7,529
Views
3
CrossRef citations to date
0
Altmetric
Immunotherapeutics – Review

Current updates on generations, approvals, and clinical trials of CAR T-cell therapy

, , , , &
Article: 2114254 | Received 22 May 2022, Accepted 14 Aug 2022, Published online: 12 Sep 2022

References

  • Perica K, Varela JC, Oelke M, Schneck J. Adoptive T-cell immunotherapy for cancer. Rambam Maimonides Med J. 2015;6(1):1. doi:10.5041/RMMJ.10179.
  • Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev Immunol. 2003;21(1):807–25. doi:10.1146/annurev.immunol.21.120601.141135.
  • Park JH, Brentjens RJ. Adoptive immunotherapy for B-cell malignancies with autologous chimeric antigen receptor modified tumor targeted T-cells. Discov Med. 2010;9:277.
  • Robbins PF, Kawakami Y. Human tumor antigens recognized by T-cells. Curr Opin Immunol. 1996;8(5):628–636. doi:10.1016/S0952-7915(96)80078-1.
  • Strati P, Neelapu SS. Chimeric antigen receptor–engineered T-cell therapy in lymphoma. Curr Oncol Rep. 2019;21(5):1–7. doi:10.1007/s11912-019-0789-z.
  • Zhang E, Xu H. A new insight in chimeric antigen receptor-engineered T-cells for cancer immunotherapy. J Hematol Oncol. 2017;10(1):1–11. doi:10.1186/s13045-016-0379-6.
  • Sommermeyer D, Hudecek M, Kosasih PL, Gogishvili T, Maloney DG, Turtle CJ, Riddell SR. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia. 2016;30(2):492–500. doi:10.1038/leu.2015.247.
  • Kuwana Y, Asakura Y, Utsunomiya N, Nakanishi M, Arata Y, Itoh S, Nagase F, Kurosawa Y. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun. 1987;149(3):960–968. doi:10.1016/0006-291X(87)90502-X.
  • Gross G, Gorochov G, Waks T, Eshhar Z, editors. Generation of effector T-cells expressing chimeric T-cell receptor with antibody type-specificity. Transplant Proc. Israel. 1989;21(1 Pt 1):127–130.
  • Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Nat Acad Sci. 1989;86(24):10024–10028. doi:10.1073/pnas.86.24.10024.
  • Huang R, Li X, He Y, Zhu W, Gao L, Liu Y, Gao L, Wen Q, Zhong JF, Zhang C, et al. Recent advances in CAR-T-cell engineering. J Hematol Oncol. 2020;13(1):1–19. doi:10.1186/s13045-020-00910-5.
  • Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor‐expressing T-cells. Immunol Rev. 2014;257(1):107–126. doi:10.1111/imr.12131.
  • Guedan S, Calderon H, Posey JA, Maus MV. Engineering and design of chimeric antigen receptors. Mol Ther-Met Clin Dev. 2019;12:145–156. doi:10.1016/j.omtm.2018.12.009.
  • Jayaraman J, Mellody MP, Hou AJ, Desai RP, Fung AW, Pham AHT, Chen YY, Zhao W. Car-T design: elements and their synergistic function. EBioMedicine. 2020;58:102931. doi:10.1016/j.ebiom.2020.102931.
  • Zajc CU, Salzer B, Taft JM, Reddy ST, Lehner M, Traxlmayr MW. Driving CARs with alternative navigation tools–the potential of engineered binding scaffolds. Febs J. 2021;288(7):2103–2118. doi:10.1111/febs.15523.
  • Whilding LM, Parente-Pereira AC, Zabinski T, Davies DM, Petrovic RM, Kao YV, Saxena SA, Romain A, Costa-Guerra JA, Violette S, et al. Targeting of aberrant αvβ6 integrin expression in solid tumors using chimeric antigen receptor-engineered T Cells. Mol Ther. 2017;25(1):259–273. doi:10.1016/j.ymthe.2016.10.012.
  • Zhang T, Barber A, Sentman CL. Generation of antitumor responses by genetic modification of primary human T-cells with a chimeric NKG2D receptor. Cancer Res. 2006;66(11):5927–5933. doi:10.1158/0008-5472.CAN-06-0130.
  • Hudecek M, Sommermeyer D, Kosasih PL, Silva-Benedict A, Liu L, Rader C, Jensen MC, Riddell SR. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res. 2015;3(2):125–135. doi:10.1158/2326-6066.CIR-14-0127.
  • Guest RD, Hawkins RE, Kirillova N, Cheadle EJ, Arnold J, O’Neill A, Irlam J, Chester KA, Kemshead JT, Shaw DM. The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J Immunother. 2005;28(3):203–211. doi:10.1097/01.cji.0000161397.96582.59.
  • James SE, Greenberg PD, Jensen MC, Lin Y, Wang J, Till BG, Raubitschek AA, Forman SJ, Press OW. Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane. J Immunol. 2008;180(10):7028–7038. doi:10.4049/jimmunol.180.10.7028.
  • Wilkie S, Picco G, Foster J, Davies DM, Julien S, Cooper L, Arif S, Mather SJ, Taylor-Papadimitriou J, Burchell JM, et al. Retargeting of human T-cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol. 2008;180(7):4901–4909. doi:10.4049/jimmunol.180.7.4901.
  • Zhang C, Liu J, Zhong JF, Zhang X. Engineering car-T-cells. Biomarker Res. 2017;5(1):1–6. doi:10.1186/s40364-017-0081-z.
  • Elazar A, Chandler NJ, Davey AS, Weinstein JY, Nguyen JV, Trenker R, Cross RS, Jenkins MR, Call MJ, Call ME. De novo-designed transmembrane domains tune engineered receptor functions. Elife. 2022;11:e75660. doi:10.7554/eLife.75660.
  • Chandran SS, Klebanoff CA. T-Cell receptor‐based cancer immunotherapy: emerging efficacy and pathways of resistance. Immunol Rev. 2019;290(1):127–147. doi:10.1111/imr.12772.
  • Salter AI, Rajan A, Kennedy JJ, Ivey RG, Shelby SA, Leung I, Templeton ML, Muhunthan V, Voillet V, Sommermeyer D. Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Sci Signal. 2021;14(697):eabe2606. doi:10.1126/scisignal.abe2606.
  • Wu L, Wei Q, Brzostek J, Gascoigne NR. Signaling from T-cell receptors (TCRs) and chimeric antigen receptors (CARs) on T-cells. Cell Mol Immunol. 2020;17(6):600–612. doi:10.1038/s41423-020-0470-3.
  • Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 2006;24(1):419–466. doi:10.1146/annurev.immunol.23.021704.115658.
  • Becker ML, Near R, Mudgett-Hunter M, Margolies MN, Kubo RT, Kaye J, Hedrick SM. Expression of a hybrid immunoglobulin-T-cell receptor protein in transgenic mice. Cell. 1989;58(5):911–921. doi:10.1016/0092-8674(89)90943-4.
  • Hogquist KA, Jameson SC. The self-obsession of T-cells: how TCR signaling thresholds affect fate ’decisions’ and effector function. Nat Immunol. 2014;15(9):815–823. doi:10.1038/ni.2938.
  • Hudecek M, Lupo-Stanghellini M-T, Kosasih PL, Sommermeyer D, Jensen MC, Rader C, Riddell SR. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T-cells tumor recognition by ROR1-specific CARs. Clin Cancer Res. 2013;19(12):3153–3164. doi:10.1158/1078-0432.CCR-13-0330.
  • Huang J, Brameshuber M, Zeng X, Xie J, Li Q-J, Chien Y-H, Valitutti S, Davis M. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4+ T-cells. Immunity. 2013;39(5):846–857. doi:10.1016/j.immuni.2013.08.036.
  • Watanabe K, Terakura S, Martens AC, Van Meerten T, Uchiyama S, Imai M, Sakemura R, Goto T, Hanajiri R, Imahashi N, et al. Target antigen density governs the efficacy of anti–CD20-CD28-CD3 ζ chimeric antigen receptor–modified effector CD8 + T cells. J Immunol. 2015;194(3):911–920. doi:10.4049/jimmunol.1402346.
