2,245
Views
2
CrossRef citations to date
0
Altmetric
Novel Vaccines – Review

Adenovirus vector-based vaccines as forefront approaches in fighting the battle against flaviviruses

, , , , &
Article: 2079323 | Received 17 Feb 2022, Accepted 12 May 2022, Published online: 17 Jun 2022

References

  • Deng S-Q, Yang X, Wei Y, Chen J-T, Wang X-J, Peng H-J. A review on dengue vaccine development. Vaccines. 2020;8(1):63. doi:10.3390/vaccines8010063.
  • Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, Zhao C, Zeng Z, Shu Y, Wu X, et al. Adenovirus-Mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 2017;4(2):43–16. doi:10.1016/j.gendis.2017.04.001.
  • Khalil SM, Tonkin DR, Mattocks MD, Snead AT, Johnston RE, White LJ. A tetravalent alphavirus-vector based dengue vaccine provides effective immunity in an early life mouse model. Vaccine. 2014;32(32):4068–74. doi:10.1016/j.vaccine.2014.05.053.
  • White LJ, Parsons MM, Whitmore AC, Williams BM, de Silva A, Johnston RE. An immunogenic and protective alphavirus replicon particle-based dengue vaccine overcomes maternal antibody interference in weanling mice. Virol J. 2007;81(19):10329–39. doi:10.1128/JVI.00512-07.
  • White LJ, Sariol CA, Mattocks MD, Wahala MPBW, Yingsiwaphat V, Collier ML, Whitley J, Mikkelsen R, Rodriguez IV, Martinez MI, et al. An alphavirus vector-based tetravalent dengue vaccine induces a rapid and protective immune response in macaques that differs qualitatively from immunity induced by live virus infection. Virol J. 2013;87(6):3409–24. doi:10.1128/JVI.02298-12.
  • Brandler S, Ruffie C, Najburg V, Frenkiel M-P, Bedouelle H, Desprès P, Tangy F. Pediatric measles vaccine expressing a dengue tetravalent antigen elicits neutralizing antibodies against all four dengue viruses. Vaccine. 2010;28(41):6730–39. doi:10.1016/j.vaccine.2010.07.073.
  • Brandler S, Lucas-Hourani M, Moris A, Frenkiel M-P, Combredet C, Février M, Bedouelle H, Schwartz O, Desprès P, Tangy F, et al. Pediatric measles vaccine expressing a dengue antigen induces durable serotype-specific neutralizing antibodies to dengue virus. PLoS Negl Trop Dis. 2007;1(3):e96. doi:10.1371/journal.pntd.0000096.
  • Ramsauer K, Schwameis M, Firbas C, Müllner M, Putnak RJ, Thomas SJ, Desprès P, Tauber E, Jilma B, Tangy F, et al. Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: a randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial. Lancet Infect Dis. 2015;15(5):519–27. doi:10.1016/S1473-3099(15)70043-5.
  • Raviprakash K, Wang D, Ewing D, Holman DH, Block K, Woraratanadharm J, Chen L, Hayes C, Dong JY, Porter K, et al. A tetravalent dengue vaccine based on a complex adenovirus vector provides significant protection in rhesus monkeys against all four serotypes of dengue virus. Virol J. 2008;82(14):6927–34. doi:10.1128/JVI.02724-07.
  • Jaiswal S, Khanna N, Swaminathan S. Replication-Defective adenoviral vaccine vector for the induction of immune responses to dengue virus type 2. Virol J. 2003;77(23):12907–13. doi:10.1128/JVI.77.23.12907-12913.2003.
  • Men R, Wyatt L, Tokimatsu I, Arakaki S, Shameem G, Elkins R, Chanock R, Moss B, Lai C-J. Immunization of rhesus monkeys with a recombinant of modified vaccinia virus Ankara expressing a truncated envelope glycoprotein of dengue type 2 virus induced resistance to dengue type 2 virus challenge. Vaccine. 2000;18(27):3113–22. doi:10.1016/S0264-410X(00)00121-3.
  • Khanam S, Pilankatta R, Khanna N, Swaminathan S. An adenovirus type 5 (AdV5) vector encoding an envelope domain III-based tetravalent antigen elicits immune responses against all four dengue viruses in the presence of prior AdV5 immunity. Vaccine. 2009;27(43):6011–21. doi:10.1016/j.vaccine.2009.07.073.
  • Drexler I, Staib C, Sutter G. Modified vaccinia virus Ankara as antigen delivery system: how can we best use its potential? Curr Opin Biotechnol. 2004;15(6):506–12. doi:10.1016/j.copbio.2004.09.001.
  • Zhao B, Prince G, Horswood R, Eckels K, Summers P, Chanock R, Lai CJ. Expression of dengue virus structural proteins and nonstructural protein NS1 by a recombinant vaccinia virus. Virol J. 1987;61(12):4019–22. doi:10.1128/jvi.61.12.4019-4022.1987.
  • Khanam S, Rajendra P, Khanna N, Swaminathan S. An adenovirus prime/plasmid boost strategy for induction of equipotent immune responses to two dengue virus serotypes. BMC Biotechnol. 2007;7(1):1–11. doi:10.1186/1472-6750-7-10.
