8,644
Views
42
CrossRef citations to date
0
Altmetric
Coronavirus – Mini-Review

COVID-19 intranasal vaccines: current progress, advantages, prospects, and challenges

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2045853 | Received 14 Jun 2021, Accepted 21 Feb 2022, Published online: 08 Mar 2022

References

  • WHO. WHO COVID-19 dashboard - up to date data on pandemic. WHO Heal Emerg Dasboard 2021. https://covid19.who.int/region/searo/country/id [Accessed on February 8, 2022]
  • Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK, Rodriguez-Morales AJ. Coronavirus disease 2019–COVID-19. Clin Microbiol Rev. 2020;33(4):1–11. doi:10.1128/CMR.00028-20.
  • Sharun K, Tiwari R, Iqbal Yatoo M, Patel SK, Natesan S, Dhama J, Malik YS, Harapan H, Singh RK, Dhama K. Antibody-Based immunotherapeutics and use of convalescent plasma to counter COVID-19: advances and prospects. Expert Opin Biol Ther. 2020;20(9):1033–46. doi:10.1080/14712598.2020.1796963.
  • Ghareeb DA, Saleh SR, Nofal MS, Kaddah MMY, Hassan SF, Seif IK, El-Zahaby SA, Khedr SM, Kenawy MY, Masoud AA. Potential therapeutic and pharmacological strategies for SARS-CoV2. J Pharm Investig. 2021;51(3):281–96. doi:10.1007/s40005-021-00520-4.
  • Hyder Pottoo F, Abu-Izneid T, Mohammad Ibrahim A, Noushad Javed M, AlHajri N, Hamrouni AM. Immune system response during viral infections: immunomodulators, cytokine storm (CS) and Immunotherapeutics in COVID-19. Saudi Pharm J. 2021;29(2):173–87. doi:10.1016/j.jsps.2020.12.018.
  • Ita K. Coronavirus disease (COVID-19): current status and prospects for drug and vaccine development. Arch Med Res. 2021;52(1):15–24. doi:10.1016/j.arcmed.2020.09.010.
  • Iqbal Yatoo M, Hamid Z, Rather I, Nazir QUA, Bhat RA, Ul Haq A, Magray SN, Haq Z, Sah R, Tiwari R, et al. Immunotherapies and immunomodulatory approaches in clinical trials - a mini review. Hum Vaccines Immunother. 2021;17(7):1897–909. doi:10.1080/21645515.2020.1871295.
  • Iqbal Yatoo M, Hamid Z, Parray OR, Wani AH, Ul Haq A, Saxena A, Patel SK, Pathak M, Tiwari R, Malik YS, et al. COVID-19 - Recent advancements in identifying novel vaccine candidates and current status of upcoming SARS-CoV-2 vaccines. Hum Vaccines Immunother. 2020;16(12):2891–904. doi:10.1080/21645515.2020.1788310.
  • Ashraf MU, Kim Y, Kumar S, Seo D, Ashraf M, Bae YS. Covid-19 vaccines (Revisited) and oral-mucosal vector system as a potential vaccine platform. Vaccines. 2021;9(2):1–24. doi:10.3390/vaccines9020171.
  • García-Montero C, Fraile-Martínez O, Bravo C, Torres-Carranza D, Sanchez-Trujillo L, Gómez-Lahoz AM, Guijarro LG, García-Honduvilla N, Asúnsoloúnsolo A, Bujan J, et al. An updated review of sars-cov-2 vaccines and the importance of effective vaccination programs in pandemic times. Vaccines. 2021;9(5):433. doi:10.3390/vaccines9050433.
  • Rawat K, Kumari P, and Saha L. COVID-19 vaccine: A recent update in pipeline vaccines, their design and development strategies. Eur J Pharmacol. 2021;892:173751. doi:10.1016/j.ejphar.2020.173751.
  • WHO. WHO Covid-19. Draft landscape of COVID-19 candidate vaccines. Who; 2020. 3. Available from.