  • Mansilla-Soto J, Eyquem J, Haubner S, Hamieh M, Feucht J, Paillon N, Zucchetti AE, Li Z, Sjöstrand M, Lindenbergh PL, et al. HLA-Independent T-cell receptors for targeting tumors with low antigen density. Nat Med. 2022;28(2):345–352. doi:10.1038/s41591-021-01621-1.
  • Brameshuber M, Kellner F, Rossboth BK, Ta H, Alge K, Sevcsik E, Göhring J, Axmann M, Baumgart F, Gascoigne NRJ, et al. Monomeric TCRs drive T-cell antigen recognition. Nat Immunol. 2018;19(5):487–496. doi:10.1038/s41590-018-0092-4.
  • Chang ZL, Lorenzini MH, Chen X, Tran U, Bangayan NJ, Chen YY. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat Chem Biol. 2018;14(3):317–324. doi:10.1038/nchembio.2565.
  • Davenport A, Cross R, Watson K, Liao Y, Shi W, Prince H, Beavis PA, Trapani JA, Kershaw MH, Ritchie DS, et al. Chimeric antigen receptor T-cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proc Nat Acad Sci. 2018;115(9):E2068–E76. doi:10.1073/pnas.1716266115.
  • Gudipati V, Rydzek J, Doel-Perez I, Gonçalves VDR, Scharf L, Königsberger S, Lobner E, Kunert R, Einsele H, Stockinger H. Inefficient CAR-proximal signaling blunts antigen sensitivity. Nat Immunol. 2020;21(8):848–856. doi:10.1038/s41590-020-0719-0.
  • Brocker T. Chimeric Fv-ζ or Fv-ε receptors are not sufficient to induce activation or cytokine production in peripheral T-cells. Blood. 2000;96:1999–2001.
  • Weinkove R, George P, Dasyam N, McLellan AD. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin Transl Immunol. 2019;8(5):e1049. doi:10.1002/cti2.1049.
  • Srivastava S, Riddell SR. Engineering CAR-T-cells: design concepts. Trends Immunol. 2015;36(8):494–502. doi:10.1016/j.it.2015.06.004.
  • Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Nat Acad Sci. 1993;90(2):720–724. doi:10.1073/pnas.90.2.720.
  • Firor AE, Jares A, Ma Y. From humble beginnings to success in the clinic: chimeric antigen receptor-modified T-cells and implications for immunotherapy. Exp Biol Med. 2015;240(8):1087–1098. doi:10.1177/1535370215584936.
  • Smith AJ, Oertle J, Warren D, Prato D. Chimeric antigen receptor (CAR) T-cell therapy for malignant cancers: summary and perspective. J Cell Immunother. 2016;2(2):59–68. doi:10.1016/j.jocit.2016.08.001.
  • Imai C, Mihara K, Andreansky M, Nicholson I, Pui C, Geiger T, Campana D. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 2004;18(4):676–684. doi:10.1038/sj.leu.2403302.
  • Maher J, Brentjens RJ, Gunset G, Rivière I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat Biotechnol. 2002;20(1):70–75. doi:10.1038/nbt0102-70.
  • Finney HM, Lawson AD, Bebbington CR, Weir ANC. Chimeric receptors providing both primary and costimulatory signaling in T-cells from a single gene product. J Immunol. 1998;161:2791–2797.
  • Acuto O, Michel F. CD28-Mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol. 2003;3(12):939–951. doi:10.1038/nri1248.
  • Hombach A, Wieczarkowiecz A, Marquardt T, Heuser C, Usai L, Pohl C, Seliger B, Abken H. Tumor-specific T cell activation by recombinant immunoreceptors: cD3ζ signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3ζ signaling receptor molecule. J Immunol. 2001;167(11):6123–6131. doi:10.4049/jimmunol.167.11.6123.
  • Jenkins M, Burrell E, Ashwell JD. Antigen presentation by resting B cells. Effectiveness at inducing T-cell proliferation is determined by costimulatory signals, not T-cell receptor occupancy. J Immunol. 1990;144:1585–1590.
  • Krause A, Guo H-F, Latouche J-B, Tan C, Cheung N-K, Sadelain M. Antigen-Dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J Exp Med. 1998;188(4):619–626. doi:10.1084/jem.188.4.619.
  • Finney HM, Akbar AN, Lawson AD. Activation of resting human primary T-cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCRζ chain. J Immunol. 2004;172(1):104–113. doi:10.4049/jimmunol.172.1.104.
  • Lu P, Lu X-A, Zhang X, Xiong M, Zhang J, Zhou X, Qi F, Yang J, He T. Which is better in CD19 CAR-T treatment of r/r B-ALL, CD28 or 4-1BB? A parallel trial under the same manufacturing process. Am Soc Clin Oncol. 2018;36(15):3041–3041
  • Kawalekar OU, O’Connor RS, Fraietta JA, Guo L, McGettigan SE, Posey JA, Patel PR, Guedan S, Scholler J, Keith B, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T-cells. Immunity. 2016;44(2):380–390. doi:10.1016/j.immuni.2016.01.021.
  • Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR, et al. 4-1BB costimulation ameliorates T-cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–590. doi:10.1038/nm.3838.
  • Quintarelli C, Orlando D, Boffa I, Guercio M, Polito VA, Petretto A, Lavarello C, Sinibaldi M, Weber G, Del Bufalo F, et al. Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma. Oncoimmunology. 2018;7(6):e1433518. doi:10.1080/2162402X.2018.1433518.
  • Ramos CA, Rouce R, Robertson CS, Reyna A, Narala N, Vyas G, Mehta B, Zhang H, Dakhova O, Carrum G, et al. In vivo fate and activity of second- versus third-generation CD19-specific CAR-T cells in B cell non-Hodgkin’s lymphomas. Mol Ther. 2018;26(12):2727–2737. doi:10.1016/j.ymthe.2018.09.009.
  • Doherty K. Obe-Cel may mark additional treatment option for R/R B-ALL. 2022.
  • Abate-Daga D, Davila ML. Car models: next-generation car modifications for enhanced T-cell function. Mol Ther-Oncolytics. 2016;3:16014. doi:10.1038/mto.2016.14.
  • Eggermont LJ, Paulis LE, Tel J, Figdor CG. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells. Trends Biotechnol. 2014;32(9):456–465. doi:10.1016/j.tibtech.2014.06.007.
  • Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–398. doi:10.1158/2159-8290.CD-12-0548.
  • Song D-G, Ye Q, Santoro S, Fang C, Best A, Powell JD. Chimeric NKG2D CAR-expressing T-cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition. Hum Gene Ther. 2013;24(3):295–305. doi:10.1089/hum.2012.143.
  • Song D-G, Ye Q, Poussin M, Harms GM, Figini M, Powell JD. CD27 costimulation augments the survival and antitumor activity of redirected human T-cells In vivo. Blood. 2012;119:696–706.
  • Schubert M-L, Schmitt A, Neuber B, Hückelhoven-Krauss A, Kunz A, Wang L, Gern U, Michels B, Sellner L, Hofmann S, et al. Third-generation CAR T-cells targeting CD19 are associated with an excellent safety profile and might improve persistence of CAR T-cells in treated patients. Blood. 2019;134:51. doi:10.1182/blood-2019-125423.
  • Künkele A, Johnson AJ, Rolczynski LS, Chang CA, Hoglund V, Kelly-Spratt KS, Jensen MC. Functional tuning of CARs reveals signaling threshold above which CD8+ CTL antitumor potency is attenuated due to cell Fas–FasL-dependent AICD. Cancer Immunol Res. 2015;3(4):368–379. doi:10.1158/2326-6066.CIR-14-0200.
  • Hombach AA, Rappl G, Abken H. Arming cytokine-induced killer cells with chimeric antigen receptors: cD28 outperforms combined CD28–OX40 “super-stimulation”. Mol Ther. 2013;21(12):2268–2277. doi:10.1038/mt.2013.192.