  • Holman DH, Wang D, Raviprakash K, Raja NU, Luo M, Zhang J, Porter KR, Dong JY. Two complex, adenovirus-based vaccines that together induce immune responses to all four dengue virus serotypes. Clin Vaccine Immunol. 2007;14(2):182–89. doi:10.1128/CVI.00330-06.
  • Chen L, Ewing D, Subramanian H, Block K, Rayner J, Alterson KD, Sedegah M, Hayes C, Porter K, Raviprakash K, et al. A heterologous DNA prime-Venezuelan equine encephalitis virus replicon particle boost dengue vaccine regimen affords complete protection from virus challenge in cynomolgus macaques. Virol J. 2007;81(21):11634–39. doi:10.1128/JVI.00996-07.
  • Xu K, Song Y, Dai L, Zhang Y, Lu X, Xie Y, Zhang H, Cheng T, Wang Q, Huang Q, et al. Recombinant chimpanzee adenovirus vaccine AdC7-M/E protects against Zika virus infection and testis damage. Virol J. 2018;92(6): e01722-17. doi:10.1128/JVI.01722-17.
  • Cox F, van der Fits L, Abbink P, Larocca RA, van Huizen E, Saeland E, Verhagen J, Peterson R, Tolboom J, Kaufmann B, et al. Adenoviral vector type 26 encoding Zika virus (ZIKV) M-Env antigen induces humoral and cellular immune responses and protects mice and nonhuman primates against ZIKV challenge. PloS One. 2018;13(8):e0202820. doi:10.1371/journal.pone.0202820.
  • López-Camacho C, Abbink P, Larocca RA, Dejnirattisai W, Boyd M, Badamchi-Zadeh A, Wallace ZR, Doig J, Velazquez RS, Neto RDL, et al. Rational Zika vaccine design via the modulation of antigen membrane anchors in chimpanzee adenoviral vectors. Nat Commun. 2018;9(1):1–11. doi:10.1038/s41467-018-04859-5.
  • Liu X, Qu L, Ye X, Yi C, Zheng X, Hao M, Su W, Yao Z, Chen P, Zhang S, et al. Incorporation of NS1 and prM/M are important to confer effective protection of adenovirus-vectored Zika virus vaccine carrying E protein. Npj Vaccines. 2018;3(1):1–8. doi:10.1038/s41541-018-0072-6.
  • Prow NA, Liu L, Nakayama E, Cooper TH, Yan K, Eldi P, Hazlewood JE, Tang B, Le TT, Setoh YX, et al. A vaccinia-based single vector construct multi-pathogen vaccine protects against both Zika and chikungunya viruses. Nat Commun. 2018;9(1):1–12. doi:10.1038/s41467-018-03662-6.
  • Betancourt D, De Queiroz NM, Xia T, Ahn J, Barber GN. Cutting edge: innate immune augmenting vesicular stomatitis virus expressing Zika virus proteins confers protective immunity. J Immunol. 2017;198(8):3023–28. doi:10.4049/jimmunol.1602180.
  • Nürnberger C, Bodmer BS, Fiedler AH, Gabriel G, Mühlebach MD, Heise MT. A measles virus-based vaccine candidate mediates protection against Zika virus in an allogeneic mouse pregnancy model. Virol J. 2019;93(3): e01485-18. doi:10.1128/JVI.01485-18.
  • Guo Q, Chan J-W, Poon V-M, Wu S, Chan C-S, Hou L, Yip CCY, Ren C, Cai J-P, Zhao M, et al. Immunization with a novel human type 5 adenovirus-vectored vaccine expressing the premembrane and envelope proteins of Zika virus provides consistent and sterilizing protection in multiple immunocompetent and immunocompromised animal models. J Infect Dis. 2018;218(3):365–77. doi:10.1093/infdis/jiy187.
  • Abbink P, Larocca RA, Visitsunthorn K, Boyd M, Rafael A, Gromowski GD, Kirilova M, Peterson R, Li Z, Nanayakkara O, et al. Durability and correlates of vaccine protection against Zika virus in rhesus monkeys. Sci Transl Med. 2017;9(420). doi:10.1126/scitranslmed.aao4163.
  • Abbink P, Larocca RA, Rafael A, Bricault CA, Moseley ET, Boyd M, Kirilova M, Li Z, Ng’-Ang’a D, Nanayakkara O, et al. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science. 2016;353(6304):1129–32. doi:10.1126/science.aah6157.
  • López-Camacho C, De Lorenzo G, Slon-Campos JL, Dowall S, Abbink P, Larocca RA, Kim YC, Poggianella M, Graham V, Findlay-Wilson S, et al. Immunogenicity and efficacy of Zika virus envelope domain III in DNA, protein, and ChAdox1 adenoviral-vectored vaccines. Vaccines. 2020;8(2):307. doi:10.3390/vaccines8020307.
  • Schepp-Berglind J, Luo M, Wang D, Wicker JA, Raja NU, Hoel BD, Holman DH, Barrett ADT, Dong JY. Complex adenovirus-mediated expression of West Nile virus C, PreM, E, and NS1 proteins induces both humoral and cellular immune responses. Clin Vaccine Immunol. 2007;14(9):1117–26. doi:10.1128/CVI.00070-07.
