3,499
Views
6
CrossRef citations to date
0
Altmetric
Technology – Mini-Review

Nano alum: A new solution to the new challenge

ORCID Icon & ORCID Icon
Article: 2060667 | Received 02 Dec 2021, Accepted 29 Mar 2022, Published online: 26 Apr 2022

References

  • Davies G. Vaccine adjuvants. Springer; 2010.
  • Orr MT, Khandhar AP, Seydoux E, Liang H, Gage E, Mikasa T, Beebe EL, Rintala ND, Persson KH, Ahniyaz A, et al. Reprogramming the adjuvant properties of aluminum oxyhydroxide with nanoparticle technology. NPJ Vaccines. 2019;4(1):1. doi:10.1038/s41541-018-0094-0.
  • Petersen SB, Gluud C. Was amorphous aluminium hydroxyphosphate sulfate adequately evaluated before authorisation in Europe? BMJ Evid Based Med. 2021;26(6):285–5. doi:10.1136/bmjebm-2020-111419.
  • Schijns V, O’-Hagan D. Immunopotentiators in modern vaccines. Academic Press; 2016.
  • Hogenesch H. Mechanism of immunopotentiation and safety of aluminum adjuvants. Front Immunol. 2013;3:406. doi:10.3389/fimmu.2012.00406.
  • Hutchison S, Benson RA, Gibson VB, Pollock AH, Garside P, Brewer JM. Antigen depot is not required for alum adjuvanticity. Faseb J. 2012;26(3):1272–79. doi:10.1096/fj.11-184556.
  • Quandt D, Rothe K, Baerwald C, Rossol M. GPRC6A mediates alum-induced Nlrp3 inflammasome activation but limits Th2 type antibody responses. Sci Rep. 2015;5(1):16719. doi:10.1038/srep16719.
  • Ruwona TB, Xu H, Li X, Taylor AN, Shi Y-C, Cui Z. Toward understanding the mechanism underlying the strong adjuvant activity of aluminum salt nanoparticles. Vaccine. 2016;34(27):3059–67. doi:10.1016/j.vaccine.2016.04.081.
  • Mejias A, Rodríguez-Fernández R, Oliva S, Peeples ME, Ramilo O. The journey to a respiratory syncytial virus vaccine. Ann Allergy Asthma Immunol. 2020;125(1):36–46. doi:10.1016/j.anai.2020.03.017.
  • Murphy BR, Walsh EE. Formalin-Inactivated respiratory syncytial virus vaccine induces antibodies to the fusion glycoprotein that are deficient in fusion-inhibiting activity. J Clin Microbiol. 1988;26(8):1595–97. doi:10.1128/jcm.26.8.1595-1597.1988.
  • Honda-Okubo Y, Barnard D, Ong CH, Peng B-H, Tseng C-T, Petrovsky N. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol. 2015;89(6):2995–3007. doi:10.1128/JVI.02980-14.
  • Lokugamage KG, Yoshikawa-Iwata N, Ito N, Watts DM, Wyde PR, Wang N, Newman P, Kent Tseng C-T, Peters CJ, Makino S, et al. Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV. Vaccine. 2008;26(6):797–808. doi:10.1016/j.vaccine.2007.11.092.
  • Agrawal AS, Tao X, Algaissi A, Garron T, Narayanan K, Peng B-H, Couch RB, Tseng CTK. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccines Immunother. 2016;12(9):2351–56. doi:10.1080/21645515.2016.1177688.
  • Wagner R, Hildt E. Composition and mode of action of adjuvants in licensed viral vaccines. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz. 2019;62(4):462–71. doi:10.1007/s00103-019-02921-1.
  • Didierlaurent AM, Collignon C, Bourguignon P, Wouters S, Fierens K, Fochesato M, Dendouga N, Langlet C, Malissen B, Lambrecht BN, et al. Enhancement of adaptive immunity by the human vaccine adjuvant AS01 depends on activated dendritic cells. J Immunol. 2014;193(4):1920–30. doi:10.4049/jimmunol.1400948.
  • Didierlaurent AM, Laupeze B, Di Pasquale A, Hergli N, Collignon C, Garcon N. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines. 2017;16(1):55–63. doi:10.1080/14760584.2016.1213632.
  • Garcon N, Van Mechelen M. Recent clinical experience with vaccines using MPL-and QS-21-containing adjuvant systems. Expert Rev Vaccines. 2011;10(4):471–86. doi:10.1586/erv.11.29.
