1,436
Views
0
CrossRef citations to date
0
Altmetric
Technology – Brief Report

Challenges and opportunities in current vaccine technology and administration: A comprehensive survey examining oral vaccine potential in the United States

ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2114422 | Received 04 Jun 2022, Accepted 06 Aug 2022, Published online: 09 Sep 2022

References

  • Centers for Disease Control and Prevention. Vaccine administration route and site. Atlanta (GA): Office of the Associate Director for Communication; 2021 [accessed 2022 Mar 1]. https://www.cdc.gov/vaccines/hcp/admin/administer-vaccines.html.
  • Centers for Disease Control and Prevention. Birth-18 years immunization schedule. Atlanta (GA): Office of the Associate Director for Communication; 2022 [accessed 2022 Mar 1]. https://www.cdc.gov/vaccines/schedules/hcp/imz/child-adolescent.html.
  • Centers for Disease Control and Prevention. Live intranasal influenza vaccine information statement. Atlanta (GA): Office of the Associate Director for Communication; 2021 [accessed 2022 Mar 1]. https://www.cdc.gov/vaccines/hcp/vis/vis-statements/flulive.html.
  • Centers for Disease Control and Prevention. Adenovirus vaccine information statement. Atlanta (GA): Office of the Associate Director for Communication; 2020 [accessed 2022 Mar 1]. https://www.cdc.gov/vaccines/hcp/vis/vis-statements/adenovirus.html.
  • Centers for Disease Control and Prevention. Cholera vaccine information statement. Atlanta (GA): Office of the Associate Director for Communication; 2019a [accessed 2022 Mar 1]. https://www.cdc.gov/vaccines/hcp/vis/vis-statements/cholera.html.
  • Centers for Disease Control and Prevention. Typhoid vaccine information statement. Atlanta (GA): Office of the Associate Director for Communication; 2019b [accessed 2022 Mar 1]. https://www.cdc.gov/vaccines/hcp/vis/vis-statements/typhoid.html.
  • Centers for Disease Control and Prevention. Polio vaccination: what everyone should know. Atlanta (GA): Office of the Associate Director for Communication; 2018 [accessed 2022 Mar 1]. https://www.cdc.gov/vaccines/vpd/polio/public/index.html.
  • Quinlan EJ, Chubet R, Leonardi P. A novel SARS-CoV-2 subunit vaccine engineered on an immune-activating platform technology. Hum Vaccines Immunother. 2022:1–10. doi:10.1080/21645515.2022.2062971. PMID: 35801956.
  • Farhadian A, Dounighi NM, Avadi M. Enteric trimethyl chitosan nanoparticles containing hepatitis B surface antigen for oral delivery. Hum Vaccines Immunother. 2015;11(12):2811–2818. doi:10.1080/21645515.2015.1053663. PMID: 26158754.
  • Ogra PL, Faden H, Welliver RC. Vaccination strategies for mucosal immune responses. Clin Microbiol Rev. 2001;14(2):430–445. doi:10.1128/CMR.14.2.430-445.2001.
  • Kim SH, Jang YS. The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clin Exp Vaccine Res. 2017;6(1):15–21. doi:10.7774/cevr.2017.6.1.15.
  • Hijano DR, Vu LD, Kauvar LM, Tripp RA, Polack FP, Cormier SA. Role of type I interferon (IFN) in the respiratory syncytial virus (RSV) immune response and disease severity. Front Immunol. 2019;10:566. doi:10.3389/fimmu.2019.00566.
  • McRee AL, Reiter PL, Pepper JK, Brewer NT. Correlates of comfort with alternative settings for HPV vaccine delivery. Hum Vaccines Immunother. 2013;9(2):306–313. doi:10.4161/hv.22614. PMID: 23291948.
  • Kichaev G, Mendoza JM, Amante D, Smith TR, McCoy JR, Sardesai NY, Broderick KE. Electroporation mediated DNA vaccination directly to a mucosal surface results in improved immune responses. Hum Vaccines Immunother. 2013;9(10):2041–2048. doi:10.4161/hv.25272. PMID: 23954979.