  • Stephan MT, Ponomarev V, Brentjens RJ, Chang AH, Dobrenkov KV, Heller G, Sadelain M. T cell–encoded cd80 and 4-1bbl induce auto- and transcostimulation, resulting in potent tumor rejection. Nat Med. 2007;13(12):1440–1449. doi:10.1038/nm1676.
  • Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF, Sadelain M, Brentjens RJ. Tumor-Targeted T-cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood. 2012;119:4133–4141.
  • Kueberuwa G, Kalaitsidou M, Cheadle E, Hawkins RE, Gilham DE. CD19 CAR T-cells expressing IL-12 eradicate lymphoma in fully lymphoreplete mice through induction of host immunity. Mol Ther-Oncolytics. 2018;8:41–51. doi:10.1016/j.omto.2017.12.003.
  • Chmielewski M, Abken H. Trucks: the fourth generation of CARs. Expert Opin Biol Ther. 2015;15(8):1145–1154. doi:10.1517/14712598.2015.1046430.
  • Martínez-Lostao L, Anel A, Pardo J. How do cytotoxic lymphocytes kill cancer cells? Clin Cancer Res. 2015;21(22):5047–5056. doi:10.1158/1078-0432.CCR-15-0685.
  • Li J, Li W, Huang K, Zhang Y, Kupfer G, Zhao Q. Chimeric antigen receptor T-cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward. J Hematol Oncol. 2018;11(1):1–18. doi:10.1186/s13045-018-0568-6.
  • Tokarew N, Ogonek J, Endres S, von Bergwelt-Baildon M, Kobold S. Teaching an old dog new tricks: next-generation CAR T-cells. Br J Cancer. 2019;120(1):26–37. doi:10.1038/s41416-018-0325-1.
  • Kagoya Y, Tanaka S, Guo T, Anczurowski M, Wang C-H, Saso K, Butler MO, Minden MD, Hirano N. A novel chimeric antigen receptor containing a jak–stat signaling domain mediates superior antitumor effects. Nat Med. 2018;24(3):352–359. doi:10.1038/nm.4478.
  • Lyman GH, Nguyen A, Snyder S, Gitlin M, Chung KC. Economic evaluation of chimeric antigen receptor T-cell therapy by site of care among patients with relapsed or refractory large B-cell lymphoma. JAMA network open. 2020;3(4): e202072-e. doi:10.1001/jamanetworkopen.2020.2072
  • Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, La Perle K, Quintás-Cardama A, Larson SM, Sadelain M. Genetically targeted T-cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res. 2007;13(18):5426–5435. doi:10.1158/1078-0432.CCR-07-0674.
  • Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017;168(4):724–740. doi:10.1016/j.cell.2017.01.016.
  • Moreno C, Haynie C, Johnson A, Weber KS. Alternative CAR Therapies: recent Approaches in Engineering Chimeric Antigen Receptor Immune Cells to Combat Cancer. Biomedicines. 2022;10(7):1493. doi:10.3390/biomedicines10071493.
  • Savanur MA, Weinstein-Marom H, Gross G. Implementing logic gates for safer immunotherapy of cancer. Front Immunol. 2021;12:4678. doi:10.3389/fimmu.2021.780399.
  • Lanitis E, Poussin M, Klattenhoff AW, Song D, Sandaltzopoulos R, June CH, Powell DJ. Chimeric Antigen Receptor T Cells with Dissociated Signaling Domains Exhibit Focused Antitumor Activity with Reduced Potential for Toxicity In vivo. Cancer Immunol Res. 2013;1(1):43–53. doi:10.1158/2326-6066.CIR-13-0008.
  • Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T-cells. Nat Biotechnol. 2013;31(1):71–75. doi:10.1038/nbt.2459.
  • Qin H, Ramakrishna S, Nguyen S, Fountaine TJ, Ponduri A, Stetler-Stevenson M, Yuan CM, Haso W, Shern JF, Shah NN, et al. Preclinical development of bivalent chimeric antigen receptors targeting both CD19 and CD22. Mol Ther-Oncolytics. 2018;11:127–137. doi:10.1016/j.omto.2018.10.006.
  • Grada Z, Hegde M, Byrd T, Shaffer DR, Ghazi A, Brawley VS, Corder A, Schönfeld K, Koch J, Dotti G, et al. TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther-Nucleic Acids. 2013;2:e105. doi:10.1038/mtna.2013.32.
  • Fedorov VD, Themeli M, Sadelain M. PD-1–and CTLA-4–based inhibitory chimeric antigen receptors (iCars) divert off-target immunotherapy responses. Sci Transl Med. 2013;5(215):215ra172. doi:10.1126/scitranslmed.3006597.
  • Haubner S, Mansilla-Soto J, Nataraj S, He X, Park JH, Wang X, Rivière I, Sadelain M. IF-Better Gating: combinatorial Targeting and Synergistic Signaling for Enhanced CAR T-cell Efficacy. Blood. 2021;138(Supplement 1):2774. doi:10.1182/blood-2021-149263.
  • Cho JH, Collins JJ, Wong WW. Universal chimeric antigen receptors for multiplexed and logical control of T-cell responses. Cell. 2018;173(6):1426–38. e11. doi:10.1016/j.cell.2018.03.038.
  • Cho JH, Okuma A, Sofjan K, Lee S, Collins JJ, Wong WW. Engineering advanced logic and distributed computing in human CAR immune cells. Nat Commun. 2021;12(1):1–14. doi:10.1038/s41467-021-21078-7.
  • Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, Lim W. Precision tumor recognition by T-cells with combinatorial antigen-sensing circuits. Cell. 2016;164(4):770–779. doi:10.1016/j.cell.2016.01.011.
  • Morsut L, Roybal KT, Xiong X, Gordley RM, Coyle SM, Thomson M, Lim WA. Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell. 2016;164(4):780–791. doi:10.1016/j.cell.2016.01.012.
  • Choe JH, Watchmaker PB, Simic MS, Gilbert RD, Li AW, Krasnow NA, Downey KM, Yu W, Carrera DA, Celli A, et al. SynNotch-CAR T-cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med. 2021;13(591):eabe7378. doi:10.1126/scitranslmed.abe7378.
  • Feldmann A, Hoffmann A, Bergmann R, Koristka S, Berndt N, Arndt C, Rodrigues Loureiro L, Kittel-Boselli E, Mitwasi N, Kegler A, et al. Versatile chimeric antigen receptor platform for controllable and combinatorial T-cell therapy. Oncoimmunology. 2020;9(1):1785608. doi:10.1080/2162402X.2020.1785608.
  • Feldmann A, Hoffmann A, Kittel-Boselli E, Bergmann R, Koristka S, Berndt N, Arndt C, Loureiro LR, Mitwasi N, Jureczek J, et al. A Novel Revcar Platform for Switchable and Gated Tumor Targeting. Blood. 2019;134:5611. doi:10.1182/blood-2019-128436.
  • Salzer B, Schueller CM, Zajc CU, Peters T, Schoeber MA, Kovacic B, Buri MC, Lobner E, Dushek O, Huppa JB, et al. Engineering AvidCars for combinatorial antigen recognition and reversible control of CAR function. Nat Commun. 2020;11(1):1–16. doi:10.1038/s41467-020-17970-3.
  • Liu Y, Liu G, Wang J, Zheng Z-Y, Jia L, Rui W, Huang D, Zhou Z-X, Zhou L, Wu X, et al. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors. Sci Transl Med. 2021;13(586):eabb5191. doi:10.1126/scitranslmed.abb5191.
  • Wang J, Zhang X, Zhou Z, Liu Y, Yu L, Jia L, Yang J, Li J, Yu H, Li W, et al. A novel adoptive synthetic tcr and antigen receptor (star) T-Cell therapy for B-Cell acute lymphoblastic leukemia. Am J Hematol. 2022;97(8):992–1004. doi:10.1002/ajh.26586.
  • Yee C. The use of endogenous T-cells for adoptive transfer. Immunol Rev. 2014;257(1):250–263. doi:10.1111/imr.12134.
  • Miliotou AN, Papadopoulou LC. Car T-cell therapy: a new era in cancer immunotherapy. Curr Pharm Biotechnol. 2018;19(1):5–18. doi:10.2174/1389201019666180418095526.