  • Brandler S, Marianneau P, Loth P, Lacôte S, Combredet C, Frenkiel M-P, Desprès P, Contamin H, Tangy F. Measles vaccine expressing the secreted form of West Nile virus envelope glycoprotein induces protective immunity in squirrel monkeys, a new model of West Nile virus infection. J Infect Dis. 2012;206(2):212–19. doi:10.1093/infdis/jis328.
  • Despres P, Combredet C, Frenkiel M-P, Lorin C, Brahic M, Tangy F. Live measles vaccine expressing the secreted form of the West Nile virus envelope glycoprotein protects against West Nile virus encephalitis. J Infect Dis. 2005;191(2):207–14. doi:10.1086/426824.
  • Iyer AV, Pahar B, Boudreaux MJ, Wakamatsu N, Roy AF, Chouljenko VN, Baghian A, Apetrei C, Marx PA, Kousoulas KG, et al. Recombinant vesicular stomatitis virus-based west Nile vaccine elicits strong humoral and cellular immune responses and protects mice against lethal challenge with the virulent west Nile virus strain LSU-AR01. Vaccine. 2009;27(6):893–903. doi:10.1016/j.vaccine.2008.11.087.
  • Bassi MR, Larsen MA, Kongsgaard M, Rasmussen M, Buus S, Stryhn A, Thomsen AR, Christensen JP. Vaccination with replication deficient adenovectors encoding YF-17D antigens induces long-lasting protection from severe yellow fever virus infection in mice. PLoS Negle Trop Dis. 2016;10(2):e0004464. doi:10.1371/journal.pntd.0004464.
  • Appaiahgari MB, Saini M, Rauthan M, Vrati S. Immunization with recombinant adenovirus synthesizing the secretory form of Japanese encephalitis virus envelope protein protects adenovirus-exposed mice against lethal encephalitis. Microbes Infect. 2006;8(1):92–104. doi:10.1016/j.micinf.2005.05.023.
  • Konishi E, Kurane I, Mason PW, Shope RE, Kanesa-Thasan N, Smucny JJ, Hoke CH, Ennis FA. Induction of Japanese encephalitis virus-specific cytotoxic T lymphocytes in humans by poxvirus-based JE vaccine candidates. Vaccine. 1998;16(8):842–49. doi:10.1016/S0264-410X(97)00265-X.
  • Kanesa-Thasan N, Smucny JJ, Hoke Jr CH, Marks DH, Konishi E, Kurane I, Tang DB, Vaughn DW, Mason PW, Shope RE, et al. Safety and immunogenicity of NYVAC-JEV and ALVAC-JEV attenuated recombinant Japanese encephalitis virus — poxvirus vaccines in vaccinia-nonimmune and vaccinia-immune humans. Vaccine. 2000;19(4–5):483–91. doi:10.1016/S0264-410X(00)00191-2.
  • Konishi E, Pincus S, Paoletti E, Shope R, Mason P. A vipox virus-vectored Japanese encephalitis virus vaccines: use as vaccine candidates in combination with purified subunit immunogens. Vaccine. 1994;12(7):633–38. doi:10.1016/0264-410X(94)90269-0.
  • Lobigs M, Pavy M, Hall RA, Lobigs P, Cooper P, Komiya T, Toriniwa H, Petrovsky N. An inactivated vero cell-grown Japanese encephalitis vaccine formulated with Advax, a novel inulin-based adjuvant, induces protective neutralizing antibody against homologous and heterologous flaviviruses. J Gen Virol. 2010;91(6):1407. doi:10.1099/vir.0.019190-0.
  • Nam JH, Bang HS, Cho HW, Chung YH. Different contribution of co-stimulatory molecules B7.1 and B7.2 to the immune response to recombinant modified vaccinia virus ankara vaccine expressing prM/E proteins of Japanese encephalitis virus and two hepatitis B virus vaccines. Acta Virol. 2007;51:125–30.
  • Konishi E, Kurane I, Mason PW, Shope RE, Ennis FA. Poxvirus-Based Japanese encephalitis vaccine candidates induce JE virus-specific CD8+ cytotoxic T lymphocytes in mice. Virology. 1997;227(2):353–60. doi:10.1006/viro.1996.8331.
  • Elbert LB, Karganova GG, Stephenson JR, Deeva A, Ozherelkov SV, Timofeev AV, Pronin AV. Immunological basis for protection in a murine model of tick-borne encephalitis by a recombinant adenovirus carrying the gene encoding the NS1 non-structural protein. J Gen Virol. 1998;79(4):689–95. doi:10.1099/0022-1317-79-4-689.
  • Jacobs SC, Stephenson JR, Wilkinson GW. Protection elicited by a replication-defective adenovirus vector expressing the tick-borne encephalitis virus non-structural glycoprotein NS1. J Gen Virol. 1994;75(9):2399–402. doi:10.1099/0022-1317-75-9-2399.
  • Jacobs S, Stephenson J, Wilkinson G. High-Level expression of the tick-borne encephalitis virus NS1 protein by using an adenovirus-based vector: protection elicited in a murine model. Virol J. 1992;66(4):2086–95. doi:10.1128/jvi.66.4.2086-2095.1992.