  • Dhama K, Natesan S, Iqbal Yatoo M, Patel SK, Tiwari R, Saxena SK, Harapan H. Plant-Based vaccines and antibodies to combat COVID-19: current status and prospects. Hum Vaccines Immunother. 2020;16(12):2913–20. doi:10.1080/21645515.2020.1842034.
  • Malik YS, Sircar S, Bhat S, Ansari MI, Pande T, Kumar P, Mathapati B, Balasubramanian G, Kaushik R, Natesan S, et al. How artificial intelligence may help the Covid-19 pandemic: pitfalls and lessons for the future. Rev Med Virol. 2020;31(5):1–11. doi:10.1002/rmv.2205.
  • Monrad JT, Sandbrink JB, Cherian NG. Promoting versatile vaccine development for emerging pandemics. NPJ Vaccines. 2021;6(1):6. doi:10.1038/s41541-021-00290-y.
  • Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. Virus-Like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology. 2021;19(1). doi:10.1186/s12951-021-00806-7.
  • Ura T, Yamashita A, Mizuki N, Okuda K, Shimada M. New vaccine production platforms used in developing SARS-CoV-2 vaccine candidates. Vaccine. 2021;39:197–201. doi:10.1016/j.vaccine.2020.11.054.
  • Rao VB, Zhu J, Ananthaswamy N, Jain S, Batra H, Tang W-C, Lewry DA, Richards ML, David SA, Kilgore PB, et al. A universal Bacteriophage T4 nanoparticle platform to design Multiplex SARS-CoV-2 vaccine candidates by CRISPR Engineering. bioRxiv. 2021;2021.01.19.427310.
  • Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2021;384:1576–78.
  • Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403–16. doi:10.1056/NEJMoa2035389.
  • Knoll MD, Wonodi C. Oxford–astrazeneca COVID-19 vaccine efficacy. Lancet. 2021;397(10269):72–74. doi:10.1016/S0140-6736(20)32623-4.
  • Rasmussen AL. Vaccination is the only acceptable path to herd immunity. Med. 2020;1:21–23. doi:10.1016/j.medj.2020.12.004.
  • Vora KS, Sundararajan A, Saiyed S, Dhama K, Natesan S. Impact of COVID-19 on women and children and the need for a gendered approach in vaccine development. Hum Vaccines Immunother. 2020;16(12):2932–37. doi:10.1080/21645515.2020.1826249.
  • Sharun K, Dhama K. COVID-19 vaccine diplomacy and equitable access to vaccines amid ongoing pandemic. Arch Med Res. 2021;52(7):761–63. doi:10.1016/j.arcmed.2021.04.006.
  • Sharun K, Tiwari R, Dhama K, Emran TB, Rabaan AA, Al Mutair MA. Emerging SARS-CoV-2 variants: impact on vaccine efficacy and neutralizing antibodies. Hum Vaccines Immunother. 2021;17(10):3491–94. doi:10.1080/21645515.2021.1923350.
  • Aschwanden C. Five reasons why COVID herd immunity is probably impossible. Nature. 2021;591:520–22. doi:10.1038/d41586-021-00728-2.
  • Baldo V, Reno C, Cocchio S, Fantini MP. SARS-CoV-2/COVID-19 vaccines: the promises and the challenges ahead. Vaccines. 2021;9:1–4. doi:10.3390/vaccines9010021.
  • Dhama K, Patel SK, Natesan S, Vora KS, Iqbal Yatoo M, Tiwari R, Saxena SK, Singh KP, Singh R, Malik YS. COVID-19 in the elderly people and advances in vaccination approaches. Hum Vaccines Immunother. 2020;16(12):2938–43. doi:10.1080/21645515.2020.1842683.
  • Dhama K, Sharun K, Tiwari R, Dhawan M, Emran TE, Rabaan AA, Alhumaid S. COVID-19 vaccine hesitancy – reasons and solutions to achieve a successful global vaccination campaign to tackle the ongoing pandemic. Hum Vaccines Immunother. 2021;17(10):3495–99. doi:10.1080/21645515.2021.1926183.
  • dos Santos WG. Impact of virus genetic variability and host immunity for the success of COVID-19 vaccines. Biomed Pharmacother. 2021;136:111272. doi:10.1016/j.biopha.2021.111272.