  • McLaurin K, Farr A, Wade S, Diakun D, Stewart D. Respiratory syncytial virus hospitalization outcomes and costs of full-term and preterm infants. J Perinatol. 2016;36(11):990–996. doi:10.1038/jp.2016.113. PMID: 27490190.
  • Centers for Disease Control and Prevention. RSV in infants and young children. Atlanta (GA): Office of the Associate Director for Communication; 2020 [accessed 2022 Mar 1]. https://www.cdc.gov/rsv/high-risk/infants-young-children.html.
  • Centers for Disease Control and Prevention. Older adults are at high risk for severe RSV infection. Atlanta (GA): Office of the Associate Director for Communication; 2017 [accessed 2022 Mar 1]. https://www.cdc.gov/rsv/factsheet-older-adults.pdf.
  • World Health Organization. Respiratory syncytial virus (RSV) disease. Geneva (Switzerland); 2022 [accessed 2022 Mar 1]. https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/vaccine-standardization/respiratory-syncytial-virus-disease.
  • Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:181004805. 2018. doi:10.48550/arXiv.1810.04805.
  • Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR, Le QV. Xlnet: Generalized autoregressive pretraining for language understanding. Adv Neural Inf Process Syst. 2019;32:5753–5763.
  • Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V. RoBERTa: a robustly optimized Bert pretraining approach. arXiv preprint arXiv:190711692. 2019. doi:10.48550/arXiv.1907.11692.
  • Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R. ALBERT: a lite BERT for self-supervised learning of language representations. arXiv preprint arXiv:190911942. 2019. doi:10.48550/arXiv.1909.11942.
  • Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J. BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2020;36(4):1234–1240. doi:10.1093/bioinformatics/btz682.
  • Sanh V, Debut L, Chaumond J, Wolf T DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:191001108. 2019. doi:10.48550/arXiv.1910.01108.
  • Reimers N, Gurevych I Sentence-BERT: sentence embeddings using siamese BERT-networks. arXiv preprint arXiv:190810084. 2019. doi:10.48550/arXiv.1908.10084.
  • He Z, Schonlau M Coding text answers to open-ended questions: human coders and statistical learning algorithms make similar mistakes. Methods Data Anal. 2021;15(1):17. doi:10.12758/mda.2020.10.
  • Schonlau M, Gweon H, Wenemark M. Automatic classification of open-ended questions: check-all-that-apply questions. Soc Sci Comput Rev. 2021;39(4):562–572. doi:10.1177/0894439319869210.
  • He Z, Schonlau M. Automatic coding of open-ended questions into multiple classes: whether and how to use double coded data. Surv Res Methods. 2020;14(3):267–287. doi:10.18148/srm/2020.v14i3.7639.
  • Ford J, Nierle D, Leeds P, Stetz T. Text mining narrative survey responses to develop engagement scale items. In: Proceedings of the 51st Hawaii International Conference on System Sciences; 2018 Jan 3-6. p. 607–614; Waikoloa Village, Honolulu (HI): University of Hawaiʻi at Mānoa.
  • Moreo A, Esuli A, Sebastiani F. Building automated survey coders via interactive machine learning. Int J Mark Res. 2019;61(4):408–429. doi:10.1177/1470785318824244.
  • Meidinger M, Aßenmacher M. A new benchmark for NLP in social sciences: evaluating the usefulness of pre-trained language models for classifying open-ended survey responses. In: Rocha A, Steels L, van den Herik H, editors. Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021); vol. 2; 2021 Feb 4-6; Online. Setúbal (Portugal): SciTePress; 2021. p. 866–873.
  • Schwabl P. Classifying user information needs in cooking dialogues–an empirical performance evaluation of transformer networks [ master’s thesis]. Regensburg (Germany): University of Regensburg; 2021.
  • Chan B, Pietsch M. RoBerta-base for QA; 2020 [accessed 2022 Mar 1]. https://huggingface.co/deepset/roberta-base-squad2.