  • Ura T, Okuda K, Shimada M. Developments in viral vector-based vaccines. Vaccines. 2014;2(3):624–41. doi:10.3390/vaccines2030624.
  • Chang J. Adenovirus vectors: excellent tools for vaccine development. Immune Netw. 2021;21(1). doi:10.4110/in.2021.21.e6.
  • Harui A, Suzuki S, Kochanek S, Mitani K. Frequency and stability of chromosomal integration of adenovirus vectors. Virol J. 1999;73(7):6141–46. doi:10.1128/JVI.73.7.6141-6146.1999.
  • Khanam S, Khanna N, Swaminathan S. Induction of neutralizing antibodies and T cell responses by dengue virus type 2 envelope domain III encoded by plasmid and adenoviral vectors. Vaccine. 2006;24:6513–25. doi:10.1016/j.vaccine.2006.06.031.
  • Bullard BL, Corder BN, Gorman MJ, Diamond MS, Weaver EA. Efficacy of a T cell-biased adenovirus vector as a Zika virus vaccine. Sci Rep. 2018;8(1):1–10. doi:10.1038/s41598-018-35755-z.
  • Bullard BL, Corder BN, Gordon DN, Pierson TC, Weaver EA. Characterization of a species E adenovirus vector as a Zika virus vaccine. Sci Rep. 2020;10(1):1–10. doi:10.1038/s41598-020-60238-5.
  • Larocca RA, Mendes EA, Abbink P, Peterson RL, Martinot AJ, Iampietro MJ, Kang ZH, Aid M, Kirilova M, Jacob-Dolan C, et al. Adenovirus vector-based vaccines confer maternal-fetal protection against Zika virus challenge in pregnant IFN-αβR−/− mice. Cell Host Microbe. 2019;26(5):591–600. e4. doi:10.1016/j.chom.2019.10.001.
  • Kim E, Erdos G, Huang S, Kenniston T, Falo LD Jr, Gambotto A. Preventative vaccines for Zika virus outbreak: preliminary evaluation. EBioMedicine. 2016;13:315–20. doi:10.1016/j.ebiom.2016.09.028.
  • Hassan AO, Dmitriev IP, Kashentseva EA, Zhao H, Brough DE, Fremont DH, Curiel DT, Diamond MS. A gorilla adenovirus-based vaccine against Zika virus induces durable immunity and confers protection in pregnancy. Cell Rep. 2019;28(10):2634–46. e4. doi:10.1016/j.celrep.2019.08.005.
  • Steffen T, Hassert M, Hoft SG, Stone ET, Zhang J, Geerling E, Grimberg BT, Roberts MS, Pinto AK, Brien JD, et al. Immunogenicity and efficacy of a recombinant human adenovirus type 5 vaccine against Zika virus. Vaccines. 2020;8(2):170. doi:10.3390/vaccines8020170.
  • Vrati S. Recombinant vaccine against japanese encephalitis virus [jev] infection and a method thereof. Google Patents. 2010.
  • Timofeev A, Ozherelkov S, Pronin A, Deeva A, Elbert L, Stefenson J. [A recombinant adenovirus expressing the NS1 nonstructural protein of tick-borne encephalitis virus: some characteristics of the immunologic basis of antiviral action]. Vopr Virusol. 1997;42:219–22.
  • Pugachev KV, Mason PW, Shope RE, Frey TK. Double-Subgenomic Sindbis virus recombinants expressing immunogenic proteins of Japanese encephalitis virus induce significant protection in mice against lethal JEV infection. Virology. 1995;212(2):587–94. doi:10.1006/viro.1995.1516.
  • Lauretti F, Chattopadhyay A, de Oliveira França RF, Castro-Jorge L, Rose J, Fonseca B. Recombinant vesicular stomatitis virus-based dengue-2 vaccine candidate induces humoral response and protects mice against lethal infection. Hum Vaccines Immunother. 2016;12:2327–33. doi:10.1080/21645515.2016.1183857.
  • Quinan BR, Flesch IE, Pinho TM, Coelho FM, Tscharke DC, da Fonseca FG. An intact signal peptide on dengue virus E protein enhances immunogenicity for CD8+ T cells and antibody when expressed from modified vaccinia Ankara. Vaccine. 2014;32(25):2972–79. doi:10.1016/j.vaccine.2014.03.093.
  • Yasuda A, Kimura-Kuroda J, Ogimoto M, Miyamoto M, Sata T, Sato T, Takamura C, Kurata T, Kojima A, Yasui K, et al. Induction of protective immunity in animals vaccinated with recombinant vaccinia viruses that express PreM and E glycoproteins of Japanese encephalitis virus. Virol J. 1990;64(6):2788–95. doi:10.1128/jvi.64.6.2788-2795.1990.
  • Nam J-H, Wyatt LS, Chae S-L, Cho H-W, Park Y-K, Moss B. Protection against lethal Japanese encephalitis virus infection of mice by immunization with the highly attenuated MVA strain of vaccinia virus expressing JEV prM and E genes. Vaccine. 1999;17(3):261–68. doi:10.1016/S0264-410X(98)00156-X.