  • Aebig JA, Mullen GE, Dobrescu G, Rausch K, Lambert L, Ajose-Popoola O, Long CA, Saul A, Miles AP. Formulation of vaccines containing CpG oligonucleotides and alum. J Immunol Methods. 2007;323(2):139–46. doi:10.1016/j.jim.2007.04.003.
  • Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA. Structural basis of TLR5-flagellin recognition and signaling. Science. 2012;335(6070):859–64. doi:10.1126/science.1215584.
  • Harandi AM. Systems analysis of human vaccine adjuvants. Semin Immunol. 2018;39:30–34. doi:10.1016/j.smim.2018.08.001.
  • Ghahary M, Taheri RA, Fasihi-Ramandi M. Protective efficacy of the killed toxoplasma gondii vaccine in nano-alum adjuvant. J Maz Univ Med Sci. 2019;29:11–23.
  • Tang C, Huang X, Yang F, Li M, Fan G, Yue H. Adjuvant effect of aluminum hydroxide nanoparticles on Newcastle diseases antigen in chichens. Chin Vet Sci. 2008;38:1060–64.
  • HogenEsch H, O’-Hagan DT, Fox CB. Optimizing the utilization of aluminum adjuvants in vaccines: you might just get what you want. NPJ Vaccines. 2018;3(1):51. doi:10.1038/s41541-018-0089-x.
  • Sun B, Ji Z, Liao YP, Chang CH, Wang X, Ku J, Xue C, Mirshafiee V, Xia T. Enhanced immune adjuvant activity of aluminum oxyhydroxide nanorods through cationic surface functionalization. ACS Appl Mater Interfaces. 2017;9(26):21697–705. doi:10.1021/acsami.7b05817.
  • Liang Z, Yang Y, Yu G, Zhu H, Xia X, Chen C, Fu D, Li M, Cheng G, Xue C, et al. Engineering aluminum hydroxyphosphate nanoparticles with well-controlled surface property to enhance humoral immune responses as vaccine adjuvants. Biomaterials. 2021;275:120960. doi:10.1016/j.biomaterials.2021.120960.
  • He P, Lu F, Chen Y, Li Y, He F. Immune effect of HBsAg adsorbed by nanoparticulate alum adjuvant. Chem J Chin Univ -Chin. 2005;26:886–88.
  • Caputo A, Sparnacci K, Ensoli B, Tondelli L. Functional polymeric nano/microparticles for surface adsorption and delivery of protein and DNA vaccines. curr Drug Deliv. 2008;5(4):230–42. doi:10.2174/156720108785914961.
  • Li X, Aldayel AM, Cui Z. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. J Control Release. 2014;173:148–57. doi:10.1016/j.jconrel.2013.10.032.
  • Shi W, Kou Y, Xiao J, Zhang L, Gao F, Kong W, Su W, Jiang C, Zhang Y. Comparison of immunogenicity, efficacy and transcriptome changes of inactivated rabies virus vaccine with different adjuvants. Vaccine. 2018;36(33):5020–29. doi:10.1016/j.vaccine.2018.07.006.
  • Sun B, Ji Z, Liao Y-P, Wang M, Wang X, Dong J, Chang CH, Li R, Zhang H, Nel AE, et al. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS Nano. 2013;7(12):10834–49. doi:10.1021/nn404211j.
  • Morefield GL, Sokolovska A, Jiang D, HogenEsch H, Robinson JP, Hem SL. Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine. 2005;23(13):1588–95. doi:10.1016/j.vaccine.2004.07.050.
  • Kanchan V, Panda AK. Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials. 2007;28(35):5344–57. doi:10.1016/j.biomaterials.2007.08.015.
  • Caputo A, Brocca-Cofano E, Castaldello A, Voltan R, Gavioli R, Srivastava IK, Barnett SW, Cafaro A, Ensoli B. Characterization of immune responses elicited in mice by intranasal co-immunization with HIV-1 Tat, gp140 δv2env and/or SIV Gag proteins and the nontoxicogenic heat-labile Escherichia coli enterotoxin. Vaccine. 2008;26(9):1214–27. doi:10.1016/j.vaccine.2007.12.030.
  • Liang F, Lindgren G, Sandgren KJ, Thompson EA, Francica JR, Seubert A, De Gregorio E, Barnett S, O’-Hagan DT, Sullivan NJ, et al. Vaccine priming is restricted to draining lymph nodes and controlled by adjuvant-mediated antigen uptake. Sci Transl Med. 2017;9(393). doi:10.1126/scitranslmed.aal2094.
  • Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol. 2006;27(12):573–79. doi:10.1016/j.it.2006.10.005.
