.1016/j.vaccine.2021.07.013.
  • Alam W. COVID-19 vaccine-induced immune thrombotic thrombocytopenia: a review of the potential mechanisms and proposed management. Sci Prog. 2021;104:368504211025927. doi:10.1177/00368504211025927.
  • Selected adverse events reported after COVID-19 vaccination. [ accessed 2021 Sep 7]. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/adverse-events.html .
  • Forni G, Mantovani A. COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ. 2021;28:626–39. doi:10.1038/s41418-020-00720-9.
  • COVID-19 vaccines may protect many, but not all, people with suppressed immune systems. [ accessed 2021 Sep 10]. https://www.science.org/news/2021/04/covid-19-vaccines-may-protect-many-not-all-people-suppressed-immune-systems .
  • Boyarsky BJ, Werbel WA, Avery RK, Tobian AAR, Massie AB, Segev DL, Garonzik-Wang JM. Immunogenicity of a single dose of SARS-CoV-2 messenger RNA vaccine in solid organ transplant recipients. JAMA. 2021;325:1784–86. doi:10.1001/jama.2021.4385.
  • Boyarsky BJ, Werbel WA, Avery RK, Tobian AAR, Massie AB, Segev DL, Garonzik-Wang JM. Antibody response to 2-dose SARS-CoV-2 mRNA vaccine series in solid organ transplant recipients. JAMA. 2021;325(21):2204–06. doi:10.1001/jama.2021.7489.
  • Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, Subbarao K, Kent SJ, Triccas JA, Davenport MP. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205–11. doi:10.1038/s41591-021-01377-8.
  • Radbel J, Narayanan N, Bhatt PJ. Use of Tocilizumab for COVID-19-induced cytokine release syndrome: a cautionary case report. Chest. 2020;158(1):e15–e9. doi:10.1016/j.chest.2020.04.024.
  • Krause PR, Gruber MF. Emergency use authorization of covid vaccines - safety and efficacy follow-up considerations. N Engl J Med. 2020;383:e107. doi:10.1056/NEJMp2031373.
  • Forman R, Shah S, Jeurissen P, Jit M, Mossialos E. COVID-19 vaccine challenges: what have we learned so far and what remains to be done? Health Policy (New York). 2021;125:553–67. doi:10.1016/j.healthpol.2021.03.013.
  • Sharma O, Sultan AA, Ding H, Triggle CR. A review of the progress and challenges of developing a vaccine for COVID-19. Front Immunol. 2020;11:585354. doi:10.3389/fimmu.2020.585354.
  • Machingaidze S, Wiysonge CS. Understanding COVID-19 vaccine hesitancy. Nat Med. 2021;27:1338–39. doi:10.1038/s41591-021-01459-7.
  • Vaccine hesitancy: what it means and what we need to know in order to tackle it. [ accessed 2021 Sep]. https://www.who.int/immunization/research/forums_and_initiatives/1_RButler_VH_Threat_Child_Health_gvirf16.pdf .
  • Eccleston-Turner M, Upton H. International collaboration to ensure equitable access to vaccines for COVID-19: the ACT-accelerator and the COVAX facility. Milbank Q. 2021;99:426–49. doi:10.1111/1468-0009.12503.
  • Access and allocation: how will there be fair and equitable allocation of limited supplies? [ accessed 2021 Sep 14]. https://www.who.int/news-room/feature-stories/detail/access-and-allocation-how-will-there-be-fair-and-equitable-allocation-of-limited-supplies .
  • Andreakos E, Tsiodras S. COVID-19: lambda interferon against viral load and hyperinflammation. EMBO Mol Med. 2020;12:e12465. doi:10.15252/emmm.202012465.
  • Vanden Eynde JJ. COVID-19: a brief overview of the discovery clinical trial. Pharmaceuticals (Basel). 2020;13:65. doi:10.3390/ph13040065.
  • Bollyky TJ, Gostin LO, Hamburg MA. The equitable distribution of COVID-19 therapeutics and vaccines. JAMA. 2020;323:2462–63. doi:10.1001/jama.2020.6641.
  • Krishtel P, Malpani R. Suspend intellectual property rights for covid-19 vaccines. Br Med J. 2021;373:n1344. doi:10.1136/bmj.n1344.
  • Zarocostas J. What next for a COVID-19 intellectual property waiver? Lancet. 2021;397:1871–72. doi:10.1016/s0140-6736(21)01151-x.
  • Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M, Cho A, Jankovic M, Schaefer-Babajew D, Oliveira TY, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021;591:639–44. doi:10.1038/s41586-021-03207-w.
  • Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, Grifoni A, Ramirez SI, Haupt S, Frazier A, Nakao C. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021;371. doi:10.1126/science.abf4063.
  • Marklund E, Leach S, Axelsson H, Nystrom K, Norder H, Bemark M, Angeletti D, Lundgren A, Nilsson S, Andersson L-M, et al. Serum-IgG responses to SARS-CoV-2 after mild and severe COVID-19 infection and analysis of IgG non-responders. PLoS One. 2020;15(10):e0241104. doi:10.1371/journal.pone.0241104.
  • Callaway E. Had COVID? You’ll probably make antibodies for a lifetime. Nature. 2021. doi:10.1038/d41586-021-01442-9.
  • Antonelli M, Penfold RS, Merino J, Sudre CH, Molteni E, Berry S, Canas LS, Graham MS, Klaser K, Modat M, et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study. Lancet Infect Dis. 2021;00460–6. doi:10.1016/S1473-3099(21.
  • Muller L, Andree M, Moskorz W, Drexler I, Walotka L, Grothmann R, Ptok J, Hillebrandt J, Ritchie A, Rabl D, et al. Age-dependent immune response to the Biontech/Pfizer BNT162b2 COVID-19 vaccination. Clin Infect Dis. 2021. doi:10.1093/cid/ciab381.
  • Liu Y, Liu J, Xia H, Zhang X, Fontes-Garfias CR, Swanson KA, Cai H, Sarkar R, Chen W, Cutler M, et al. Neutralizing activity of BNT162b2-elicited serum. N Engl J Med. 2021;384:1466–68. doi:10.1056/NEJMc2102017.
  • Wu K, Werner AP, Moliva JI, Koch M, Choi A, Stewart-Jones GBE, Bennett H, Boyoglu-Barnum S, Shi W, Graham BS, et al. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. BioRxiv. 2021. doi:10.1101/2021.01.25.427948.
  • Ebanks D, Faustini S, Shields A, Parry H, Moss P, Plant T, Richter A, Drayson M. Cross reactivity of serological response to SARS-CoV-2 vaccination with viral variants of concern detected by lateral flow immunoassays. J Infect. 2021; 83(4):e18–20. S0163-4453(21)00363-7. doi:10.1016/j.jinf.2021.07.020.
  • UK to support rest of the world to find COVID-19 virus variants. [ accessed 2021 Sep 16]. https://www.gov.uk/government/news/uk-to-support-rest-of-the-world-to-find-covid-19-virus-variants .
  • Abdool Karim SS, de Oliveira T. New SARS-CoV-2 variants—clinical, public health, and vaccine implications. N Engl J Med. 2021;384:1866–68. doi:10.1056/NEJMc2100362.
  • Coronavirus (COVID-19) update: FDA issues policies to guide medical product developers addressing virus variants. [ accessed 2021 Sep 16]. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-issues-policies-guide-medical-product-developers-addressing-virus.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.