  • Nam J-H, Chae S-L, Cho H-W. Immunogenicity of a recombinant MVA and a DNA vaccine for Japanese encephalitis virus in swine. Microbiol Immunol. 2002;46(1):23–28. doi:10.1111/j.1348-0421.2002.tb02672.x.
  • Wang F, Feng X, Zheng Q, Hou H, Cao R, Zhou B, Liu Q, Liu X, Pang R, Zhao J, et al. Multiple linear epitopes (B-cell, CTL and Th) of JEV expressed in recombinant MVA as multiple epitope vaccine induces a protective immune response. Virol J. 2012;9(1):1–10. doi:10.1186/1743-422X-9-204.
  • Pérez P, Marín MQ, Lázaro-Frías A, de Oya NJ, Blázquez A-B, Escribano-Romero E, Sorzano CÓ, Ortego J, Saiz J-C, Esteban M, et al. A vaccine based on a modified vaccinia virus ankara vector expressing Zika virus structural proteins controls Zika virus replication in mice. Sci Rep. 2018;8(1):1–15. doi:10.1038/s41598-018-35724-6.
  • Brault AC, Domi A, McDonald EM, Talmi-Frank D, McCurley N, Basu R, Robinson HL, Hellerstein M, Duggal NK, Bowen RA, et al. A Zika vaccine targeting NS1 protein protects immunocompetent adult mice in a lethal challenge model. Sci Rep. 2017;7(1):1–11. doi:10.1038/s41598-017-15039-8.
  • Olive M, Eisenlohr L, Flomenberg N, Hsu S, Flomenberg P. The adenovirus capsid protein hexon contains a highly conserved human CD4 + T-cell epitope. Hum Gene Ther. 2002;13(10):1167–78. doi:10.1089/104303402320138952.
  • Sharma PK, Dmitriev IP, Kashentseva EA, Raes G, Li L, Kim SW, Lu Z-H, Arbeit JM, Fleming TP, Kaliberov SA, et al. Development of an adenovirus vector vaccine platform for targeting dendritic cells. Cancer Gene Ther. 2018;25(1–2):27–38. doi:10.1038/s41417-017-0002-1.
  • Klok FA, Pai M, Huisman MV, Makris M. Vaccine-Induced immune thrombotic thrombocytopenia. Lancet Haematol. 2021;9(1):73–80.
  • Mendonça SA, Lorincz R, Boucher P, Curiel DT. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. Npj Vaccines. 2021;6(1):1–14. doi:10.1038/s41541-021-00356-x.
  • Russell W. Update on adenovirus and its vectors. J Gen Virol. 2000;81(11):2573–604. doi:10.1099/0022-1317-81-11-2573.
  • Parks RJ. Adenovirus protein IX: a new look at an old protein. Mol Ther. 2005;11(1):19–25. doi:10.1016/j.ymthe.2004.09.018.
  • Goradel NH, Mohajel N, Malekshahi ZV, Jahangiri S, Najafi M, Farhood B, Mortezaee K, Negahdari B, Arashkia A. Oncolytic adenovirus: a tool for cancer therapy in combination with other therapeutic approaches. J Cell Physiol. 2019;234(6):8636–46. doi:10.1002/jcp.27850.
  • Hitt MM, Graham FL. Adenovirus vectors for human gene therapy. Adv Virus Res. 2000;55:479–505. doi:10.1016/s0065-3527(00)55014-3.
  • Polo JM, Dubensky TW Jr. Virus-Based vectors for human vaccine applications. Drug Discov. 2002;7:719–27.
  • Danthinne X, Imperiale M. Production of first generation adenovirus vectors: a review. Gene Ther. 2000;7(20):1707–14. doi:10.1038/sj.gt.3301301.
  • Fallaux FJ, Bout A, van der Velde I, van den Wollenberg DJ, Hehir KM, Keegan J, Auger C, Cramer SJ, van Ormondt H, van der Eb AJ, et al. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther. 1998;9(13):1909–17. doi:10.1089/hum.1998.9.13-1909.
  • Bett AJ, Haddara W, Prevec L, Graham FL. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci. 1994;91(19):8802–06. doi:10.1073/pnas.91.19.8802.
  • Kovesdi I, Hedley SJ. Adenoviral producer cells. Viruses. 2010;2(8):1681–703. doi:10.3390/v2081681.
  • Dussupt V, Sankhala RS, Gromowski GD, Donofrio G, Rafael A, Larocca RA, Zaky W, Mendez-Rivera L, Choe M, Davidson E, et al. Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nat Med. 2020;26(2):228–35. doi:10.1038/s41591-019-0746-2.
  • Vrba SM, Kirk NM, Brisse ME, Liang Y, Ly H. Development and applications of viral vectored vaccines to combat zoonotic and emerging public health threats. Vaccines. 2020;8(4):680. doi:10.3390/vaccines8040680.
  • Raja NU, Holman DH, Wang D, Raviprakash K, Juompan LY, Deitz SB, et al. Induction of bivalent immune responses by expression of dengue virus type 1 and type 2 antigens from a single complex adenoviral vector. Am J Trop Med. 2007;76:743–51. doi:10.4269/ajtmh.2007.76.743.