  • Kaaijk P, Kleijne DE, Knol MJ, Harmsen IA, Ophorst OJ, Rots NY. Parents’ attitude toward multiple vaccinations at a single visit with alternative delivery methods. Hum Vaccines Immunother. 2014;10(8):2483–2489. doi:10.4161/hv.29361. PMID: 25424960.
  • Enri LR, Baratta F, Pignata I, Brusa P. How to promote vaccinations: a pilot study in the north-west of Italy. Hum Vaccines Immunother. 2019;15(5):1075–1079. doi:10.1080/21645515.2019.1581540. PMID: 30779685.
  • Diehl MC, Lee JC, Daniels SE, Tebas P, Khan AS, Giffear M, Sardesai NY, Bagarazzi ML. Tolerability of intramuscular and intradermal delivery by CELLECTRA® adaptive constant current electroporation device in healthy volunteers. Hum Vaccines Immunother. 2013;9(10):2246–2252. doi:10.4161/hv.24702. PMID: 24051434.
  • McLenon J, Rogers MAM. The fear of needles: a systematic review and meta-analysis. J Adv Nurs. 2019;75(1):30–42. doi:10.1111/jan.13818.
  • Kroger A, Bahta L, Hunter P General best practice guidelines for immunization. Atlanta (GA): Centers for Disease Control and Prevention. 2022. [accessed 2022 Mar 1]. https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/index.html.
  • Donnelly RF. Vaccine delivery systems. Hum Vaccines Immunother. 2017;13(1):17–18. doi:10.1080/21645515.2016.1259043. PMID: 28125375.
  • Jarrahian C, Myers D, Creelman B, Saxon E, Zehrung D. Vaccine vial stopper performance for fractional dose delivery of vaccines. Hum Vaccines Immunother. 2017;13(7):1666–1668. doi:10.1080/21645515.2017.1301336. PMID: 28463054.
  • Kumraj G, Pathak S, Shah S, Majumder P, Jain J, Bhati D, Hanif S, Mukherjee S, Ahmed S. Capacity building for vaccine manufacturing across developing countries: the way forward. Hum Vaccines Immunother. 2022;18(1):2020529. doi:10.1080/21645515.2021.2020529. PMID: 35086416.
  • Sun LX, Chen LL, Chen WY, Zhang MX, Yang MG, Mo LC, Zhu JJ, Tung TH, Li FP. Association between health behaviours and the COVID-19 vaccination: risk compensation among healthcare workers in Taizhou, China. Hum Vaccines Immunother. 2022;18(1):2029257. doi:10.1080/21645515.2022.2029257. PMID: 35175866.
  • Kulkarni S, Harvey B, Prybylski D, Jalloh MF. Trends in classifying vaccine hesitancy reasons reported in the WHO/UNICEF joint reporting form, 2014-2017: Use and comparability of the vaccine hesitancy matrix. Hum Vaccines Immunother. 2021;17(7):2001–2007. doi:10.1080/21645515.2020.1859319. PMID: 33534626.
  • Jaca A, Iwu-Jaja CJ, Balakrishna Y, Pienaar E, Wiysonge CS. A global bibliometric analysis of research productivity on vaccine hesitancy from 1974 to 2019. Hum Vaccines Immunother. 2021;17(9):3016–3022. doi:10.1080/21645515.2021.1903294. PMID: 33939571.
  • Dou K, Yang J, Wang LX, Li JB. Theory of planned behavior explains males’ and females’ intention to receive COVID-19 vaccines differently. Hum Vaccines Immunother. 2022:2086393. doi:10.1080/21645515.2022.2086393. PMID: 35749588.
  • Moat SJ, Hillier S, de Souza S, Perry M, Cottrell S, Lench A, Payne H, Jolles S. Maternal SARS-CoV-2 sero-surveillance using newborn dried blood spot (DBS) screening specimens highlights extent of low vaccine uptake in pregnant women. Hum Vaccines Immunother. 2022;0(0):2089498. doi:10.1080/21645515.2022.2089498. PMID: 35731129.
  • Centers for Disease Control and Prevention. COVID behaviors dashboard. Atlanta (GA): Office of the Associate Director for Communication; 2022 [accessed 2022 Mar 1]. https://covidbehaviors.org/.