  • Jin C, Yu D, Hillerdal V, Wallgren A, Karlsson-Parra A, Essand M. Allogeneic lymphocyte-licensed DCs expand T-cells with improved antitumor activity and resistance to oxidative stress and immunosuppressive factors. Mol Ther-Met Clin Dev. 2014;1:14001. doi:10.1038/mtm.2014.1.
  • Powell JD, Brennan AL, Zheng Z, Huynh H, Cotte J, Levine BL. Efficient clinical-scale enrichment of lymphocytes for use in adoptive immunotherapy using a modified counterflow centrifugal elutriation program. Cytotherapy. 2009;11(7):923–935. doi:10.3109/14653240903188921.
  • Riddell SR, Sommermeyer D, Berger C, Liu LS, Balakrishnan A, Salter A, Hudecek M, Maloney DG, Turtle CJ. Adoptive therapy with chimeric antigen receptor–modified T cells of defined subset composition. Cancer J. 2014;20(2):141. doi:10.1097/PPO.0000000000000036.
  • Cordes N, Kolbe C, Lock D, Holzer T, Althoff D, Schäfer D, Blaeschke F, Kotter B, Karitzky S, Rossig C, et al. Anti-CD19 CARs displayed at the surface of lentiviral vector particles promote transduction of target-expressing cells. Mol Ther-Met Clin Dev. 2021;21:42–53. doi:10.1016/j.omtm.2021.02.013.
  • Jin C, Fotaki G, Ramachandran M, Nilsson B, Essand M, Yu D. Safe engineering of CAR T-cells for adoptive cell therapy of cancer using long‐term episomal gene transfer. Embo Mol Med. 2016;8(7):702–711. doi:10.15252/emmm.201505869.
  • Jensen TI, Axelgaard E, Bak RO. Therapeutic gene editing in haematological disorders with CRISPR/Cas9. Br J Haematol. 2019;185(5):821–835. doi:10.1111/bjh.15851.
  • DeWitt MA, Corn JE, Carroll D. Genome editing via delivery of Cas9 ribonucleoprotein. Methods. 2017;121:9–15. doi:10.1016/j.ymeth.2017.04.003.
  • Frank AM, Braun AH, Scheib L, Agarwal S, Schneider IC, Fusil F, Perian S, Sahin U, Thalheimer FB, Verhoeyen E, et al. Combining T-cell-specific activation and In vivo gene delivery through CD3-targeted lentiviral vectors. Blood Adv. 2020;4(22):5702–5715. doi:10.1182/bloodadvances.2020002229.
  • Agarwal S, Hanauer JD, Frank AM, Riechert V, Thalheimer FB, Buchholz CJ. In vivo generation of CAR T-cells selectively in human CD4+ lymphocytes. Mol Ther. 2020;28(8):1783–1794. doi:10.1016/j.ymthe.2020.05.005.
  • Pfeiffer A, Thalheimer FB, Hartmann S, Frank AM, Bender RR, Danisch S, Costa C, Wels WS, Modlich U, Stripecke R, et al. In vivo generation of human CD 19- CAR T cells results in B-cell depletion and signs of cytokine release syndrome. Embo Mol Med. 2018;10(11):e9158. doi:10.15252/emmm.201809158.
  • Levine BL. Personalized cell-based medicine: activated and expanded T-cells for adoptive immunotherapy. Bioprocess J. 2007;6(2):14. doi:10.12665/J62.Levine.
  • Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T-cell therapy. Mol Ther-Met Clin Dev. 2017;4:92–101. doi:10.1016/j.omtm.2016.12.006.
  • Mock U, Nickolay L, Cheung G-K, Zhan H, Peggs K, Johnston IC, Kaiser A, Pule M, Thrasher A, Qasim W, et al. Automated lentiviral transduction of T-cells with CARs using the CliniMACS Prodigy. Blood. 2015;126(23):2043. doi:10.1182/blood.V126.23.2043.2043.
  • Abou-el-Enein M, Elsallab M, Feldman SA, Fesnak AD, Heslop HE, Marks P, Till BG, Bauer G, Savoldo B. Scalable manufacturing of CAR T-cells for cancer ImmunotherapyClinical production of CAR T-cells. Blood Cancer Discovery. 2021;2(5):408–422. doi:10.1158/2643-3230.BCD-21-0084.
  • Alzubi J, Lock D, Rhiel M, Schmitz S, Wild S, Mussolino C, Hildenbeutel M, Brandes C, Rositzka J, Lennartz S, et al. Automated generation of gene-edited CAR T cells at clinical scale. Mol Ther-Met Clin Dev. 2021;20:379–388. doi:10.1016/j.omtm.2020.12.008.
  • Makita S, Imaizumi K, Kurosawa S, Tobinai K. Chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges. Drugs Context. 2019;8:1–14. doi:10.7573/dic.212567.
  • Hartmann J, Schüßler‐lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T-cells—challenges and opportunities in translating innovative treatment concepts. Embo Mol Med. 2017;9(9):1183–1197. doi:10.15252/emmm.201607485.
  • Wall D, Krueger J. Chimeric antigen receptor T-cell therapy comes to clinical practice. Current Oncol. 2020;27(s2):115–123. doi:10.3747/co.27.5283.
  • Muranski P, Boni A, Wrzesinski C, Citrin DE, Rosenberg SA, Childs R, Restifo NP. Increased intensity lymphodepletion and adoptive immunotherapy—how far can we go? Nat Clin Pract Oncol. 2006;3(12):668–681. doi:10.1038/ncponc0666.
  • Turtle CJ, Hanafi L-A, Berger C, Sommermeyer D, Pender B, Robinson EM, Melville K, Budiarto TM, Steevens NN, Chaney C, et al. Addition of fludarabine to cyclophosphamide lymphodepletion improves in vivo expansion of CD19 chimeric antigen receptor-modified T cells and clinical outcome in adults with B cell acute lymphoblastic leukemia. Blood. 2015;126(23):3773. doi:10.1182/blood.V126.23.3773.3773.
  • Ghilardi G, Chong E, Svoboda J, Wohlfarth P, Nasta S, Williamson S, Landsburg JD, Gerson JN, Barta SK, Pajarillo R. Bendamustine is safe and effective for lymphodepletion before tisagenlecleucel in patients with refractory or relapsed large B-cell lymphomas. Ann Oncol. 2022. doi:10.1016/j.annonc.2022.05.521.
  • Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, et al. Chimeric antigen receptor T-cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–1517. doi:10.1056/NEJMoa1407222.
  • Ramos CA, Grover NS, Beaven AW, Lulla PD, Wu M-F, Ivanova A, Wang T, Shea TC, Rooney CM, Dittus C, et al. Anti-CD30 CAR-T-cell therapy in relapsed and refractory Hodgkin lymphoma. J Clin Oncol. 2020;38(32):3794. doi:10.1200/JCO.20.01342.
  • Dawicki W, Allen KJ, Garg R, Geoghegan EM, Berger MS, Ludwig DL, Dadachova E. Targeted lymphodepletion with a CD45-directed antibody radioconjugate as a novel conditioning regimen prior to adoptive cell therapy. Oncotarget. 2020;11(39):3571. doi:10.18632/oncotarget.27731.
  • Nath R, Geoghegan EM, Ulrickson ML, Spross JA, Lichtenstein RH, Konerth S, Fisher DR, Liang Q, Ludwig D, Reddy V, et al. Sierra clinical trial dosimetry results support low dose anti-CD45 Iodine (131I) Apamistamab [Iomab-B] for targeted lymphodepletion prior to adoptive cell therapy. Blood. 2019;134:1958. doi:10.1182/blood-2019-128838.
  • Mahadeo KM, Khazal SJ, Abdel-Azim H, Fitzgerald JC, Taraseviciute A, Bollard CM, Tewari P, Duncan C, Traube C, McCall D, et al. Management guidelines for paediatric patients receiving chimeric antigen receptor T-cell therapy. Nat Rev Clin Oncol. 2019;16(1):45–63. doi:10.1038/s41571-018-0075-2.