  • Molinier-Frenkel V, Lengagne R, Gaden F, Hong S-S, Choppin J, Gahery-Ségard H, Boulanger P, Guillet J-G. Adenovirus hexon protein is a potent adjuvant for activation of a cellular immune response. Virol J. 2002;76(1):127–35. doi:10.1128/JVI.76.1.127-135.2002.
  • Carina Silva A, Peixoto C, Lucas T, Kuppers C, Cruz P E, Alves P M, Kochanek S. Adenovirus vector production and purification. Curr Gene Ther. 2010;10(6):437–55. doi:10.2174/156652310793797694.
  • Havenga M, Holterman L, Melis I, Smits S, Kaspers J, Heemskerk E, Vlugt RVD, Koldijk M, Schouten GJ, Hateboer G, et al. Serum‐free transient protein production system based on adenoviral vector and PER. C6 technology: high yield and preserved bioactivity. Biotechnol Bioeng. 2008;100(2):273–83. doi:10.1002/bit.21757.
  • Lusky M, Christ M, Rittner K, Dieterle A, Dreyer D, Mourot B, Schultz H, Stoeckel F, Pavirani A, Mehtali M, et al. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. Virol J. 1998;72(3):2022–32. doi:10.1128/JVI.72.3.2022-2032.1998.
  • Fang B, Wang H, Gordon G, Bellinger D, Read M, Brinkhous K, Woo SL, Eisensmith RC. Lack of persistence of E1- recombinant adenoviral vectors containing a temperature-sensitive E2A mutation in immunocompetent mice and hemophilia B dogs. Gene Ther. 1996;3:217–22.
  • Yang Y, Li Q, Ertl H, Wilson JM. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. Virol J. 1995;69(4):2004–15. doi:10.1128/jvi.69.4.2004-2015.1995.
  • Brunetti-Pierri N, Ng T, Iannitti D, Cioffi W, Stapleton G, Law M, Breinholt J, Palmer D, Grove N, Rice K, et al. Transgene expression up to 7 years in nonhuman primates following hepatic transduction with helper-dependent adenoviral vectors. Hum Gene Ther. 2013;24(8):761–65. doi:10.1089/hum.2013.071.
  • He Q, Mao Q, Zhang J, Bian L, Gao F, Wang J, et al. COVID-19 vaccines: current understanding on immunogenicity, safety, and further considerations. Front Immunol. 2021;12:669339.
  • Ricobaraza A, Gonzalez-Aparicio M, Mora-Jimenez L, Lumbreras S, Hernandez-Alcoceba R. High-Capacity adenoviral vectors: expanding the scope of gene therapy. Int J Mol Sci. 2020;21(10):3643. doi:10.3390/ijms21103643.
  • Suzuki M, Cerullo V, Bertin TK, Cela R, Clarke C, Guenther M, Brunetti-Pierri N, Lee B. MyD88-Dependent silencing of transgene expression during the innate and adaptive immune response to helper-dependent adenovirus. Hum Gene Ther. 2010;21(3):325–36. doi:10.1089/hum.2009.155.
  • Hartigan-O’-Connor D, Amalfitano A, Chamberlain JS. Improved production of gutted adenovirus in cells expressing adenovirus preterminal protein and DNA polymerase. Virol J. 1999;73(9):7835–41. doi:10.1128/JVI.73.9.7835-7841.1999.
  • Palmer D, Ng P. Improved system for helper-dependent adenoviral vector production. Mol Ther. 2003;8(5):846–52. doi:10.1016/j.ymthe.2003.08.014.
  • Hehir KM, Armentano D, Cardoza LM, Choquette TL, Berthelette PB, White GA, Couture LA, Everton MB, Keegan J, Martin JM, et al. Molecular characterization of replication-competent variants of adenovirus vectors and genome modifications to prevent their occurrence. Virol J. 1996;70(12):8459–67. doi:10.1128/jvi.70.12.8459-8467.1996.
  • Ramezanpour B, Haan I, Osterhaus A, Claassen E. Vector-Based genetically modified vaccines: exploiting Jenner’s legacy. Vaccine. 2016;34(50):6436–48. doi:10.1016/j.vaccine.2016.06.059.
  • Boyer S, Calvez E, Chouin-Carneiro T, Diallo D, Failloux A-B. An overview of mosquito vectors of Zika virus. Microbes Infect. 2018;20(11–12):646–60. doi:10.1016/j.micinf.2018.01.006.
  • Mumtaz N, van Kampen JJ, Reusken CB, Boucher CA, Koopmans MP. Zika virus: where is the treatment? Curr Treat Options Infect Dis. 2016;8:208–11. doi:10.1007/s40506-016-0083-7.
  • Zhou K, Li C, Shi W, Hu X, Nandakumar KS, Jiang S, Zhang N. Current progress in the development of Zika virus vaccines. Vaccines. 2021;9(9):1004. doi:10.3390/vaccines9091004.
  • Poland GA, Ovsyannikova IG, Kennedy RB. Zika vaccine development: current status. Mayo Clin Proc. 2019;94(12):2572–86. doi:10.1016/j.mayocp.2019.05.016.