  • Piret J, Boivin G, Soleimanpour S, Yaghoubi A, Poland GA, Baviskar T, Raut D, Bhatt LK, Forni G, Mantovani A, et al. COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ. 2021;11:8–21.
  • Pennington TH. Herd immunity: Could it bring the COVID-19 pandemic to an end? Future Microbiol. 2021;16(6):371–74. doi:10.2217/fmb-2020-0293.
  • Redwan EM. COVID-19 pandemic and vaccination build herd immunity. Eur Rev Med Pharmacol Sci. 2021;25(2):577–79. doi:10.26355/eurrev_202101_24613.
  • Tiboni M, Casettari L, Illum L. Nasal vaccination against SARS-CoV-2: synergistic or alternative to intramuscular vaccines? Int J Pharm. 2021;603:120686. doi:10.1016/j.ijpharm.2021.120686.
  • Park J-G, Oladunni FS, Rohaim MA, Whittingham-Dowd J, Tollitt J, Assas BM, Alhazmi W, Almilaibary A, Iqbal M, Chang P, et al. Immunogenicity and protective efficacy of an intranasal live-attenuated vaccine against SARS-CoV-2 in preclinical animal models. bioRxiv 2021;
  • Bleier BS, Ramanathan M, Lane AP. COVID-19 vaccines may not prevent nasal SARS-CoV-2 infection and asymptomatic transmission. Otolaryngol - Head Neck Surg (United States). 2021;164(2):305–07. doi:10.1177/0194599820982633.
  • Mudgal R, Nehul S, Tomar S. Prospects for mucosal vaccine: shutting the door on SARS-CoV-2. Hum Vaccines Immunother. 2020;16(12):2921–31. doi:10.1080/21645515.2020.1805992.
  • Travis CR. As plain as the nose on your face: the case for a nasal (mucosal) route of vaccine administration for Covid-19 disease prevention. Front Immunol. 2020;11:11. doi:10.3389/fimmu.2020.591897.
  • He J, Huang JR, Zhang YL, Zhang J. SARS-CoV-2 nucleocapsid protein intranasal inoculation induces local and systemic T cell responses in mice. J Med Virol. 2021;93(4):1923–25. doi:10.1002/jmv.26769.
  • Hoseini-Tavassol Z, Ejtahed H-S, Soroush A-R, Sajjadpour Z, Hasani-Ranjbar S, Larijani B. Natural derived nasal spray; a proposed approach for COVID-19 disease control. Infect Disord - Drug Targets. 2021;21(8):21. doi:10.2174/1871526521666210218201113.
  • Kumar A, Kumar A. Mucosal and transdermal vaccine delivery strategies against COVID-19. Drug Deliv Transl Res. 2021. doi:10.1007/s13346-021-01001-9.
  • Bricker T, Darling T, Hassan AO, Harastani H, Soung A, Jiang X, Dai Y-N, Zhao H, Adams LJ, Holtzman MJ, et al. A single intranasal or intramuscular immunization with Chimpanzee adenovirus vectored SARS-CoV-2 vaccine protects against pneumonia in Hamsters. SSRN Electron J. 2021. doi:10.2139/ssrn.3773804.
  • King RG, Silva-Sanchez A, Peel JN, Botta D, Dickson AM, Pinto AK, Meza-Perez S, Allie SR, Schultz MD, Liu M et al. Single-Dose intranasal administration of AdCOVID Elicits systemic and mucosal immunity against SARS-CoV-2 and fully protects Mice from lethal challenge. Vaccines (Basel). ;9(8):881. doi:10.3390/vaccines9080881.
  • Du Y, Xu Y, Feng J, Hu L, Zhang Y, Zhang B, Guo W, Mai R, Chen L, Fang J, et al. Intranasal administration of a recombinant RBD vaccine induced protective immunity against SARS-CoV-2 in mouse. Vaccine. 2021;39:2280–87. doi:10.1016/j.vaccine.2021.03.006.