  • Brudno JN, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15(1):31–46. doi:10.1038/nrclinonc.2017.128.
  • Su X, Vale R. Mechanisms of chimeric antigen receptor (CAR) signaling during T-cell activation. Biophys J. 2018;114(3):107a–108a. doi:10.1016/j.bpj.2017.11.625.
  • Yu JX, Hubbard-Lucey VM, Tang J. The global pipeline of cell therapies for cancer. Nat Rev Drug Discov. 2019;18(11):821–822. doi:10.1038/d41573-019-00090-z.
  • Mikkilineni L, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for multiple myeloma. Blood. 2017;130:2594–2602.
  • Abbasi MH, Riaz A, Khawar MB, Farooq A, Majid A, Sheikh N. CAR-T-Cell therapy: present progress and future strategies. Biomed Res Ther. 2022;9(2):4920–4929. doi:10.15419/bmrat.v9i2.726.
  • Cantrell DA. T-Cell antigen receptor signal transduction. Immunology. 2002;105(4):369. doi:10.1046/j.1365-2567.2002.01391.x.
  • Cullen S, Martin S. Mechanisms of granule-dependent killing. Cell Death Differ. 2008;15(2):251–262. doi:10.1038/sj.cdd.4402244.
  • de Saint Basile G, Ménasché G, Fischer A. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol. 2010;10(8):568–579. doi:10.1038/nri2803.
  • Nagata S, Tanaka M. Programmed cell death and the immune system. Nat Rev Immunol. 2017;17(5):333–340. doi:10.1038/nri.2016.153.
  • Davenport AJ, Jenkins MR, Cross RS, Yong CS, Prince HM, Ritchie DS, Trapani JA, Kershaw MH, Darcy PK, Neeson PJ, et al. CAR-T-Cells inflict sequential killing of multiple tumor targeT-cells. Cancer Immunol Res. 2015;3(5):483–494. doi:10.1158/2326-6066.CIR-15-0048.
  • Nai Y, Du L, Shen M, Li T, Huang J, Han X, Luo F, Wang W, Pang D, Jin A, et al. TRAIL-R1-Targeted CAR-T-cells exhibit dual antitumor efficacy. Front Mol Biosci. 2021;8. doi:10.3389/fmolb.2021.756599
  • Tang X-J, Sun X-Y, Huang K-M, Zhang L, Yang Z-S, Zou D-D, Wang B, Warnock GL, Dai L-J, Luo J, et al. Therapeutic potential of CAR-T-cell-derived exosomes: a cell-free modality for targeted cancer therapy. Oncotarget. 2015;6(42):44179. doi:10.18632/oncotarget.6175.
  • Priceman SJ, Forman SJ, Brown CE. Smart CARs engineered for cancer immunotherapy. Curr Opin Oncol. 2015;27(6):466. doi:10.1097/CCO.0000000000000232.
  • Rohaan MW, Wilgenhof S, Haanen JB. Adoptive cellular therapies: the current landscape. Virchows Archiv. 2019;474(4):449–461. doi:10.1007/s00428-018-2484-0.
  • Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, Maric I, Raffeld M, Nathan DA, Lanier BJ, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T-cells genetically engineered to recognize CD19. Blood. 2010;116(20):4099–4102.
  • Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–448. doi:10.1056/NEJMoa1709866.
  • Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, Jäger U, Jaglowski S, Andreadis C, Westin JR, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45–56. doi:10.1056/NEJMoa1804980.
  • Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–2544. doi:10.1056/NEJMoa1707447.
  • Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, Lin Y, Braunschweig I, Hill BT, Timmerman JM. Long-Term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20(1):31–42. doi:10.1016/S1470-2045(18)30864-7.
  • Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, Timmerman JM, Holmes H, Jaglowski S, Flinn IW. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382(14):1331–1342. doi:10.1056/NEJMoa1914347.
  • Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T-cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651–668. doi:10.1038/s41577-020-0306-5.
  • Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, White DE, Wunderlich JR, Canevari S, Rogers-Freezer L, et al. A phase I study on adoptive immunotherapy using gene-modified T-cells for ovarian cancer. Clin Cancer Res. 2006;12(20):6106–6115. doi:10.1158/1078-0432.CCR-06-1183.
  • Lamers C, Sleijfer S, Vulto AG, Kruit W, Kliffen M, Debets R, Gratama JW, Stoter G, Oosterwijk E. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol. 2006;24(13):e20–2. doi:10.1200/JCO.2006.05.9964.
  • Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J, Simpson J. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):2561–2569. doi:10.1056/NEJMoa1610497.
  • Sengsayadeth S, Savani BN, Oluwole O, Dholaria B. Overview of approved CAR‐T therapies, ongoing clinical trials, and its impact on clinical practice. Ejhaem. 2022;3:6–10. doi:10.1002/jha2.338.
  • FDA. Novel Drugs Approved by the FDA, 2011–2017. 2018.
  • Braendstrup P, Levine BL, Ruella M. The long road to the first FDA-approved gene therapy: chimeric antigen receptor T-cells targeting CD19. Cytotherapy. 2020;22(2):57–69. doi:10.1016/j.jcyt.2019.12.004.
  • Prasad V. Tisagenlecleucel—the first approved CAR-T-cell therapy: implications for payers and policy makers. Nat Rev Clin Oncol. 2018;15(1):11–12. doi:10.1038/nrclinonc.2017.156.
  • Ahmad A, Uddin S, Steinhoff M. Car-T-Cell therapies: an overview of clinical studies supporting their approved use against acute lymphoblastic leukemia and large b-cell lymphomas. Int J Mol Sci. 2020;21(11):3906. doi:10.3390/ijms21113906.
  • Laura Joszt M. FDA Approves Tisa-Cel for Third Indication, r/r Follicular Lymphoma. Innovation Multi Care. May 2022.
  • Nastoupil LJ, Jain MD, Feng L, Spiegel JY, Ghobadi A, Lin Y, Dahiya S, Lunning M, Lekakis L, Reagan P. Standard-Of-Care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US Lymphoma CAR T Consortium. J Clin Oncol. 2020;38(27):3119. doi:10.1200/JCO.19.02104.
  • Jacobson CA, Chavez JC, Sehgal A, William BM, Munoz J, Salles GA, Casulo C, Munshi PN, Maloney DG, De Vos S, et al. Outcomes in ZUMA-5 with axicabtagene ciloleucel (axi-cel) in patients (pts) with relapsed/refractory (R/R) indolent non-Hodgkin lymphoma (iNHL) who had the high-risk feature of progression within 24 months from initiation of first anti-CD20–containing chemoimmunotherapy (POD24). USA: American Society of Clinical Oncology; 2021.
  • FDA. FDA approves FirsT-cell-based gene therapy for adult patients with relapsed or refractory mcl. 2020.
  • FDA. FDA approval of Tecartus (brexucabtagene autoleucel) for adult patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. DISCO Burst Edition. 2021.
  • Shah BD, Ghobadi A, Oluwole OO, Logan AC, Boissel N, Cassaday RD, Leguay T, Bishop MR, Topp MS, Tzachanis D. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. The Lancet. 2021;398(10299):491–502. doi:10.1016/S0140-6736(21)01222-8.
  • FDA. FDA approves lisocabtagene maraleucel for relapsed or refractory large B-cell lymphoma. 2021.
  • Kharfan-Dabaja MA, Yassine F, Moustafa MA, Iqbal M, Murthy H. Lisocabtagene maraleucel in relapsed or refractory diffuse large B cell lymphoma: what is the evidence? Hematol Oncol Stem Cell Ther. 2021. doi:10.1016/j.hemonc.2021.09.004.
  • Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, Mehta A, Purev E, Maloney DG, Andreadis C. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. The Lancet. 2020;396(10254):839–852. doi:10.1016/S0140-6736(20)31366-0.
  • Munshi NC, Anderson JL, Shah N, Madduri D, Berdeja J, Lonial S, Raje N, Lin Y, Siegel D, Oriol A. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384(8):705–716. doi:10.1056/NEJMoa2024850.