  • Estévez-Herrera J, Pérez-Yanes S, Cabrera-Rodríguez R, Márquez-Arce D, Trujillo-González R, Machado J-D, Madrid R, Valenzuela-Fernández A. Zika virus pathogenesis: a battle for immune evasion. Vaccines. 2021;9(3):294. doi:10.3390/vaccines9030294.
  • Wang R, Liao X, Fan D, Wang L, Song J, Feng K, Li M, Wang P, Chen H, An J, et al. Maternal immunization with a DNA vaccine candidate elicits specific passive protection against post-natal Zika virus infection in immunocompetent BALB/c mice. Vaccine. 2018;36(24):3522–32. doi:10.1016/j.vaccine.2018.04.051.
  • Baldwin WR, Livengood JA, Giebler HA, Stovall JL, Boroughs KL, Sonnberg S, Bohning KJ, Dietrich EA, Ong YT, Danh HK, et al. Purified inactivated Zika vaccine candidates afford protection against lethal challenge in mice. Sci Rep. 2018;8(1):1–13. doi:10.1038/s41598-018-34735-7.
  • Lecouturier V, Pavot V, Berry C, Donadieu A, de Montfort A, Boudet F, Rokbi B, Jackson N, Heinrichs J. An optimized purified inactivated Zika vaccine provides sustained immunogenicity and protection in cynomolgus macaques. Npj Vaccines. 2020;5(1):1–10. doi:10.1038/s41541-020-0167-8.
  • Shan C, Muruato AE, Nunes BT, Luo H, Xie X, Medeiros DB, Wakamiya M, Tesh RB, Barrett AD, Wang T, et al. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat Med. 2017;23(6):763–67. doi:10.1038/nm.4322.
  • Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, Julander JG, Tang WW, Shresta S, Pierson TC, et al. Modified mRNA vaccines protect against Zika virus infection. Cell. 2017;168(6):1114–25. e10. doi:10.1016/j.cell.2017.02.017.
  • Pardi N, Hogan MJ, Pelc RS, Muramatsu H, Andersen H, DeMaso CR, Dowd KA, Sutherland LL, Scearce RM, Parks R, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature. 2017;543(7644):248–51. doi:10.1038/nature21428.
  • Abbink P, Stephenson KE, Barouch DH. Zika virus vaccines. Nat Rev Microbiol. 2018;16(10):594–600. doi:10.1038/s41579-018-0039-7.
  • Dicks MD, Spencer AJ, Edwards NJ, Wadell G, Bojang K, Gilbert SC, Hill AVS, Cottingham MG. A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PloS One. 2012;7(7):e40385. doi:10.1371/journal.pone.0040385.
  • Coughlan L. Factors which contribute to the immunogenicity of non-replicating adenoviral vectored vaccines. Front Immunol. 2020;11:909. doi:10.3389/fimmu.2020.00909.
  • Imler J-L. Adenovirus vectors as recombinant viral vaccines. Vaccine. 1995;13(13):1143–51. doi:10.1016/0264-410X(95)00032-V.
  • Shrivastava A, Tripathi NK, Dash PK, Parida M. Working towards dengue as a vaccine-preventable disease: challenges and opportunities. Expert Opin Biol Ther. 2017;17(10):1193–99. doi:10.1080/14712598.2017.1356284.
  • Zahid K, Shakoor S, Sajid HA, Afzal S, Ali L, Amin I, Shahid M, Idrees M. Advancements in developing an effective and preventive dengue vaccine. Future Virol. 2020;15(2):127–38. doi:10.2217/fvl-2019-0080.
  • Edelman R, Wasserman SS, Bodison SA, Putnak RJ, Eckels KH, Tang D, et al. Phase I trial of 16 formulations of a tetravalent live-attenuated dengue vaccine. Am J Trop Med Hyg. 2003;69:48–60. doi:10.4269/ajtmh.2003.69.48.
  • Fall G, Di Paola N, Faye M, Dia M, Freire C, Loucoubar C, Zanotto PMDA, Faye O, Sall AA, et al. Biological and phylogenetic characteristics of West African lineages of West Nile virus. PLoS Negle Trop Dis. 2017;11(11):e0006078. doi:10.1371/journal.pntd.0006078.
  • Bakhshi H, Failloux A-B, Zakeri S, Raz A, Djadid ND. Mosquito-Borne viral diseases and potential transmission blocking vaccine candidates. Infect Genet Evol. 2018;63:195–203. doi:10.1016/j.meegid.2018.05.023.
  • Colpitts TM, Conway MJ, Montgomery RR, Fikrig E. West Nile Virus: biology, transmission, and human infection. Clin Microbiol Rev. 2012;25(4):635–48. doi:10.1128/CMR.00045-12.
  • Leonova GN, Pavlenko EV. Characterization of neutralizing antibodies to Far Eastern of tick-borne encephalitis virus subtype and the antibody avidity for four tick-borne encephalitis vaccines in human. Vaccine. 2009;27:2899–904. doi:10.1016/j.vaccine.2009.02.069.
  • Petersen LR, Roehrig JT, Sejvar JJ. West Nile virus in the Americas. New and Evolving Infections of the 21st Century. 2007;3–56.
  • Dauphin G, Zientara S. West Nile virus: recent trends in diagnosis and vaccine development. Vaccine. 2007;25(30):5563–76. doi:10.1016/j.vaccine.2006.12.005.