  • Ku MW, Bourgine M, Authié P, Lopez J, Nemirov K, Moncoq F, Noirat A, Vesin B, Nevo F, Blanc C, et al. Intranasal vaccination with a lentiviral vector protects against SARS-CoV-2 in preclinical animal models. Cell Host Microbe. 2021;29(2):236–49.e6. doi:10.1016/j.chom.2020.12.010.
  • Sui Y, Li J, Zhang R, Prabhu SK, Andersen H, Venzon D, Cook A, Brown R, Teow E, Velasco J, et al. Protection against SARS-CoV-2 infection by a mucosal vaccine in rhesus macaques. JCI Insight. 2021;6(10):6. doi:10.1172/jci.insight.148494.
  • van Doremalen N, Purushotham JN, Schulz JE, Holbrook MG, Bushmaker T, Carmody A, Port JR, Yinda CK, Okumura A, Saturday G, et al. Intranasal ChAdox1 nCov-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci Transl Med. 2021;13(607):eabh0755. doi:10.1126/scitranslmed.abh0755.
  • Hassan AO, Shrihari S, Gorman MJ, Ying B, Yaun D, Raju S, Chen RE, Dmitriev IP, Kashentseva E, Adams LJ, et al. An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Rep. 2021;36(4):109452. doi:10.1016/j.celrep.2021.109452.
  • CanSino Biologics Inc. A randomized, double-blind, placebo-controlled phase I/II clinical trial to evaluate the safety and immunogenicity of Ad5-nCov for inhalation in adults 18 years of age and older. 2021; clinicaltrials.gov. Available from: https://clinicaltrials.gov/ct2/show/NCT04840992
  • Wu S, Huang J, Zhang Z, Wu J, Zhang J, Hu H, Zhu T, Zhang J, Luo L, Fan P, et al. Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCov) in adults: preliminary report of an open-label and randomised phase 1 clinical trial. Lancet Infect Dis. 2021;21(12):1654–64. doi:10.1016/S1473-3099(21)00396-0.
  • Altimmune, Inc. Phase 2, double-blind, randomized, placebo-controlled study of NasoVAX in the prevention of clinical worsening in patients with early coronavirus infectious disease 2019 (COVID-19). clinicaltrials.gov. USA: Altimmune, Inc. 2020.
  • Kong TU of H. A phase 1, randomized, double-blinded, placebo- controlled, dose-escalation and dose-expansion study to evaluate the safety and immunogenicity of DelNS1-NCoV-RBD LAIV for COVID-19 in Healthy Adults. The University of Hong Kong, Hong Kong. https://clinicaltrials.gov/ct2/show/NCT04809389
  • Meissa Vaccines I Phase 1, open-label, dose-escalation study to evaluate tolerability, safety, and immunogenicity of an intranasal live attenuated respiratory syncytial virus vaccine expressing Spike protein of SARS-CoV-2 in healthy adults ages 18–69 Years.
  • First patient dosed with COVI-VAC, an intranasal COVID-19 vaccine candidate. https://www.europeanpharmaceuticalreview.com/news/139089/first-patient-dosed-with-covi-vac-an-intranasal-covid-19-vaccine-candidate/
  • Chavda VP, Vora LK, Pandya AK, Patravale VB. Intranasal vaccines for SARS-CoV-2: From challenges to potential in COVID-19 management. Drug Discov Today. 26(11): 2619–2636. doi:10.1016/j.drudis.2021.07.021.
  • Klouwens MJ, Salverda ML, Trentelman JJ, Ersoz JI, Wagemakers A, Gerritzen MJ, van der Ley PA, Hovius JW. Vaccination with meningococcal outer membrane vesicles carrying Borrelia OspA protects against experimental Lyme borreliosis. Vaccines. 39(18): 2561–2567. doi:10.1016/j.vaccine.2021.03.059.
  • Gaspar EB, Prudencio CR, De Gaspari E. Experimental studies using OMV in a new platform of SARS-CoV-2 vaccines. Hum Vaccines Immunother. 2021;17(9):2965–68. doi:10.1080/21645515.2021.1920272.