  • Jagannath S, Lin Y, Goldschmidt H, Reece D, Nooka A, Senin A, Rodriguez-Otero P, Powles R, Matsue K, Shah N. KarMma-RW: comparison of idecabtagene vicleucel with real-world outcomes in relapsed and refractory multiple myeloma. Blood Cancer J. 2021;11(6):1–9. doi:10.1038/s41408-021-00507-2.
  • FDAFDA approval of carvykti (ciltacabtagene autoleucel) for the treatment of adult patients with relapsed or refractory multiple myeloma after four or more prior lines of therapy, including a proteasome inhibitor, an immunomodulatory agent, and an anti-cd38 monoclonal antibody. FDA DISCO Burst Edition. 2022.
  • Madduri D, Berdeja JG, Usmani SZ, Jakubowiak A, Agha M, Cohen AD, Stewart AK, Hari P, Htut M, O’Donnell E, et al. CARTITUDE-1: phase 1b/2 study of ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy, in relapsed/refractory multiple myeloma. Blood. 2020;136:22–25. doi:10.1182/blood-2020-136307.
  • King AC, Orozco JS. Axicabtagene ciloleucel: the first FDA-approved CAR T-cell therapy for relapsed/refractory large B-cell lymphoma. J Adv Pract Oncol. 2019;10(8):878. doi:10.6004/jadpro.2019.10.8.9.
  • Grupp SA, Maude SL, Shaw PA, Aplenc R, Barrett DM, Callahan C, Lacey SF, Levine BL, Melenhorst JJ, Motley L, et al. Durable remissions in children with relapsed/refractory all treated with T-cells engineered with a CD19-targeted chimeric antigen receptor (CTL019). Blood. 2015;126(23):681. doi:10.1182/blood.V126.23.681.681.
  • Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, Yang JC, Phan GQ, Hughes MS, Sherry RM, et al. Chemotherapy-Refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T-cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540. doi:10.1200/JCO.2014.56.2025.
  • Schuster SJ, Tam CS, Borchmann P, Worel N, McGuirk JP, Holte H, Waller EK, Jaglowski S, Bishop MR, Damon LE, et al. Long-Term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021;22(10):1403–1415. doi:10.1016/S1470-2045(21)00375-2.
  • Lemal R, Tournilhac O. State-Of-The-Art for CAR T-cell therapy for chronic lymphocytic leukemia in 2019. J Immunother Cancer. 2019;7(1):1–6. doi:10.1186/s40425-019-0686-x.
  • FDAFDA approves axicabtagene ciloleucel for second-line treatment of large B-cell lymphoma. 2022.
  • FDAFDA approves axicabtagene ciloleucel for large B-cell lymphoma. 2017.
  • Elsawy M, Chavez JC, Avivi I, Larouche J-F, Wannesson L, Cwynarski K, Osman K, Davison K, Rudzki JD, Dahiya S, et al., editors. Patient-Reported Outcomes (PROs) in Zuma-7, a phase 3, randomized, open-label study evaluating the efficacy of Axicabtagene Ciloleucel (Axi-Cel) versus Standard-of-Care (SOC) therapy in patients with relapsed/refractory Large B-Cell Lymphoma (LBCL) 2022 Tandem Meetings|Transplantation & Cellular Therapy Meetings of ASTCT and CIBMTR; 2022: Tandem Meetings; United States.
  • Neelapu SS, Dickinson M, Munoz J, Ulrickson ML, Thieblemont C, Oluwole OO, Herrera AF, Ujjani CS, Lin Y, Riedell PA. Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: the phase 2 ZUMA-12 trial. Nat Med. 2022;28(4):735–742. doi:10.1038/s41591-022-01731-4.
  • Turtle CJ, Hanafi L-A, Berger C, Gooley TA, Cherian S, Hudecek M, Sommermeyer D, Melville K, Pender B, Budiarto TM, et al. CD19 CAR–T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123–2138. doi:10.1172/JCI85309.
  • De Bousser E, Callewaert N, Festjens N. T-cell engaging immunotherapies, highlighting chimeric antigen receptor (CAR) T-cell therapy. Cancers. 2021;13(23):6067. doi:10.3390/cancers13236067.
  • Maldini CR, Ellis GI, Riley JL. Car T-cells for infection, autoimmunity and allotransplantation. Nat Rev Immunol. 2018;18(10):605–616. doi:10.1038/s41577-018-0042-2.
  • Tian Y, Li Y, Shao Y, Zhang Y. Gene modification strategies for next-generation CAR T-cells against solid cancers. J Hematol Oncol. 2020;13(1):1–16. doi:10.1186/s13045-020-00890-6.
  • Singh N, Frey NV, Grupp SA, Maude SL. Car T-cell therapy in acute lymphoblastic leukemia and potential for chronic lymphocytic leukemia. Curr Treat Options Oncol. 2016;17(6):1–11. doi:10.1007/s11864-016-0406-4.
  • Wei J, Han X, Bo J, Han W. Target selection for CAR-T therapy. J Hematol Oncol. 2019;12(1):1–9. doi:10.1186/s13045-019-0758-x.
  • Schultz L, Mackall C. Driving CAR T-cell translation forward. Sci Transl Med. 2019;11(481):eaaw2127. doi:10.1126/scitranslmed.aaw2127.
  • Almåsbak H, Aarvak T, Vemuri MC. Car T-cell therapy: a game changer in cancer treatment. J Immunol Res. 2016;2016:1–10. doi:10.1155/2016/5474602.
  • Rennert P, Su L, Dufort F, Birt A, Sanford T, Wu L, Ambrose C, Lobb R. A novel CD19-anti-CD20 bridging protein prevents and reverses CD19-negative relapse from CAR19 T cell treatment in vivo. Blood. 2019;134:252. doi:10.1182/blood-2019-130654.
  • Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, Wolters P, Martin S, Delbrook C, Yates B, et al. CD22-Targeted CAR T-cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–28. doi:10.1038/nm.4441.
  • Pan J, Tan Y, Wang G, Deng B, Ling Z, Song W, Seery S, Zhang Y, Peng S, Xu J, et al. Donor-Derived CD7 chimeric antigen receptor T-cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial. J Clin Oncol. 2021;39(30):3340–3351. doi:10.1200/JCO.21.00389.
  • Kirtane K, Elmariah H, Chung CH, Abate-Daga D. Adoptive cellular therapy in solid tumor malignancies: review of the literature and challenges ahead. J Immunother Cancer. 2021;9(7):e002723. doi:10.1136/jitc-2021-002723.
  • Marofi F, Motavalli R, Safonov VA, Thangavelu L, Yumashev AV, Alexander M, Shomali N, Chartrand MS, Pathak Y, Jarahian M, et al. Car T-cells in solid tumors: challenges and opportunities. Stem Cell Res Ther. 2021;12(1):1–16. doi:10.1186/s13287-020-02128-1.
  • Gauthier J, Hirayama AV, Purushe J, Hay KA, Lymp J, Li DH, Yeung CCS, Sheih A, Pender BS, Hawkins RM, et al. Feasibility and efficacy of CD19-targeted CAR T-cells with concurrent ibrutinib for CLL after ibrutinib failure. Blood. 2020;135(19):1650–1660. doi:10.1182/blood.2019002936.
  • Sallman DA, Brayer J, Sagatys EM, Lonez C, Breman E, Agaugué S, Verma B, Gilham DE, Lehmann FF, Davila ML. NKG2D-Based chimeric antigen receptor therapy induced remission in a relapsed/refractory acute myeloid leukemia patient. Haematologica. 2018;103(9):e424. doi:10.3324/haematol.2017.186742.
  • Shadman M, Yeung C, Redman MW, Lee SY, Lee DH, Ramachandran A, Ra S, Marzbani EA, Graf SA, Warren EH, et al. Third generation CD20 targeted CAR T-cell therapy (MB-106) for treatment of patients with relapsed/refractory B-cell non-Hodgkin lymphoma. Blood. 2020;136(Supplement 1):38–39. doi:10.1182/blood-2020-136440.