  • Guy B, Guirakhoo F, Barban V, Higgs S, Monath TP, Lang J. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses. Vaccine. 2010;28(3):632–49. doi:10.1016/j.vaccine.2009.09.098.
  • Mokaya J, Kimathi D, Lambe T, Warimwe GM. What constitutes protective immunity Following yellow fever vaccination? Vaccines. 2021;9:671. doi:10.3390/vaccines9060671.
  • Thomas RE, Lorenzetti DL, Spragins W, Jackson D, Williamson T. Active and passive surveillance of yellow fever vaccine 17D or 17DD-associated serious adverse events: systematic review. Vaccine. 2011;29(28):4544–55. doi:10.1016/j.vaccine.2011.04.055.
  • Erlanger TE, Weiss S, Keiser J, Utzinger J, Wiedenmayer K. Past, present, and future of Japanese encephalitis. Emerg Infect Dis. 2009;15(1):1. doi:10.3201/eid1501.080311.
  • Araujo SC, Pereira LR, Alves RP, Andreata-Santos R, Kanno AI, Ferreira LCS, Gonçalves VM. Anti-Flavivirus vaccines: review of the present situation and perspectives of subunit vaccines produced in Escherichia coli. Vaccines. 2020;8(3):492. doi:10.3390/vaccines8030492.
  • Hoke CH, Nisalak A, Sangawhipa N, Jatanasen S, Laorakapongse T, Innis BL, Kotchasenee S-O, Gingrich JB, Latendresse J, Fukai K, et al. Protection against Japanese encephalitis by inactivated vaccines. N Engl J Med. 1988;319(10):608–14. doi:10.1056/NEJM198809083191004.
  • Kim DS, Houillon G, Jang GC, Cha S-H, Choi S-H, Lee J, Kim HM, Kim JH, Kang JH, Kim J-H, et al. A randomized study of the immunogenicity and safety of Japanese encephalitis chimeric virus vaccine (JE-CV) in comparison with SA14-14-2 vaccine in children in the Republic of Korea. Hum Vaccines Immunother. 2014;10(9):2656–63. doi:10.4161/hv.29743.
  • Taba P, Schmutzhard E, Forsberg P, Lutsar I, Ljøstad U, Mygland Å, Levchenko I, Strle F, Steiner I. EAN consensus review on prevention, diagnosis and management of tick‐borne encephalitis. Eur J Neurol. 2017;24(10):1214–e61. doi:10.1111/ene.13356.
  • Kubinski M, Beicht J, Gerlach T, Volz A, Sutter G, Rimmelzwaan GF. Tick-Borne encephalitis virus: a quest for better vaccines against a virus on the rise. Vaccines. 2020;8(3):451. doi:10.3390/vaccines8030451.
  • Zhu F-C, Li Y-H, Guan X-H, Hou L-H, Wang W-J, Li J-X, Wu S-P, Wang B-S, Wang Z, Wang L, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845–54. doi:10.1016/S0140-6736(20)31208-3.
  • Zhu F-C, Guan X-H, Li Y-H, Huang J-Y, Jiang T, Hou L-H, Li J-X, Yang B-F, Wang L, Wang W-J, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020;396(10249):479–88. doi:10.1016/S0140-6736(20)31605-6.
  • Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, Goepfert PA, Truyers C, Fennema H, Spiessens B, et al. Safety and efficacy of single-dose Ad26. COV2. S vaccine against Covid-19. N Engl J Med. 2021;384(23):2187–201. doi:10.1056/NEJMoa2101544.
  • Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, Kovyrshina AV, Lubenets NL, Grousova DM, Erokhova AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671–81. doi:10.1016/S0140-6736(21)00234-8.
  • Ewer K, Rampling T, Venkatraman N, Bowyer G, Wright D, Lambe T, Imoukhuede EB, Payne R, Fehling SK, Strecker T, et al. A monovalent chimpanzee adenovirus Ebola vaccine boosted with MVA. N Engl J Med. 2016;374(17):1635–46. doi:10.1056/NEJMoa1411627.
  • Tapia MD, Sow SO, Lyke KE, Haidara FC, Diallo F, Doumbia M, Traore A, Coulibaly F, Kodio M, Onwuchekwa U, et al. Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2016;16(1):31–42. doi:10.1016/S1473-3099(15)00362-X.
  • Zhu F-C, Wurie AH, Hou L-H, Liang Q, Li Y-H, Russell JB, Wu S-P, Li J-X, Hu Y-M, Guo Q, et al. Safety and immunogenicity of a recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in Sierra Leone: a single-centre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2017;389(10069):621–28. doi:10.1016/S0140-6736(16)32617-4.
  • Rampling T, Ewer KJ, Bowyer G, Bliss CM, Edwards NJ, Wright D, Payne RO, Venkatraman N, de Barra E, Snudden CM, et al. Safety and high level efficacy of the combination malaria vaccine Regimen of RTS,S/AS01 B with chimpanzee adenovirus 63 and modified vaccinia Ankara vectored vaccines expressing ME-TRAP. J Infect Dis. 2016;214(5):772–81. doi:10.1093/infdis/jiw244.