  • https://covid19.trackvaccines.org/vaccines/66/#trial-rpcec00000345 [Accessed on August 12, 2021].
  • AuraVax Therapeutics licences intranasal vaccine adjuvant technology from Massachusetts General Hospital. www.oindpnews.com/2021/01/auravax-therapeutics-licences-intranasal-vaccine-adjuvant-technology-from-massachusetts-general-Hosp
  • An X, Martinez MP, Rezvan A, Sefat SR, Fathi M, Singh S, Biswas S, Pourpak M, Yee C, Liu X, et al. Single-Dose intranasal vaccination Elicits systemic and mucosal immunity against SARS-CoV-2. SSRN Electron J. 2020. doi:10.2139/ssrn.3751056.
  • Seo SH, Jang Y. Cold-Adapted live attenuated sars-cov-2 vaccine completely protects human ace2 transgenic mice from sars-cov-2 infection. Vaccines. 2020;8:1–17. doi:10.3390/vaccines8040584.
  • Acharya R. Prospective vaccination of COVID-19 using shRNA-plasmid-LDH nanoconjugate. Med Hypotheses. 2020;143:143. doi:10.1016/j.mehy.2020.110084.
  • Chakraborty C, Agoramoorthy G. India’s cost-effective COVID-19 vaccine development initiatives. Vaccine. 2020;38:7883–84. doi:10.1016/j.vaccine.2020.10.056.
  • Codagenix Inc. Codagenix and Serum Institute of India initiate dosing in phase 1 trial of COVI-VAC, a single dose, intranasal, live attenuated vaccine for COVID-19. 2021;. https://www.prnewswire.com/news-releases/codagenix-and-serum-institute-of-india-initiate-dosing-in-phase-1-trial-of-covi-vac-a-single-dose-intranasal-live-attenuated-vaccine-for-covid-19-301203130.html
  • Sharun K, Dhama K. India’s role in COVID-19 vaccine diplomacy. J Travel Med. 2021;28(7). doi:10.1093/jtm/taab064.
  • Bharat Biotech’s nasal vaccine can be a gamechanger in fight against Covid: all you need to know.
  • van Doremalen N, Purushotham J, Schulz J, Holbrook M, Bushmaker T, Carmody A, Port J, Yinda KC, Okumura A, Saturday G, et al. Intranasal ChAdox1 nCov-19/AZD1222 vaccination reduces shedding of SARS-CoV-2 D614G in rhesus macaques. bioRxiv Prepr Serv Biol; 2021. https://pubmed.ncbi.nlm.nih.gov/33447831/
  • Hassan AO, Kafai NM, Dmitriev IP, Fox JM, Smith BK, Harvey IB, Chen RE, Winkler ES, Wessel AW, Case JB, et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell. 2020;183(1):169–84.e13. doi:10.1016/j.cell.2020.08.026.
  • Hassan AO, Feldmann F, Zhao H, Curiel DT, Okumura A, Tang-Huau TL, Case JB, Meade-White K, Callison J, Chen RE, et al. A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques. Cell Reports Med. 2021;2(4):100230. doi:10.1016/j.xcrm.2021.100230.
  • Kim E, Weisel FJ, Balmert SC, Khan MS, Huang S, Erdos G, Kenniston TW, Carey CD, Joachim SM, Conter LJ, et al. A single subcutaneous or intranasal immunization with adenovirus-based SARS-CoV-2 vaccine induces robust humoral and cellular immune responses in mice. Eur J Immunol. 2021;51(7):1774–84. doi:10.1002/eji.202149167.
  • Bakkari MA, Valiveti CK, Kaushik RS, Tummala H. Toll-Like receptor-4 (TLR4) agonist-based intranasal nanovaccine delivery system for inducing systemic and mucosal immunity. Mol Pharm. 2021;18(6):2233–41. doi:10.1021/acs.molpharmaceut.0c01256.
  • Jearanaiwitayakul T, Seesen M, Chawengkirttikul R, Limthongkul J, Apichirapokey S, Sapsutthipas S, Phumiamorn S, Sunintaboon P, Ubol S. Intranasal administration of RBD nanoparticles confers induction of mucosal and systemic immunity against SARS-CoV-2. Vaccines. 2021;9:768. doi:10.3390/vaccines9070768.