  • Driouk L, Gicobi JK, Kamihara Y, Rutherford K, Dranoff G, Ritz J, Baumeister SHC. Chimeric antigen receptor T-cells targeting NKG2D-ligands show robust efficacy against acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Front Immunol. 2020;11:580328. doi:10.3389/fimmu.2020.580328.
  • Maiorova V, Mollaev MD, Vikhreva P, Kulakovskaya E, Pershin D, Chudakov DM, Kibardin A, Maschan MA, Larin S. Natural Flt3Lg-Based Chimeric Antigen Receptor (Flt3-CAR) T-cells Successfully Target Flt3 on AML Cell Lines. Vaccines. 2021;9(11):1238. doi:10.3390/vaccines9111238.
  • Warda W, Larosa F, Neto Da Rocha M, Trad R, Deconinck E, Fajloun Z, Faure C, Caillot D, Moldovan M, Valmary-Degano S, et al. Cml hematopoietic stem cells expressing il1rap can be targeted by chimeric antigen receptor–engineered T cells. Cancer Res. 2019;79(3):663–675. doi:10.1158/0008-5472.CAN-18-1078.
  • Cui Q, Qian C, Xu N, Kang L, Dai H, Cui W, Song B, Yin J, Li Z, Zhu X, et al. CD38-Directed CAR-T-cell therapy: a novel immunotherapy strategy for relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. J Hematol Oncol. 2021;14(1):1–5. doi:10.1186/s13045-021-01092-4.
  • Hill L, Rouce RH, Smith TS, Yang L, Srinivasan M, Zhang H, Perconti S, Mehta B, Dakhova O, Randall J, et al. CD5 CAR T-cells for treatment of patients with relapsed/refractory CD5 expressing T-cell lymphoma demonstrates safety and anti-tumor activity. Biol Blood Marrow Transplant. 2020;26(3):S237. doi:10.1016/j.bbmt.2019.12.482.
  • Cheng J, Chen G, Lv H, Xu L, Liu H, Chen T, Qu L, Wang J, Cheng L, Hu S, et al. CD4-Targeted T-cells rapidly induce remissions in mice with T-cell Lymphoma. Biomed Res Int. 2021;2021. doi:10.1155/2021/6614784
  • Mamonkin M, Rouce RH, Tashiro H, Brenner MK. A T-cell–directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood. 2015;126:983–992.
  • Vitanza NA, Johnson AJ, Wilson AL, Brown C, Yokoyama JK, Künkele A, Chang CA, Rawlings-Rhea S, Huang W, Seidel K, et al. Locoregional infusion of HER2-specific CAR T-cells in children and young adults with recurrent or refractory CNS tumors: an interim analysis. Nat Med. 2021;27(9):1544–1552. doi:10.1038/s41591-021-01404-8.
  • Shah NN, Fry TJ. Mechanisms of resistance to CAR T-cell therapy. Nat Rev Clin Oncol. 2019;16(6):372–385. doi:10.1038/s41571-019-0184-6.
  • Fousek K, Watanabe J, Joseph SK, George A, An X, Byrd TT, Morris JS, Luong A, Martínez-Paniagua MA, Sanber K, et al. Car T-cells that target acute B-lineage leukemia irrespective of CD19 expression. Leukemia. 2021;35(1):75–89. doi:10.1038/s41375-020-0792-2.
  • Maude SL, Barrett DM, Rheingold SR, Aplenc R, Teachey DT, Callahan C, Baniewicz D, White C, Talekar MK, Shaw PA, et al. Efficacy of humanized CD19-targeted chimeric antigen receptor (CAR)-modified T-cells in children and young adults with relapsed/refractory acute lymphoblastic leukemia. Blood. 2016;128(22):217. doi:10.1182/blood.V128.22.217.217.
  • Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH. T-Cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73. doi:10.1126/scitranslmed.3002842.
  • Orlando EJ, Han X, Tribouley C, Wood PA, Leary RJ, Riester M, Levine JE, Qayed M, Grupp SA, Boyer M. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med. 2018;24(10):1504–1506. doi:10.1038/s41591-018-0146-z.
  • Fischer J, Paret C, El Malki K, Alt F, Wingerter A, Neu MA, Kron B, Russo A, Lehmann N, Roth L, et al. CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis. J Immunother. 2017;40(5):187. doi:10.1097/CJI.0000000000000169.
  • Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, Sussman R, Lanauze C, Ruella M, Gazzara MR. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015;5(12):1282–1295. doi:10.1158/2159-8290.CD-15-1020.
  • Gardner R, Wu D, Cherian S, Fang M, Hanafi L-A, Finney O, Smithers H, Jensen MC, Riddell SR, Maloney DG, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127(20):2406–2410.
  • Majzner RG, Mackall CL. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 2018;8(10):1219–1226. doi:10.1158/2159-8290.CD-18-0442.
  • Green DJ, Pont M, Sather BD, Cowan AJ, Turtle CJ, Till BG, Nagengast AM, Libby EN, Becker PS, Coffey DG, et al. Fully human BCMA targeted chimeric antigen receptor T-cells administered in a defined composition demonstrate potency at low doses in advanced stage high risk multiple myeloma. Blood. 2018;132(Supplement 1):1011. doi:10.1182/blood-2018-99-117729.
  • Brudno JN, Maric I, Hartman SD, Rose JJ, Wang M, Lam N, Stetler-Stevenson M, Salem D, Yuan C, Pavletic S, et al. T Cells genetically modified to express an Anti–B-Cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol. 2018;36(22):2267. doi:10.1200/JCO.2018.77.8084.
  • Cohen AD, Garfall AL, Stadtmauer EA, Melenhorst JJ, Lacey SF, Lancaster E, Vogl DT, Weiss BM, Dengel K, Nelson A, et al. B cell maturation antigen–specific car T cells are clinically active in multiple myeloma. J Clin Invest. 2019;129(6):2210–2221. doi:10.1172/JCI126397.
  • Jafarzadeh L, Masoumi E, Fallah-Mehrjardi K, Mirzaei HR, Hadjati J. Prolonged persistence of chimeric antigen receptor (CAR) T-cell in adoptive cancer immunotherapy: challenges and ways forward. Front Immunol. 2020;11:702. doi:10.3389/fimmu.2020.00702.
  • Li D, Li N, Zhang Y-F, Fu H, Feng M, Schneider D, Su L, Wu X, Zhou J, Mackay S, et al. Persistent polyfunctional chimeric antigen receptor T-cells that target glypican 3 eliminate orthotopic hepatocellular carcinomas in mice. Gastroenterology. 2020;158(8):2250–65. e20. doi:10.1053/j.gastro.2020.02.011.
  • Jensen MC, Riddell SR. Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol. 2015;33:9–15. doi:10.1016/j.coi.2015.01.002.
  • Caruso HG, Hurton LV, Najjar A, Rushworth D, Ang S, Olivares S, Mi T, Switzer K, Singh H, Huls H, et al. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res. 2015;75(17):3505–3518. doi:10.1158/0008-5472.CAN-15-0139.
  • McGowan E, Lin Q, Ma G, Yin H, Chen S, Lin Y. PD-1 disrupted CAR-T-cells in the treatment of solid tumors: promises and challenges. Biomed Pharmacother. 2020;121:109625. doi:10.1016/j.biopha.2019.109625.
  • Liu Y, Wang L, Predina J, Han R, Beier UH, Wang LCS, Kapoor V, Bhatti TR, Akimova T, Singhal S. Inhibition of p300 impairs Foxp3+ T regulatory cell function and promotes antitumor immunity. Nat Med. 2013;19(9):1173–1177. doi:10.1038/nm.3286.
  • Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, Callahan DJ, Sun Z, Sun T, Tabib T, et al. Adaptive plasticity of IL-10+ and IL-35+ Treg cells cooperatively promotes tumor T-cell exhaustion. Nat Immunol. 2019;20(6):724–735. doi:10.1038/s41590-019-0346-9.
  • Seo H, Chen J, González-Avalos E, Samaniego-Castruita D, Das A, Wang YH, López-Moyado IF, Georges RO, Zhang W, Onodera A, et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8 + T cell exhaustion. Proc Nat Acad Sci. 2019;116(25):12410–12415. doi:10.1073/pnas.1905675116.