  • Jiang H, Wang Q, Li L, Zeng Q, Li H, Gong T, Zhang Z, Sun X. Turning the old adjuvant from gel to nanoparticles to amplify CD8 + T cell responses. Adv Sci. 2018;5(1):1700426. doi:10.1002/advs.201700426.
  • Khandhar AP, Liang H, Simpson AC, Reed SG, Carter D, Fox CB, Orr MT. Physicochemical structure of a polyacrylic acid stabilized nanoparticle alum (nanoalum) adjuvant governs TH1 differentiation of CD4+ T cells. Nanoscale. 2020;12(4):2515–23. doi:10.1039/C9NR09936K.
  • Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines. 2010;9(9):1095–107. doi:10.1586/erv.10.89.
  • An M, Brun EM, Garceés-Garciía M, Puchades R. Aluminum oxide nanoparticles as carriers and adjuvants for eliciting antibodies from non-immunogenic haptens. Anal Chem. 2012;84(21):9340–48. doi:10.1021/ac3020998.
  • Frey A, Mantis N, Kozlowski PA, Quayle AJ, Bajardi A, Perdomo JJ, Robey FA, Neutra MR. Immunization of mice with peptomers covalently coupled to aluminum oxide nanoparticles. Vaccine. 1999;17(23–24):3007–19. doi:10.1016/S0264-410X(99)00163-2.
  • Song KC, Kim JH. Synthesis of high surface area tin oxide powders via water-in-oil microemulsions. Powder Technol. 2000;107(3):268–72. doi:10.1016/S0032-5910(99)00255-7.
  • Wang T, Zhen Y, Ma X, Wei B, Wang N. Phospholipid bilayer-coated aluminum nanoparticles as an effective vaccine adjuvant-delivery system. ACS Appl Mater Interfaces. 2015;7(12):6391–96. doi:10.1021/acsami.5b00348.
  • Frey A, Neutra MR, Robey FA. Peptomer aluminum oxide nanoparticle conjugates as systemic and mucosal vaccine candidates: synthesis and characterization of a conjugate derived from the C4 domain of HIV-1 MN Gp120. Bioconjug Chem. 1997;8(3):424–33. doi:10.1021/bc970036p.
  • Flarend RE, Hem SL, White JL, Elmore D, Suckow MA, Rudy AC, Dandashli EA. In vivo absorption of aluminium-containing vaccine adjuvants using 26al. Vaccine. 1997;15(12–13):1314–18. doi:10.1016/S0264-410X(97)00041-8.
  • Priest ND, Newton D, Day JP, Talbot RJ, Warner AJ. Human metabolism of aluminium-26 and gallium-67 injected as citrates. Hum Exp Toxicol. 1995;14(3):287–93. doi:10.1177/096032719501400309.
  • Priest ND. The biological behaviour and bioavailability of aluminium in man, with special reference to studies employing aluminium-26 as a tracer: review and study update. J Environ Monit. 2004;6(5):375–403. doi:10.1039/B314329P.
  • Hem SL. Elimination of aluminum adjuvants. Vaccine. 2002;20(Suppl 3):S40–3. doi:10.1016/S0264-410X(02)00170-6.
  • Kumar V, Gill KD. Aluminium neurotoxicity: neurobehavioural and oxidative aspects. Arch Toxicol. 2009;83(11):965–78. doi:10.1007/s00204-009-0455-6.
  • Shaw CA, Tomljenovic L. Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity. Immunol Res. 2013;56(2–3):304–16. doi:10.1007/s12026-013-8403-1.
  • Shaw CA, Petrik MS. Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration. J Inorg Biochem. 2009;103(11):1555–62. doi:10.1016/j.jinorgbio.2009.05.019.
  • Park EJ, Lee GH, Yoon C, Jeong U, Kim Y, Cho MH, et al. Biodistribution and toxicity of spherical aluminum oxide nanoparticles. J Appl Toxicol. 2016;36(3):424–33. doi:10.1002/jat.3233.
  • Dong L, Tang S, Deng F, Gong Y, Zhao K, Zhou J, et al. Shape-dependent toxicity of alumina nanoparticles in rat astrocytes. Sci Total Environ. 2019;690:158–66. doi:10.1016/j.scitotenv.2019.06.532.
  • Lindblad EB. Aluminium adjuvants—in retrospect and prospect. Vaccine. 2004;22(27–28):3658–68. doi:10.1016/j.vaccine.2004.03.032.
  • Exley C, Siesjö P, Eriksson H. The immunobiology of aluminium adjuvants: how do they really work? Trends Immunol. 2010;31(3):103–09. doi:10.1016/j.it.2009.12.009.