  • Chandrasekar SS, Phanse Y, Hildebrand RE, Hanafy M, Wu CW, Hansen CH, Osorio JE, Suresh M, Talaat AM. Localized and systemic immune responses against sars-cov-2 following mucosal immunization. Vaccines. 2021;9(2):1–17. doi:10.3390/vaccines9020132.
  • Chavda VP, Vora LK, Pandya AK, Patravale VB. Intranasal vaccines for SARS-CoV-2: from challenges to potential in COVID-19 management. Drug Discov Today. 2021;26(11):2619–36. doi:10.1016/j.drudis.2021.07.021.
  • Nainu F, Abidin RS, Bahar MA, Frediansyah A, Emran TB, Rabaan AA, Dhama K, Harapan H. SARS-CoV-2 reinfection and implications for vaccine development. Hum Vaccines Immunother. 2020;16(12):3061–73. doi:10.1080/21645515.2020.1830683.
  • A H. Antibody responses to natural SARS-CoV-2 Infection or after COVID-19 vaccination. Vaccines. 2021;9:910. doi:10.3390/vaccines9080910.
  • Fröberg J, Diavatopoulos DA. Mucosal immunity to severe acute respiratory syndrome coronavirus 2 infection. Curr Opin Infect Dis. 2021;34(3):181–86. doi:10.1097/QCO.0000000000000724.
  • Furuyama W, Shifflett K, Pinski AN, Griffin AJ, Feldmann F, Okumura A, Gourdine T, Jankeel A, Lovaglio J, Hanley PW, et al. Rapid protection from COVID-19 in nonhuman primates vaccinated intramuscularly but not intranasally with a single dose of a recombinant vaccine. bioRxiv Prepr Serv Biol; 2021. http://www.ncbi.nlm.nih.gov/pubmed/33501447%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC7836117
  • Gallo O, Locatello LG, Mazzoni A, Novelli L, Annunziato F. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol. 2021;14(2):305–16. doi:10.1038/s41385-020-00359-2.
  • Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO. SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. NPJ Vaccines. 2021;6(1):6. doi:10.1038/s41541-021-00292-w.
  • Park JH, Lee HK. Delivery routes for COVID-19 vaccines. Vaccines. 2021;9:524. doi:10.3390/vaccines9050524.
  • Choudhary OP, Mohammed TA, Singh I, Singh I. Intranasal COVID-19 vaccines: is it a boon or bane? Int J Surg. 2021;94:106119. doi:10.1016/j.ijsu.2021.106119.
  • Alu A, Chen L, Lei H, Wei Y, Tian X, Wei X. Intranasal COVID-19 vaccines: from bench to bed. eBiomedicine. 2022;76. doi:10.1016/j.ebiom.2022.103841.
  • Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T, Spyr C, Steffen R. Use of the inactivated intranasal Influenza vaccine and the risk of Bell’s palsy in Switzerland. N Engl J Med. 2004;350(9):896–903. doi:10.1056/NEJMoa030595.
  • Lemiale F, Kong W, Akyürek LM, Ling X, Huang Y, Chakrabarti BK, Eckhaus M, Nabel GJ. Enhanced mucosal immunoglobulin a response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system. J Virol. 2003;77(18):10078–87. doi:10.1128/JVI.77.18.10078-10087.2003.
  • Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 2006;6(2):148–58. doi:10.1038/nri1777.
  • Bernasconi V, Norling K, Bally M, Höök F, Lycke NY. Mucosal vaccine development based on Liposome technology. J Immunol Res. 2016;2016:1–16. doi:10.1155/2016/5482087.
  • Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of adjuvanticity: A review on adjuvants in licensed vaccines. Semin Immunol. 2018;39:14–21. doi:10.1016/j.smim.2018.05.001.
  • Pulendran B, Arunachalam SP, O’-Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;20(6):454–75. doi:10.1038/s41573-021-00163-y.