  • Nabe S, Yamada T, Suzuki J, Toriyama K, Yasuoka T, Kuwahara M, Shiraishi A, Takenaka K, Yasukawa M, Yamashita M, et al. Reinforce the antitumor activity of CD 8 + T cells via glutamine restriction. Cancer Sci. 2018;109(12):3737–3750. doi:10.1111/cas.13827.
  • Zhao J, Lin Q, Song Y, Liu D. Universal CARs, universal T-cells, and universal CAR T-cells. J Hematol Oncol. 2018;11(1):1–9. doi:10.1186/s13045-018-0677-2.
  • Liu D, Zhao J, Song Y. Engineering switchable and programmable universal CARs for CAR T therapy. J Hematol Oncol. 2019;12(1):1–9. doi:10.1186/s13045-019-0763-0.
  • Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T-cell therapy. Nat Rev Clin Oncol. 2020;17(3):147–167. doi:10.1038/s41571-019-0297-y.
  • Kloss CC, Lee J, Zhang A, Chen F, Melenhorst JJ, Lacey SF, Maus MV, Fraietta JA, Zhao Y, June CH, et al. Dominant-Negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol Ther. 2018;26(7):1855–1866. doi:10.1016/j.ymthe.2018.05.003.
  • Albinger N, Hartmann J, Ullrich E. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther. 2021;28(9):513–527. doi:10.1038/s41434-021-00246-w.
  • Abreu TR, Fonseca NA, Gonçalves N, Moreira JN. Current challenges and emerging opportunities of CAR-T-cell therapies. J Controlled Release. 2020;319:246–261. doi:10.1016/j.jconrel.2019.12.047.
  • Zhao L, Cao YJ. Engineered T-cell therapy for cancer in the clinic. Front Immunol. 2019;10:2250. doi:10.3389/fimmu.2019.02250.
  • Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 2019;34:45–55. doi:10.1016/j.blre.2018.11.002.
  • Si S, Teachey DT. Spotlight on tocilizumab in the treatment of CAR-T-cell-induced cytokine release syndrome: clinical evidence to date. Ther Clin Risk Manag. 2020;16:705. doi:10.2147/TCRM.S223468.
  • Diorio C, Vatsayan A, Talleur AC, Annesley C, Jaroscak JJ, Shalabi H, Ombrello AK, Hudspeth M, Maude SL, Gardner RA, et al. Anakinra utilization in refractory pediatric CAR T-cell associated toxicities. Blood Adv. 2022;6(11):3398–3403. doi:10.1182/bloodadvances.2022006983.
  • Park JH, Sauter CS, Palomba ML, Shah GL, Dahi PB, Lin RJ, Scordo M, Batlevi CL, Perales M-A, Kane P, et al. A phase ii study of prophylactic anakinra to prevent CRS and neurotoxicity in patients receiving CD19 CAR T-cell therapy for relapsed or refractory lymphoma. Blood. 2021;138:96. doi:10.1182/blood-2021-150431.
  • Oliai C, Crosetti A, De Vos S, Eradat H, Mead MD, Larson SM, Tsai S, Liu A, Khachatrian G, Hannigan C, et al. IL-1 receptor antagonist for prevention of severe immune effector cell-associated neurotoxicity syndrome. United States: Wolters Kluwer Health; 2021.
  • Bupha-Intr O, Haeusler G, Chee L, Thursky K, Slavin M, Teh B. CAR-T-Cell therapy and infection: a review. Expert Rev Anti Infect Ther. 2021;19(6):749–758. doi:10.1080/14787210.2021.1855143.
  • Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L, Ponzoni M, Rossini S, Mavilio F, Traversari C. HSV-Tk gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science. 1997;276(5319):1719–1724. doi:10.1126/science.276.5319.1719.
  • Quintarelli C, Vera JF, Savoldo B, Giordano Attianese GM, Pule M, Foster AE, Heslop HE, Rooney CM, Brenner MK, Dotti G. Co-Expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood. 2007;110:2793–2802.
  • C-Y W, Roybal KT, Puchner EM, Onuffer J, Lim WA. Remote control of therapeutic T-cells through a small molecule–gated chimeric receptor. Science. 2015;350(6258):aab4077. doi:10.1126/science.aab4077.
  • Frankel SR, Baeuerle PA. Targeting T-cells to tumor cells using bispecific antibodies. Curr Opin Chem Biol. 2013;17(3):385–392. doi:10.1016/j.cbpa.2013.03.029.
  • Labanieh L, Majzner RG, Klysz D, Sotillo E, Fisher CJ, Vilches-Moure JG, Pacheco KZB, Malipatlolla M, Xu P, Hui JH, et al. Enhanced safety and efficacy of protease-regulated CAR-T-cell receptors. Cell. 2022;185(10):1745–63. e22. doi:10.1016/j.cell.2022.03.041.
  • Lee SM, Kang CH, Choi SU, Kim Y, Hwang JY, Jeong HG, Park CH. A chemical switch system to modulate chimeric antigen receptor T-cell activity through proteolysis-targeting chimaera technology. Acs Synth Biol. 2020;9(5):987–992. doi:10.1021/acssynbio.9b00476.
  • Fiorenza S, Ritchie DS, Ramsey SD, Turtle CJ, Roth JA. Value and affordability of CAR T-cell therapy in the United States. Bone Marrow Transplant. 2020;55(9):1706–1715. doi:10.1038/s41409-020-0956-8.
  • Zhang C, He J, Liu L, Wang J, Wang S, Liu L, Ge J, Gao L, Gao L, Kong P, et al. Novel CD19 chimeric antigen receptor T-cells manufactured next-day for acute lymphoblastic leukemia. Blood Cancer J. 2022;12(6):1–9. doi:10.1038/s41408-022-00688-4.
  • Ardigen2021. CAR-T-Cell therapies: limitations and improvement strategies. Poland: Ardigen BLOG.
  • Novartis. Charging towards the next-generation of CAR-T. 2022.
  • Bozza M, De Roia A, Correia MP, Berger A, Tuch A, Schmidt A, Zörnig I, Jäger D, Schmidt P, Harbottle RP, et al. A nonviral, nonintegrating DNA nanovector platform for the safe, rapid, and persistent manufacture of recombinant T-cells. Science Adv. 2021;7(16):eabf1333. doi:10.1126/sciadv.abf1333.
  • Depil S, Duchateau P, Grupp S, Mufti G, Poirot L. ‘Off-The-Shelf’allogeneic CAR T-cells: development and challenges. Nat Rev Drug Discov. 2020;19(3):185–199. doi:10.1038/s41573-019-0051-2.
  • Cutmore LC, Marshall JF. Current perspectives on the use of off the shelf CAR-T/NK cells for the treatment of cancer. Cancers. 2021;13(8):1926. doi:10.3390/cancers13081926.
  • Elavia N, McManus A, Highfill SL, Ren J, Shah NN, Fry TJ, Brudno J, Kochenderfer JN, Stroncek D, Panch SR. The post-thaw recovery of cryopreserved chimeric antigen receptor (CAR) T-cells during manufacture is better than that of cryopreserved peripheral blood CD3+ cells. Blood. 2017;130:4475.
  • Tay A. Cryopreservation to Improve Cell Manufacturing and Biobanking: as adoptive cell therapies and stem cell therapies come to be applied more generally, cryopreservation technology must cope with quality and supply challenges. Genet Eng Biotechnol News. 2020;40(S5):S10–S2. doi:10.1089/gen.40.S5.05.
  • Harrison RP, Zylberberg E, Ellison S, Levine BL. Chimeric antigen receptor–t-cell therapy manufacturing: modelling the effect of offshore production on aggregate cost of goods. Cytotherapy. 2019;21(2):224–233. doi:10.1016/j.jcyt.2019.01.003.
  • Sanber K, Savani B, Jain T. Graft‐versus‐host disease risk after chimeric antigen receptor T‐cell therapy: the diametric opposition of T-cells. Br J Haematol. 2021;195(5):660–668. doi:10.1111/bjh.17544.