  • Wang X, Meng D. Innate endogenous adjuvants prime to desirable immune responses via mucosal routes. Protein Cell. 2015;6(3):170–84. doi:10.1007/s13238-014-0125-1.
  • Aoshi T. Modes of action for mucosal vaccine adjuvants. Viral Immunol. 2017;30(6):463–70. doi:10.1089/vim.2017.0026.
  • Jin Z, Gao S, Cui X, Sun D, Zhao K. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines. Int J Pharm. 2019;572:572. doi:10.1016/j.ijpharm.2019.118731.
  • O’-Hagan DT, Lodaya RN, Lofano G. The continued advance of vaccine adjuvants - 'we can work it out'. Semin Immunol. 2020;50:50. doi:10.1016/j.smim.2020.101426.
  • Mallakpour S, Azadi E, Hussain M. Chitosan, alginate, hyaluronic acid, gums, and β-glucan as potent adjuvants and vaccine delivery systems for viral threats including SARS-CoV-2: A review. Int J Biol Macromol. 2021;182:1931–40. doi:10.1016/j.ijbiomac.2021.05.155.
  • van Ginkel FW, Jackson RJ, Yuki Y, McGhee JR. Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into Olfactory tissues. J Immunol. 2000;165(9):4778–82. doi:10.4049/jimmunol.165.9.4778.
  • Vasu N, Ghaffari G, Craig ET, Craig TJ. Adverse events associated with intranasal influenza vaccine in the United States. Ther Adv Respir Dis. 2008;2(4):193–98. doi:10.1177/1753465808093933.
  • Sarkar I, Garg R, van Drunen Littel-van den Hurk S. Selection of adjuvants for vaccines targeting specific pathogens. Expert Rev Vaccines. 2019;18(5):505–21. doi:10.1080/14760584.2019.1604231.
  • Islam F, Bibi S, Meem AF, Islam M, Rahaman M, Bepary S, Rahman M, Elzaki A, Kajoak S, Osman H, et al. Natural Bioactive Molecules: An Alternative Approach to the Treatment and Control of COVID-19. Int J Mol Sci. 22(23):2021;12638. doi:10.3390/ijms222312638.
  • Sharma R, Palanisamy A, Dhama K, Mal G, Singh B, Singh KP. Exploring the possible use of saponin adjuvants in COVID-19 vaccine. Hum Vaccines Immunother. 2020;16(12):2944–53. doi:10.1080/21645515.2020.1833579.
  • Abbasi S, Uchida S. Multifunctional immunoadjuvants for use in minimalist nucleic acid vaccines. Pharmaceutics. 2021;13(5):13. doi:10.3390/pharmaceutics13050644.
  • Bouazzaoui A, Abdellatif AAH, Al-Allaf FA, Bogari NM, Al-Dehlawi S, Qari SH. Strategies for vaccination: conventional vaccine approaches versus new-generation strategies in combination with adjuvants. Pharmaceutics. 2021;13:1–20. doi:10.3390/pharmaceutics13020140.
  • Mao L, Chen Z, Wang Y, Chen C. Design and application of nanoparticles as vaccine adjuvants against human corona virus infection. J Inorg Biochem. 2021;219:219. doi:10.1016/j.jinorgbio.2021.111454.
  • Butowt R, Bilinska K. SARS-CoV-2: olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci. 2020;11(9):1200–03. doi:10.1021/acschemneuro.0c00172.
  • Ma XC, Liu P, Zhang XL, Jiang WH, Jia M, Wang CX, Dong YY, Dang YH, Gao CG. Intranasal delivery of recombinant AAV containing BDNF fused with HA2TAT: a potential promising therapy strategy for major depressive disorder. Sci Rep. 2016;6:6. doi:10.1038/srep22404.
  • Illum L. Nanoparticulate systems for nasal delivery of drugs: A real improvement over simple systems? J Pharm Sci. 2007;96(3):473–83. doi:10.1002/jps.20718.
  • Francisco ARL, Sherman W, Repasky M, Beuming T. Improved docking of polypeptides with glide. J Chem Inf Model. 2013;53(7):1689–99. doi:10.1021/ci400128m.